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ABSTRACT
We extend Approval voting to the settings where voters may have
intransitive preferences. The major obstacle to applying Approval
voting in these settings is that voters are not able to clearly deter-
mine who they should approve or disapprove, due to the intransi-
tivity of their preferences. An approach to address this issue is to
apply tournament solutions to help voters make the decision. We
study a class of voting systems where first each voter casts a vote
defined as a tournament, then a well-defined tournament solution is
applied to select the candidates who are assumed to be approved by
the voter. Winners are the ones receiving the most approvals. We
study axiomatic properties of this class of voting systems and com-
plexity of control and bribery problems for these voting systems.
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1. INTRODUCTION
Approval-based voting systems are among the most important

voting systems and have been extensively studied in the literature [1,
2, 7, 8, 9, 13]. There are real-world applications where voters have
intransitive preferences [4, 5, 6, 10, 11]. We extend the framework
of approval-based voting to the settings where voters may hold in-
transitive preferences over the candidates, by combining approval
voting and tournament solutions. In particular, each voter submits
a vote defined as a tournament, and approves exactly the candidates
selected by a certain tournament solution. The winners are the can-
didates with the most approvals. We first study some axiomatic
properties of these voting systems (Theorems 1-4). In addition, we
study the complexity of control and bribery problems for these vot-
ing systems. Table 1 summarizes these complexity results. See [12]
for a full version of this paper.

A tournament T is a pair (V (T ),�) where V (T ) is a set of
candidates and � is an asymmetric and complete binary relation
on V (T ). For a ∈ V (T ), N−T (a) = {b ∈ V (T ) | b � a} and
N+
T (a) = {b ∈ V (T ) | a � b}. A candidate a is the source

(Condorcet winner) of T if N−T (a) = ∅. For B ⊆ V (T ), T [B] is
the subtournament induced by B, i.e., T [B] = (B,�′) where for
every a, b ∈ B, a �′ b if and only if a � b. A tournament solu-
tion π is a function that maps every tournament T to a nonempty
subset π(T ) ⊆ V (T ). In this paper, we mainly study the top cycle
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(TC), Copeland set (CO) and uncovered set (UC). See [3] for the
definitions of these tournament solutions.

An election is a tuple E = (C, T ), where C is a set of candidates,
and T is a list of votes defined as tournaments. A voting corre-
spondence ϕ is a function that maps an election E = (C, T ) to a
nonempty subset ϕ(E) of C. We call the elements in ϕ(E) the win-
ners of E with respect to ϕ. For two non-overlapping lists of tour-
naments T = (T1, T2, ..., Tx) and T ′ = (T ′1, T

′
2, ..., T

′
y), T +T ′ is

the list (T1, ..., Tx, T
′
1, ..., T

′
y). For two elections E = (C, T ) and

E ′ = (C, T ′) with the same candidate set C, E+E ′ = (C, T +T ′).
Now we introduce the core concept in this paper—π-Approval.

π-Approval

Each candidate c ∈ C is assigned a score defined as
score(c, E , π) = |{T ∈ T | c ∈ π(T )}|. The candidates
with the highest score are the winners.

Properties of Voting Correspondences ϕ.

Anonymity: for every two elections E = (C, T = (T1, ..., Tn))
and E ′ = (C, T ′ = (Tσ(1), ..., Tσ(n))) where (σ(1), ..., σ(n))
is a permutation of (1, 2, ..., n), it holds that ϕ(E) = ϕ(E ′).

Neutrality: An election (C, T = (T1, ..., Tn)) is isomorphic to
another election (C′, T ′ = (T ′1, ..., T

′
n)) where Ti = (C,�i)

and T ′i = (C′,�′i) for every i ∈ {1, ..., n}, if there is an one-
to-one mapping f : C 7→ C′ such that for every two distinct
candidates a, b ∈ C and every i ∈ {1, 2, ...., n}, it holds
that a �i b if and only if f(a) �′i f(b). A voting corre-
spondence ϕ is neutral if for every two isomorphic elections
E = (C, T ) and E ′ = (C′, T ′), and every c ∈ C, it holds
that c ∈ ϕ(E) if and only if f(c) ∈ ϕ(E ′), where f is the
mapping as discussed above for E and E ′.

Monotonicity: for every two elections E = (C, T = (T1, ..., Tn))
and E ′ = (C, T ′ = (T ′1, ..., T

′
n)), and every c ∈ ϕ(E) such

that for every i ∈ {1, 2, ..., n} (1) Ti[C \{c}] = T ′i [C \{c}];
and (2) N+

Ti
(c) ⊆ N+

T ′
i
(c), it holds that c ∈ ϕ(E ′).

Majority: for every election E = (C, T ) where there is a candidate
c ∈ C which is the source in a majority of the tournaments in
T , it holds that c ∈ ϕ(E).

Consistency: for every two elections E = (C, T ) and E ′ = (C, T ′),
it holds that ϕ(E) ∩ ϕ(E ′) ⊆ ϕ(E + E ′).

Pareto optimal: for every election E = (C, T ) and every two can-
didates a, b ∈ C such that a � b in every tournament T =
(C,�) ∈ T , a 6∈ ϕ(E) implies b 6∈ ϕ(E).
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Properties of Tournament Solutions π. The prefix “TS” in the
following notations is to avoid confusion with the axiomatic prop-
erties of voting correspondences.

TS-Neutrality: Two tournaments T = (C,�) and T ′ = (C′,�′)
where |C| = |C′| are isomorphic if there is an one-to-one
mapping f : C 7→ C′ such that for every a, b ∈ C, it holds
that a � b if and only if f(a) �′ f(b). Here, f is called an
isomorphic mapping of T and T ′. A tournament solution π
satisfies the TS-neutrality criterion if for every two isomor-
phic tournaments T = (C,�) and T ′ = (C′,�′), it holds
that π(T ′) = {f(a) ∈ C′ | a ∈ π(T )}, where f is an
isomorphic mapping of T and T ′.

TS-Monotonicity: for every T = (C,�), T ′ = (C,�′), and c ∈
π(T ) such that T [C \ {c}] = T ′[C \ {c}] and N+

T (c) ⊆
N+
T ′(c), it holds that c ∈ π(T ′).

TS-Condorcet consistency: for every tournament T which has a
source w, it holds that π(T ) = {w}.

To the best of our knowledge, the following two concepts of
monotonocity have not been studied in the literature.

TS-Exclusive monotonicity: for every T = (C,�), T ′ = (C,�′),
and c ∈ π(T ) with T [C \ {c}] = T ′[C \ {c}] and N+

T (c) ⊆
N+
T ′(c), it holds that c ∈ π(T ′) and π(T ′) ⊆ π(T ).

TS-Exclusive negative monotonicity (TS-ENM): for every two tour-
naments T = (C,�) and T ′ = (C,�′), and every c 6∈ π(T )
such that (1) T [C \ {c}] = T ′[C \ {c}]; and (2) N+

T (c) ⊆
N+
T ′(c), it holds that π(T ′) 6⊆ π(T ) implies c ∈ π(T ′).

2. AXIOMATIC PROPERTIES
It is fairly easy to check that π-Approval is anonymous for all

tournament solutions π. Moreover, π-Approval is neutral for all
tournament solutions π which satisfy the TS-neutrality criterion.
Furthermore, π-Approval satisfies the majority criteria for all π that
are TS-Condorcet consistent. We now study some other properties
for π-Approval. Consider first the consistency criterion.

THEOREM 1. π-Approval is consistent for all tournament solu-
tions π.

Now we study the monotonicity of π-Approval for all TS-Condorcet
consistent tournament solutions π. Many commonly used tourna-
ment solutions including all tournament solutions studied in this
paper are TS-Condorcet consistent. We derive both sufficient and
necessary conditions for such π-Approval to be monotonic.

THEOREM 2. Let π be a TS-Condorcet consistent tournament
solution. Then, π-Approval is monotonic if and only if π satisfies
the TS-exclusive monotonicity and TS-ENM criteria.

Though that the TS-monotonicity of π for each π ∈ {CO,UC,TC}
is apparent and has been studied in the literature [3], whether π
satisfies the two variants of the TS-monotonicity criterion is not
equally easy to see. In fact, we prove that among the three tourna-
ment solutions, only the top cycle satisfies the both criteria.

LEMMA 1. TC satisfies TS-exclusive monotonicity and TS-ENM,
but CO and UC do not satisfy TS-ENM.

Due to Theorem 2 and Lemma 1, we have the following theorem.

TC-Approval CO-Approval UC-Approval
CCAV NP-hard NP-hard NP-hard
CCDV NP-hard NP-hard NP-hard
CCAC NP-hard NP-hard NP-hard
CCDC NP-hard NP-hard NP-hard
DCAV P P P
DCDV P P P
DCAC NP-hard NP-hard NP-hard
DCDC NP-hard NP-hard NP-hard
CBRA P NP-hard W[2]-hard
DBRA P P W[2]-hard

Table 1: Complexity of control and bribery problems for π-
Approval where π ∈ {TC, CO, UC}. The W[2]-hardness re-
sults are with respect to the number of arcs that can be reversed
in total.

THEOREM 3. TC-Approval is monotonic, and UC-Approval and
CO-Approval are not monotonic.

Finally, we study the Pareto optimal criterion.

THEOREM 4. TC-Approval is Pareto optimal, and CO-Approval
and UC-Approval are not Pareto optimal.

3. COMPLEXITY
The constructive/destructive multimode control problem for π-

Approval is defined as follows.

Constructive/Destructive Multimode Control

Input: A set C of candidates, a list T of votes, a subset D ⊆ C,
a distinguished candidate p ∈ C \ D, a sublist U ⊆ T , positive
integers kAV, kDV, kAC, kDC.

Question: Are there D ⊆ D, C ⊆ C \ (D ∪ {p}), V ⊆ T \
U , U ⊆ U such that |D| ≤ kAC, |C| ≤ kDC, |U | ≤ kAV, |V | ≤
kDV and p wins/loses (A,F), where A = ((C \ D) \ C) ∪ D
and F = ((T \ U) \ V ) ∪ U?

We study 8 special cases of the above problem. Precisely, we
study CCAV, CCDV, CCAC, CCDC, DCAV, DCDV, DCAC and
DCDC. For X ∈ {AV, DV, AC, DC}, CCX (DCX) is the special
case of Constructive (Destructive) Multimode Control such that
kY = 0 for every Y ∈ {AV, DV, AC, DC} \ {X}. In addition,
for X ∈ {AV, DV, DC}, D = ∅ and for X ∈ {AC, DC, DV},
U = ∅.

In addition, we study two bribery problems denoted by CBRA
and DBRA. In CBRA (DBRA) we are given an election E = (C, T ),
a distinguished candidate p ∈ C, and an integer k > 0. The ques-
tion is whether we can make p win (lose) the election by reversing
at most k arcs in total in tournaments in T . CBRA and DBRA
have already been studied under the name microbribery [5]. How-
ever, the complexity of CBRA/DBRA for π-Approval has not been
studied yet.

Our complexity results are summarized in Table 1.
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