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ABSTRACT
We introduce complexity measures for set functions and ap-

ply them to the welfare maximization problem.

1. INTRODUCTION

Consider the following fundamental problem. We have a

set of players and a set of indivisible items. Each player

has a valuation set function, giving a value to every possible

subset of the items. Our aim is to allocate the items to the

players, while maximizing the sum of values of the items the

players get, by their personal valuation functions. This prob-

lem is called the welfare maximization problem (also

known as ”combinatorial auctions”) and it has been vastly re-

searched. Unfortunately, it is NP-hard. Moreover, there are

lower bounds excluding the possibility of having reasonable

approximation guarantees for this problem. One possible

approach to cope with this hardness is to restrict the input

(e.g. to submodular valuation functions). For some restric-

tions, the welfare maximization problem is known to admit

constant approximation guarantees. However, this approach

has an obvious disadvantage; the problem is not promised

to be solved with any guarantee (or at least not with an ac-

ceptable one) when it does not obey the restriction. It might

be most frustrating if an instance seems to be really close to

obey the restriction, but however, slightly disobeys it. An-

other possible approach is to find approximation algorithms,

without restricting the problem, but instead, to have approx-
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imation guarantees that are proportional to some complexity

measure of the instances. Roughly speaking, this means to

try having some “good” approximation guarantee in some

restricted case, approximation guarantee slightly worse for

instances that are close to belong to this restricted case, and

generally, approximation guarantees with decreasing quality

for increasing complexity of instances. The latter approach is

the one we study. In order to formalize it, the following fun-

damental questions should be answered: “What does it mean

that an instance is “close” to another instance?” “What does

it mean that an instance is “more complex” than another?”

and more generally: “How can we measure the “complexity”

of instances?” The latter (general) question is formalized

by the notion of complexity measures of instances of opti-

mization problems. Specifically, a complexity measure for

an optimization problem P with a set of possible instances

I(P ) is a function C : I(P )→ N. Indeed, there are typically

infinitely many such functions (since there are typically in-

finitely many instances of an optimization problem), and it

seems to not be necessarily true that each of the measures

is meaningful for any optimization problem. But, we aim to

find complexity measures that are:

Natural: One can typically intuitively understand what is

the meaning of a value given to an instance of P .

Useful: There exists an algorithm with approximation

guarantees proportional to the value of the measure

for each instance of P , which improves at least some

of the currently known guarantees.

The research we have already done includes introducing

new complexity measures and designing specific algorithms
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for them for the welfare maximization problem. Our mea-

sures apply to any valuation function, and are not specific

for the welfare maximization problem.

2. OUR COMPLEXITY MEASURES

The first complexity measure we introduced is the super-

modular degree [5]. The supermodular degree measures the

distance of a valuation function from being submodular. We

briefly describe it. Recall that submodular functions have

non-increasing marginal values. That is, a valuation func-

tion f : 2M → R+ ∪ {0} is submodular, if for every item

j ∈ M and subsets of items S ⊆ T ⊆ M , we have that

f(j | S) ≥ f(j | T ), where f(j | X) is the marginal value

of j given X: f(j | X)
def
= f({j} ∪ X) − f(X). On the

other hand, general valuation functions can admit increasing

marginals. That is: f(j | S) < f(j | S ∪ {j′}). Moreover,

the latter is realistic in a welfare maximization setting (as

an example, one can think of a battery charger of a phone,

with respect to the phone). We see the latter phenomenon

as synergy between items, and define the supermodular de-

gree as the maximum number of items that a single item

may have synergy with. In particular, this means that sub-

modular valuation functions have supermodular degree of 0,

and generally, a valuation function over a set of items M

can have supermodular degree of up to |M | − 1. Our appli-

cations for the supermodular degree include an approxima-

tion algorithm for the welfare maximization problem [5], an

approximation algorithm for a generalization of the welfare

maximization problem [6], an algorithm (and a new model)

for a secretary like problem that captures an online setting

of welfare maximization [7], and a voting rule that is based

on the supermodular degree [8]. Another work in progress

studies an adversarial online welfare maximization problem

[9]. Our approximation guarantees deteriorate linearly with

the supermodular degree in the offline settings and polyno-

mially in the online settings.

Another complexity measure that we introduced is MPH

(Maximum over Positive Hypergraphs) [4]. The definition of

this measure relies on representing a valuation function by

a hypergraph; see [1, 2, 3]. Given a hypergraph with a set

of vertices V and a set of weighted hyperedges E, we can

see it as a valuation function on the set of items (vertices)

V , where the value of a subset S ⊆ V is the sum of weights

of hyperedges in the subgraph induced by S. A positive

hypergraph valuation function is a valuation function with

a hypergraph representation with only non-negative hyper-

edges. A k-positive hypergraph valuation function is a pos-

itive hypergraph valuation function with positive edges of

rank at most k. We say that a valuation function f is in

MPH − k, if there exists a set of k-positive hypergraph val-

uation functions F , such that for every subset of items S,

f(S) = maxf ′∈F f ′(S). MPH−1 is actually the well known

XOS class, and any set function over a set of items M is in

MPH−|M |. Our applications include an approximation al-

gorithm for the welfare maximization problem with approx-

imation guarantee that deteriorates linearly with MPH.
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