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ABSTRACT
Previous studies of multiagent pursuit-evasion problem usu-
ally assume that the pursuers can move at stable speeds.
However, in many real cases, the pursuers’ speeds may be
unstable. In this paper, we study multiagent pursuit-evasion
problem based on pursuers with unstable speeds in a con-
tinuous open world. We present a feasible pursuing strate-
gy, and the experimental results show that our strategy can
generally lead to higher capture success ratios than previ-
ous strategies in the situations where the pursuers’ speeds
are unstable.
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1. INTRODUCTION
The multiagent pursuit-evasion problem has been widely

investigated in related areas [13, 8, 9, 1, 4, 16, 15, 6, 3,
14, 19, 5, 12, 2, 17, 7]. Previous studies usually assume
that the pursuers can move at stable speeds [13, 8, 9, 1,
4, 16, 15, 6, 3, 14, 19, 5, 12, 2, 17, 7]. However, in some
real cases, agent cannot always move at stable speed, and
the actual speed may fluctuate uncontrollably in pursuit-
evasion process. For instance, a quadruped robot’s speed
is influenced by touchdown angle so that the speed may
fluctuate because of the undulations of the ground [11].

In this paper, we discuss the multiagent pursuit-evasion
problem where the pursuers move at unstable speeds. The
instability of the pursuers’ speeds brings challenges for team
collaboration. Therefore, the capture success ratio based on
previous stable-speed pursuers-oriented strategies will de-
crease because of the instability of pursuers’ speeds.

In order to increase the capture success ratio, we present
a more feasible pursuing strategy. It can be known based on
experimental data that, our strategy can generally lead to
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higher capture success ratios than previous strategies in the
situations where the pursuers move at unstable speeds. The
more unstable the pursuers’ speeds are, the more obvious
the advantage of our strategy is.

2. PROBLEM FORMULATION
In this paper, we study the multiagent pursuit-evasion

problem in a continuous open world [14, 5]. Let there be n
pursuers and one single evader. The evader and pursuers are
set as circles, and the diameters of them are all set as one
unit distance. Both the evader and pursuers have enough
visual ranges. Initially, the pursuers are randomly located
surrounding the evader. The distance between the evader
and each pursuer is randomly set in [0, d0].

The evader’s speed and the pursuers’ maximum speed are
known. Let ve denote the evader’s speed. Besides, let vp
denote the pursuers’ maximum speed. We have ve > vp.
The pursuers’ actual speeds are initially vp but will fluctu-
ate between the maximum speed vp and a lower bound v′p
every one unit time. Moreover, the pursuers do not known
the values of v′p, such as that the robot cannot predict the
interference of the undulations of the ground.

Figure 1: A case of pursuit-evasion game.

The evader’s escape strategy is presented in [14], such as
shown in Figure 1:
• The evader will initially compare the angles θ1, θ2... θn
and select the maximum one. Then, the evader moves along
the angular bisector of the maximum angle.
• If the maximum angle changes in pursuit-evasion process,
the direction of the evader will also change.

If the distance between the evader and a pursuer is small
enough, the evader is captured [14, 5]. In this paper, the
pursuers must touch the evader to capture it. On the other
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hand, if the evader is out of the encircled formation consist-
ing of pursuers, it is considered escaping successfully [14].

Overall, the problem is to find a suitable pursuing strategy
to maximize the capture success ratio which is the ratio of
successful captures in repeated pursuit-evasion games with
various initial states [7].

3. PURSUING STRATEGY
As the pursuers’ speeds are unstable, it is hard for pur-

suers to predict which moving direction is better. In this
case, we can refer to the idea of reinforcement learning [18,
10]. It is worth noting that the learning algorithm cannot be
directly used in this problem. The reason is that reinforce-
ment learning is usually based on discrete Markov decision
process while the problem in this paper is continuous [18,
10]. Therefore, we need to combine the idea of reinforcement
learning with our analyses to design our own algorithm. In
detail, we set ten states and ten actions. The state is based
on the angle ϕ, and the action is represented by the value of
φ. The reward function is based on the two angles between
a pursuer and its two neighboring pursuers. It is assumed
that θ1(t) and θ2(t) are the two angles between a pursuer
and its two neighboring pursuers at time t. Then,

r = λ1[θ1(t−∆t)− θ1(t)] + λ2[θ2(t−∆t)− θ2(t)]. (1)

Here, if θ1(t − ∆t) > θ2(t − ∆t), λ1 = 2 and λ2 = 1; if
θ1(t − ∆t) < θ2(t − ∆t), λ1 = 1 and λ2 = 2; if θ1(t −
∆t) = θ2(t − ∆t), λ1 = λ2 = 1. Besides, ∆t represents
the minimum interval between the time points at which the
agents make decisions. Then, the pursuing strategy is shown
in Algorithm 1. The value of φ is the output.

Algorithm 1 The Pursuing Algorithm

1: Input the angle ϕ, time t, speed vp and ve.
2: Initialize Q1(s, a) and Q2(s, a) randomly if t = 0.
3: if ϕ ≥ π/2 then
4: if kπ/20 + π/2 < ϕ < (k + 1)π/20 + π/2 then
5: s(t)← k

6: if t > 0 then
7: Calculate r based on Equations (1)
8: Q1(s(t−∆t), a)← (1−α)Q1(s(t−∆t), a)+α[r+
γargmaxa′Q1(s(t), a′)]

9: a∗ ← argmaxa′Q1(s(t), a′), a← ε− greedy(a∗)
10: φ← a(π − ϕ)/9
11: else
12: if the largest angle among θ1, θ2... θn is larger than

2arcsin(vp/ve) then
13: φ← π/2
14: else
15: if kπ/20 < ϕ < (k + 1)π/20 then
16: s(t)← k

17: if t > 0 then
18: Calculate r based on Equations (1)
19: Q2(s(t−∆t), a)← (1− α)Q2(s(t−∆t), a) +

α[r + γargmaxa′Q2(s(t), a′)]

20: a∗ ← argmaxa′Q2(s(t), a′), a← ε− greedy(a∗)
21: φ← π/2− aϕ/9

4. EXPERIMENTS
In this section, we test our strategy based on simulation

experiments. Simulating continuous time, the evader and
the pursuers can make decisions and change their direction-

s per 0.1 unit time (∆t = 0.1). Each experiment is per-
formed with 5000 replications, and the ratio of the repli-
cations where the pursuers capture the evader successfully
is shown as capture success ratio. In each replication, the
locations of pursuers are reset randomly.

We test our strategy and three other strategies in the ex-
periments:
• Strategy 1: The pursuers adopt our strategy that is shown
in Algorithm 1 with the parameters ε = 0.5, α = 0.5 and
γ = 0.5.
• Strategy 2: If ϕ < π/2, φ = π/2. If ϕ ≥ π/2, the pursuers
move towards the current location of the evader.
• Strategy 3: If ϕ < π/2, φ = π/2. If ϕ ≥ π/2, the pursuers
move in the same direction with the evader.
• Strategy 4: The pursuers adopt the strategy presented in
[5]. Strategy 4 is a modification of Strategy 2 [5].

In Table 1, d0 = 50, n = 15, vp = 1.5 and ve = 2. As
v′p is the lower bound of the pursuers’ speeds, the pursuers
move at stable speeds if v′p = vp. Therefore, if v′p is larger,
the pursuers’ speeds are more stable. Conversely, if v′p is
smaller, the pursuers’ speeds are more unstable.

Table 1

v′p
Strategy

1
Strategy

2
Strategy

3
Strategy

4
0.1 0.2214 0.1826 0.1386 0.1852
0.3 0.2832 0.2382 0.2054 0.2486
0.5 0.3754 0.3226 0.2868 0.333
0.7 0.455 0.4238 0.3796 0.4232
0.9 0.5684 0.5492 0.5234 0.5516
1.1 0.6562 0.6656 0.637 0.6678
1.3 0.7392 0.7752 0.737 0.776
1.5 0.8242 0.8754 0.8388 0.8754

As shown in Table 1, our strategy is the best when v′p ≤
0.9. It means that our strategy can generally lead to high-
er capture success ratios than previous strategies when the
pursuers move at unstable speeds. When v′p is large enough,
Strategy 2, 3 and 4 are better than our strategy. The reason
is that, when speeds are stable, the pursuers can direct-
ly seek the optimal decisions. As there is no uncertainty,
learning process becomes insignificant. Besides, the random
decision in learning process decreases the capture success ra-
tio. Therefore, previous classical strategies becomes better
than our strategy if the pursuers’ speeds become stable.

Overall, our strategy is more feasible when the pursuers’
speeds are unstable, but our strategy cannot exceed previ-
ous classical strategies when the pursuers’ speeds are stable.
Especially, the more unstable the pursuers’ speeds are, the
more obvious the advantage of our strategy is.

5. CONCLUSIONS
In this paper, we study multiagent pursuit-evasion game

based on pursuers with unstable speeds and present a fea-
sible pursuing strategy. The experiments show that our s-
trategy can generally lead to higher capture success ratios
than previous strategies in the situations where the pursuers’
speeds are unstable.
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