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ABSTRACT
We leverage causal inference tools to support a principled
and more robust transfer of knowledge in reinforcement learn-
ing (RL) settings. In particular, we tackle the problem
of transferring knowledge across bandit agents in settings
where causal effects cannot be identified by Pearl’s do-calculus
nor standard off-policy learning techniques. Our new identi-
fication strategy combines two steps – first, deriving bounds
over the arm’s distribution based on structural knowledge;
second, incorporating these bounds in a novel bandit algo-
rithm, B-kl-UCB. Simulations demonstrate that our strat-
egy is consistently more efficient than the current (non-
causal) state-of-the-art methods.
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1. INTRODUCTION
Reinforcement learning (RL) agents are typically trained

in isolation, often taking a substantial amount of time and
effort to learn a reasonable control policy. Techniques based
on transfer learning (TL) attempt to accelerate the learning
process of a target task by reusing knowledge gathered from
a different, but somewhat related source task [13, 10, 12, 11,
17]. Causal inference deals with the problem of inferring the
effect of actions (target) from a combination of a structural
model (to be defined) and heterogeneous sources of data
while permitting the presence of unmeasured common causes
(also called unobserved confounders, or UCs) [15, 5]. In his
seminal work, [14] developed a general calculus known as do-
calculus which was shown to be complete for observational
and experimental identification, i.e., any causal effect can
be identified from an observational or experimental dataset
if and only if it can be derived by do-calculus [18, 16, 8, 4].
Connections between causal models with UCs and RL were
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first established in [3]. Nevertheless, their methods mainly
focused on the online learning scenarios and barely touched
transfer learning settings.

This paper considers the offline (batch) transfer problem
between two multi-armed bandits (MAB) agents given a
causal model of the environment while allowing the existence
of UCs. We apply causal inference algorithms to identify
the causal effect of the target agent’s action from trajecto-
ries of the source agent. For three canonical tasks where the
causal effect is not identifiable, we extract knowledge from
the available distributions as bounds over the expected re-
ward (called causal bounds). We propose a novel MAB al-
gorithm (B-kl-UCB) that takes these bounds as input and
empirically show that the regret bound of B-kl-UCB domi-
nates the standard kl-UCB [6].

2. TRANSFER IN CAUSAL SEMANTICS
We define the MAB setting using structural causal mod-

els (SCMs) [15, Sec. 3], which serve as the basic semanti-
cal framework of our analysis. A causal diagram associated
with the SCM M is a directed acyclic graph where solid
nodes correspond to observed variables, empty nodes cor-
respond to unobserved variables, and edges represent func-
tional relationships. An agent for a stochastic MAB is given
a SCM M with a decision node X representing the arm se-
lection and an outcome variable Y representing the reward
– see Fig. 1(b). We use the do(·) operator to denote in-
terventions (actions) [15, Sec. 3]. Let D(X) denote by the
domain of variable X. For arm x ∈ D(X), its expected
reward µx is thus the effect of the action do(X = x), i.e.,
µx = E[Y |do(X = x)]. Let µ∗ denote the optimal expected
reward, µ∗ = maxx∈D(X) µx. At each trial t = 1, 2, . . . , T ,
the agent performs an action do(Xt = xt) and observes a re-
ward Yt. The objective of the agent is to minimize the cumu-
lative regret RT = Tµ∗ −

∑T
t=1 E[Yt]. We will consistently

use the abbreviation P (x) for the probabilities P (X = x)
and do(x) for actions do(X = x).

A transfer learning problem between two bandit agents
can thus be defined as the identification of the expected re-
ward of the target agent (e.g., E[Y |do(x)]) given the causal
diagram and trajectories of the source agent (e.g., P (x, y)).
We summarize in Figure 1 and Table 1 three canonical TL
tasks where target causal effects are not identifiable 1, that
is, the do-calculus is unable to pin down the mapping be-
tween the target causal effect and the source distribution
[15, pp. 77]. All three tasks are practical problems which

1For identifiable tasks, causal effects can be estimated by
repeatedly applying the do-calculus.
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Figure 1: SCM of the three canonical settings where the
expected reward is non-identifiable. (a) a contextual bandit
agent with context U unmeasured. (b) a standard MAB
agent. (c) a standard MAB agent with the action node Z.

Task Source → Target ID
1 P (x, y) E[Y |do(x)] 7

2 P (x, y|do(z)) E[Y |do(x)] 7

3 P (z, y|do(x)) E[Y |do(z)] 7

Table 1: Three canonical transfer learning tasks. ID stands
for point identifiability.

have a broad range of practical applications. Task 1 models
the transfer learning problem between a contextual bandit
agent and a standard MAB agent with the context U un-
measured. Tasks 2 and Task 3 describe the transfer learning
problem between two agents with different actuators, thus
having different action spaces [1].

3. MABS WITH CAUSAL BOUNDS
One might surmise that the negative results presented so

far suggest that when identifiability does not hold, no prior
data could be useful and experiments should be conducted
from scratch. We will show here that this is not the case.
For non-identifiable tasks, we obtain bounds over expected
rewards of the target agent and propose a novel MAB algo-
rithm leveraging these causal bounds.

Consider the 2-armed Bernoulli bandits (generalizing to
higher dimensions emerges naturally) whereX,Y, Z ∈ {0, 1}.
Construct a discretized SCM for Task 2 by decomposing U
into a pair of canonical types (Rx, Ry) [15, Sec. 8.2], where
Rx, Ry ∈ {0, 1, 2, 3} and represent the different types of
individuals in the population [9, 7]. We now extend this
discretization model to bound E[Y |do(x)] in Task 1 given
P (x, y). Let qij = P (Rx = i, Ry = j) ≥ 0, and Q = {qij}.
P (x, y) and E[Y |do(x)] can then be written as linear combi-
nations in the space spanned by Q. We then obtain causal
bounds by optimizing (min or max) E[Y |do(x)] subject to
constraints P (x, y) and qij ≥ 0. The similar procedure can
also be applied to bound E[Y |do(z)] in Task 3.

We now consider how the causal bounds can be used to
efficiently identify an optimal arm. We extend UCB algo-
rithms [2, 6] to take into account the causal bounds, which
we call B-kl-UCB (Algorithm 1). Let lmax denote the max-
imum of all lower bounds by lmax = maxx=1,...,K lx. B-kl-
UCB exploits the causal bound in two ways: 1) filtering any
arm a during initialization if hx < lmax; 2) truncating the

UCB Ux(t) with Ûx(t) = min{Ux(t), hx} and picking an arm

with the largest Ûx(t).

4. EXPERIMENTAL RESULTS
We conduct experiments for Task 1 with 2-armed Bernoulli

bandits. We compare B-kl-UCB with the standard kl-UCB

Algorithm 1: B-kl-UCB

1: Input: A non-decreasing function f : N→ R
2: A list of bounds over µx: {[lx, hx]}x∈{1,...,K}
3: Initialization: Remove any arm a with hx < lmax.
4: Let K′ denote the number of remaining arms.
5: Pull each arm of {1, . . . ,K′} once
6: for all t = K′ to T − 1 do
7: For each arm x, compute Ûx(t) = min

{
Ux(t), hx

}
, where

Ux(t) = sup
{
µ ∈ [0, 1] : KL(µ̂x(t), µ) ≤

f(t)

Nx(t)

}
8: Pick an arm Xt = argmaxx∈{1,...,K′} Ûx(t).

9: end for

Figure 2: Simulations results of Task 1 (Table 1) comparing
solvers that are causal enhanced (B-kl-UCB), standard (kl-
UCB), and naive (kl-UCB−).

algorithm without access to the causal bounds. We also
include its counterpart (called kl-UCB−) that incorporates
a naive transfer procedure using observational expected re-
ward E[Y |x] as if it was the average causal effect E[Y |do(x)].
Simulations are partitioned into rounds of T = 5000 trials
averaged over N = 200 repetitions. For each task, we col-
lect 5000 samples generated by a source agent and compute
the empirical joint distribution. The causal bounds are es-
timated with methods described in Sec. 3 from the corre-
sponding empirical joint distributions. We assess each al-
gorithm’s performance with cumulative regrets (CR). The
expected rewards of the given parametrization are µ1 =
0.66, µ2 = 0.36, and the estimated causal bounds are b1 =
[0.03, 0.76], b2 = [0.21, 0.51]. The results (Fig. 2) reveal a
significant difference in the regret experienced by B-kl-UCB
(CR = 0.47) compared to kl-UCB (CR = 17.97). kl-UCB−

performs worst among all strategies (CR = 1499.70). These
results corroborate with our methods and show that prior
experiences can be transferred to improve the performance
of the target agent, even when identifiability does not hold.

5. CONCLUSION
We tackled the problem of transfer learning across MAB

agents in general canonical settings where neither do-calculus
nor standard learning techniques can be used due to unob-
served confounding. We showed how partial information
can still be extracted in these non-identifiable cases, and
then translated into potentially informative causal bounds.
We incorporated these bounds into a dynamic allocation
procedure and empirically showed that our algorithm can
perform orders of magnitude more efficiently than current,
non-causal state-of-the-art procedures.
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