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ABSTRACT
Transferring robotic control policies — learned in simulation — to
physical robots is a promising alternative to learning directly on the
physical system. Unfortunately, policies learned in simulation often
fail in the real world due to the inevitable discrepancies between
the real world and simulation. This thesis aims to bridge the gap
between simulation and reality by developing methods for grounding
simulation to reality and developing methods for assessing how well
a policy learned in simulation will perform before it is executed in
the real world. We discuss completed work towards a simulation-
transfer method and methods of safe policy evaluation. We then
present directions for future work in these areas.
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1. INTRODUCTION
A key limitation for widescale deployment of robots is the neces-

sity of expert-designed control software for any situation the robot
could find itself in. This approach has limited robotics to controlled,
structured environments such as factory assembly lines. If robots
are going to be able to leave the factory floor and enter unstructured
environments such as homes or workplaces then they must have the
capability to autonomously acquire new skills.

Reinforcement learning (RL) provides a promising alternative
to hand-coded skills. Unfortunately, the amount of experience re-
quired by state-of-the-art RL algorithms is orders of magnitude
higher than what is obtainable on a physical robot. Aside from the
time it would take, collecting the required training data may lead to
substantial wear on the robot. Furthermore, as the robot explores
different policies it may execute unsafe actions which could damage
the robot. For these reasons, recent empirical successes of rein-
forcement learning have taken place within simulation. This thesis
research proposes to side-step the challenges of robotic reinforce-
ment learning by learning skills in simulation and then transferring
the skills to the physical robot.

In theory, the transfer of skills learned in simulation makes state-
of-the-art RL immediately applicable to physical robots. Unfor-
tunately, even small discrepancies between simulated physics and
reality cause learning in simulation to find policies that fail in the
real world. As an illustrative example, consider a robot learning
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to walk in a simulator where frictional forces are under-modeled.
The robot learns it can move its leg joints very quickly to achieve a
fast walk. When the same controls are applied in the real world, the
walk is jerky and the robot falls over.

An additional limitation of learning in simulation is that policies
learned in simulation lack guarantees about their performance in
the real world. For any policy learned in simulation, the policy
should only deployed if its expected performance is above a pre-
defined threshold with high confidence. Current methods exists for
this problem but their data requirements preclude their use in data-
scarce settings such as robotics. Thus simulation-transfer methods
have no practical method for determining if a proposed policy will
work when deployed in the real world.

This thesis research aims to close the gap between simulation
and reality through the transfer of simulated robot skills to physical
robots. Specifically, this research answers the question, “How can
reinforcement learning be applied to learning robot skills in simula-
tion such that those skills can be deployed on a physical robot with
high confidence that learning will improve performance?"

2. COMPLETED WORK
To address the inevitable discrepancies between simulation and

reality, we have proposed the grounded action transformation (GAT)
algorithm for grounded simulation learning. The proposed approach
is to augment the simulator with a differentiable action transfor-
mation function, g, which transforms the robot’s simulated action
into an action which — when taken in simulation — produces the
same transition that would have occurred in the physical system.
The simplest instantiation of GAT learns two functions: f which
predicts the effects of the physical robot’s dynamics and f−1

sim , which
predicts the action needed in simulation to transition from one spe-
cific state to another. The transformation function g is specified as
g(st, at) := f−1

sim (st, f(st, at)) where st is the state of the environ-
ment and at is the action the robot’s policy chooses at time-step t.
When the robot is in state st in simulation and takes action at, the
augmented simulator replaces at with g(st, at) and the simulator
returns st+1 which is the next state that would have occurred on
the physical robot. The advantage of GAT is that learning f and
f−1
sim is a supervised learning problem which can be solved with

a variety of techniques such as artificial neural networks trained
with backpropagation. Figure 1 illustrates the augmented simulator
induced by GAT. Initial results with GAT have shown that grounding
the simulator leads to better learning for physical robots — in one
instance increasing the walking speed of a bipedal humanoid robot
by over 40% [3].

We also present two methods for providing safety guarantees for
policies proposed in simulation. This problem falls into the research
area known as high confidence off-policy evaluation (HCOPE).
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Figure 1: The augmented simulator induced by GAT.

HCOPE methods attempt to place guarantees on the performance of
an untested policy using data produced by executing a known, safe
behavior policy. Current methods [1, 5] require too much data for
a data-scarce setting such as robotics. Towards HCOPE methods
for robotics settings, we have investigated the novel combination of
bootstrapping with two different model-based off-policy estimators
and shown it provides a data-efficient approximate solution to this
problem. Bootstrapping is a statistical technique for estimating the
distribution of an estimator from which approximate confidence in-
tervals can be derived [2]. The use of bootstrapping means forfeiting
strict safety guarantees but can increase data-efficiency. In our work,
we propose bootstrapping with the model-based off-policy estimator
and bootstrapping with the weighted-doubly robust estimator [6].
Empirical evaluation of the proposed methods showed the com-
bination of bootstrapping with model-based off-policy estimators
significantly reduces the amount of data needed to produce tight
confidence bounds on policy performance [4].

3. DIRECTIONS FOR FUTURE WORK
In [3], we introduced the grounded action transformation (GAT)

method for simulation-transfer. The current instantiation of GAT
implements an action-transformation module with maximum like-
lihood models that predict state changes and the actions needed to
produce these state changes in simulation. A limitation of this ap-
proach is that the models are not robust to mistakes made at previous
time-steps — small errors in prediction can accumulate and lead to
the models making worse predictions the longer the robot interacts
with the modified simulator. One way to account for the temporal
dependencies of actions is to use reinforcement learning to train
the action transformation module to choose actions that result in
more realistic trajectories over the entire course of interaction. If
the action transformation module is represented by a differentiable
function approximator then this problem can be solved with policy
gradient methods such as REINFORCE [7]. Learning the action
transformation module in this way should increase the effectiveness
of GAT and help extend its applicability to more tasks.

In [4], we introduced two methods for safe policy evaluation.
While empirical evaluation showed the proposed methods decrease
data requirements relative to existing methods, so far these gains
have only been shown on simple reinforcement learning tasks. The
goal of this research is a safety test for simulation-transfer methods
and thus the proposed methods need to be evaluated in this con-
text. In robotics, off-policy challenges may arise from data scarcity,
deterministic policies, or unknown behavior policies (e.g. experi-
ence collected via demonstration). Additionally, robots may exhibit
complex, non-linear dynamics that are hard to model. All of these
problem characteristics present challenges to existing high confi-
dence off-policy evaluation methods. Understanding and finding
solutions for high confidence off-policy evaluation in robot tasks
may inspire innovation that can be applied to other domains as well.

Finally, a crucial part of this work is evaluation on challenging
and realistic robotic domains. This research will introduces a set of
motion tasks for the NAO robot which are applicable to the robot
soccer domain: bipedal walking, kicking, and getting up from the
ground. These skills are challenging to learn on the physical robot
since they involve unstable, dynamic motions which risk damage to
the robot if executed poorly. Learning in simulation allows the robot
to explore the space of possible motions and learn which ones are
unsafe without executing them on the physical robot. Furthermore,
extensive use of the NAO results in substantial wear on the joints.
Thus learning may be intractable for this platform without the as-
sistance of simulation. Evaluating all proposed methods on these
tasks is an important step towards establishing their applicability to
a wide range of real world robotics problems.

4. CONCLUSION
In summary, this thesis research proposes a simulation-transfer

method which allows robotic skills — learned in simulation — to
transfer to the real world. In addition, we propose a method for lower
bounding the expected performance of skills learned in simulation.
These methods will be empirically evaluated across several high-
dimensional, continuous control tasks from the robot soccer domain.
Taken together, these methods narrow the gap between simulation
and reality for reinforcement learning, open up many new promising
directions for research pertaining to off-policy evaluation and could
dramatically improve the applicability and usefulness of robots in
the real world.
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