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My primary research interest is social behavior of software agents
acting in general-sum normal form games. In an environment with
another agent, an agent needs to be able to identify if the opponent
is hostile or cooperative by looking at the opponent’s actions, and
respond appropriately. If the opponent is hostile, the agent should
guard against it. Even for a self-interested agent, cooperative ac-
tions may be necessary to induce reciprocative cooperation on the
part of the opponent. In some games it is easy to identify hostile
or cooperative actions, but in an arbitrary general-sum game this is
not easy. We introduce attitude, a method of identifying cooperative
actions, and Restricted Stackelberg Response with Safety (RSRS),
a solution concept for normal-form games suitable for situations
where a prediction of the opponent behavior is available. Our goal
is to combine attitude and RSRS to enable an agent to achieve a
cooperative outcome in any general-sum game while avoiding ex-
ploitation.

1. ATTITUDE
Cooperating in a normal form game depends on identifying co-

operative actions. A model that has been used to explain cooper-
ative behavior in humans is that cooperative players act as if they
receive a share of the opponent payoffs [3]. This model can also
be used to generate cooperative behavior for software agents. We
say agents are cooperating when they select joint strategies which
provide a better outcome for each agent than they could achieve
individually.

Given a two-player general-sum normal form game G, with util-
ity functions U1 and U2, cooperative moves are found by creating a
modified game G′ with the same set of moves and utility functions
U ′

1 = U1 + A1 ∗ U2 and U ′
2 = U2 + A2 ∗ U1, where A1 and A2

are the attitudes of player 1 and player 2. The Nash equilibria of G′

define strategies for the players which reflect that attitude values
used to create G′. A1 and A2 can take any value, but we confine
our attention to the range [−1, 1]. Values lower than 0 create strate-
gies where the agent harms itself to harm the opponent, and values
higher than 1 create strategies where the gain to the opponent isn’t
worth the cost to the agent.

Figure 1 shows the expected outcome of the calculated strategy
in randomly generated games. The main influence on an agents
payoff is the attitude of the opponent, but the agents own attitude
also affects its payoff. Adopting a selfish attitude generally helps
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Figure 1: Effect of attitude values on the performance of an
agent in randomly generated games.
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Figure 2: Performance of 2 agents using attitude to cooperate.
Performance occasionally goes above the maximum expected
performance because the games are randomly generated.

the agent, but if the opponent’s attitude is positive reciprocating
will improve the agent’s payoff.

To use this technique to cooperate agents must coordinate on
an appropriate set of attitude values. This cannot be done by com-
munication; a hostile agent would lie about its attitude. Therefore
agents must learn the attitude of their opponent by observing the
opponent’s actions.

To learn attitude values an agent can use a particle filter to esti-
mate the parameters used by the opponent and use them to deter-
mine its strategy. This is complicated by the possibility of multiple
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Nash equilibria, but that can be handled by adding another parame-
ter to the particle filter. An advantage of using particle filters in this
way is that they can learn from observations from different games
as long as the opponent stays the same.

Figure 2 shows the performance of two agents which estimate at-
titude values using a particle filter and reciprocate the attitude of the
opponent with a slightly larger attitude value. In each round agents
play against their opponent in a new randomly generated game.
Agents can rapidly learn to cooperate and achieve good outcomes
for both agents.

2. RESTRICTED STACKELBERG RESPONSE
WITH SAFETY (RSRS)

Using a particle filter to estimate attitude allows agents to co-
operate, but is counterintuitive because the particle filter provides
a prediction of opponent behavior which is not then used by the
agent. We would like instead for the agent to respond rationally to
the prediction (given its chosen attitude).

A best-response to a prediction is easy to calculate, but has no
performance guarantees. On the other hand, playing strategies which
provide guarantees can reduce performance against the prediction.
A number of approaches have been taken to solving this prob-
lem [5, 1, 4]; they provide different guarantees and not all are suit-
able for general-sum games.

We have developed Restricted Stackelberg Response with Safety
(RSRS) [2], a parameter driven approach which can smoothly ad-
just between best-responding to the prediction, dealing with an ex-
ploiting opponent, and providing worst-case guarantees. RSRS uses
two parameters, w, the prediction weight, which controls the trade-
off between exploiting the prediction and dealing with an exploit-
ing opponent, and r, the risk factor, which determines how much to
risk in hopes of exploiting the prediction.

RSRS is calculated by creating a modified game, in which the
moves are the same as the original game, but the payoffs are ad-
justed to be a weighted average of the original payoffs and the ex-
pected payoff of the calculating players move against the prediction
U ′

1(m1,m2) = (1− w) ∗ U1(m1,m2) + w ∗ U1(m1, pred). Us-
ing the modified game, RSRS is the strategy which maximizes per-
formance against a best-responding opponent while guaranteeing a
payoff within r of the safety value of the game.

The game we use to show the properties of RSRS is a general-
sum modification of Rock/Spock/Paper/Lizard/Scissors – a vari-
ant of Rock/Paper/Scissors with 5 moves. Rock/Paper/Scissors/-
Lizard/Spock was presented in the the TV show The Big Bang
Theory; we have modified it to make it general-sum, and changed
the name to reflect the precedence relationship between the moves.
Each action beats two other actions, and is beaten in turn by the
two remaining actions. Players receive a payoff of 1 for a win, −1
for a loss, and 0 for a tie. In addition, both players receive .5 when
adjacent moves are played and lose .5 when non-adjacent moves
are played. In this game players have conflicting interests but some
cooperation is possible, which allows us to distinguish between a
best-responding opponent and a worst case outcome.

Figure 3 shows the effect of r and w when using RSRS in RSPLS.
The risk factor causes the strategy to gradually shift from the min-
imax solution to a best-response to the prediction. The prediction
weight causes discontinuous changes in the strategy at points where
a best-responding opponent changes strategies. It can be proven
that when the strategy changes at a point w the ratio of gain against
the prediction to the loss against a best-responding opponent is
1−w
w

.
Using the method outlined in [5] to set r values and a combi-
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Figure 3: Performance for different values of the w (left)
and r (right) parameters in a general-sum game, against the
prediction(◦), against a best-responder (×) and in the worst-
case (�).

nation of gradient descent with an exponential opponent response
model to set w values RSRS can perform well using a flawed pre-
dictor against a wide variety of opponents. It is able to coordinate in
self-play to arrive at strategies which are beneficial to both agents.
However, it is not fully cooperative. RSRS will never select a dom-
inated strategy, so it can’t cooperate in games such as Prisoner’s
Dilemma, where the cooperative move is strictly dominated.

3. FUTURE WORK
We can use attitude to cooperate in self-play at the cost of not re-

sponding rationally to our prediction. We can use RSRS to respond
effectively to a prediction without cooperating. The next stage is to
incorporate RSRS into an attitude-based reciprocating agent to cre-
ate an agent which can use reciprocation to achieve a cooperative
outcome in any general-sum game while avoiding exploitation. We
will do this by creating a particle filter which combines attitude and
the RSRS model to identify attempts to cooperate.

The final problem is to formalize the process of reciprocation. In
symmetric games, it is easy to aim for equal outcomes, but not ev-
ery game is symmetric, and even when the game appears to be sym-
metric inaccuracies in the utility function may make an asymmetric
outcome desirable. For example, in a game with cash payoffs one
player may have an immediate need for a specific amount while
the other simply wants as much money as possible - this would af-
fect the achievable cooperative agreements. We don’t believe it is
possible to fully resolve this problem in the absence of an oracle
to provide true utility functions, but formalizing the tradeoffs being
made will be an important step.

REFERENCES
[1] Michael Bowling. Convergence and no-regret in multiagent

learning. Advances in neural information processing systems,
17:209–216, 2005.

[2] Steven Damer and Maria Gini. Safely using predictions in
general-sum normal form games. In Proc. Int’l Conf. on
Autonomous Agents and Multi-Agent Systems, 2017.

[3] N. Frohlich. Self-Interest or Altruism, What Difference?
Journal of Conflict Resolution, 18(1):55–73, 1974.

[4] Michael Johanson, Martin Zinkevich, and Michael Bowling.
Computing robust counter-strategies. In Advances in Neural
Information Processing Systems (NIPS), pages 721–728,
2007.

[5] Peter McCracken and Michael Bowling. Safe strategies for
agent modelling in games. In AAAI Fall Symposium on
Artificial Multi-agent Learning, October 2004.

1827




