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ABSTRACT
Max-sum ADVP is a message-passing algorithm for solving
Distributed Constraint Optimization Problems (DCOPs) able
to obtain a convergent solution in a cyclic factor graph. Nev-
ertheless, the solution quality is closely related to the tim-
ing for starting value propagation in Max-sum ADVP. In
other words, low-quality initial assignments will lead to a
poor result. In this paper, we illustrate that value propaga-
tion can eliminate the inconsistent contexts in Max-sum AD
and break ties among utilities, but it also restricts the ex-
ploration brought by Max-sum. For balancing between the
exploration and the accuracy, we propose a new iterative re-
fined Max-sum AD algorithm with single-side value propa-
gation, called Max-sum ADSSVP. It performs two phases in
every two convergences, one phase which enables the explo-
ration to find high-quality initial assignments and the other
phase which enables value propagation to guarantee solu-
tion quality. Max-sum ADSSVP tackles the timing selection
problem by iteratively refining initial assignments in every
exploration phase. Besides, local search is introduced after
the value propagation phase to speed up the convergence
process. Our empirical evaluation indicates that our meth-
ods are independent of initial assignments and less likely to
get stuck in local optima.
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1. INTRODUCTION
Distributed constraint optimization problems (DCOPs)

[8] are a fundamental model for representing multi-agent
systems (MAS) in which agents need to coordinate their
decision-making to optimize a global objective. Due to their
ability to capture essential MAS aspects, DCOPs have been
successfully applied to various MAS applications such as
sensor networks [23], meeting scheduling [21], power net-
works [16] and so on. A wide variety of algorithms have
been investigated to solve DCOPs and are generally divided
into two categories, i.e., complete and incomplete. Typical
search-based complete algorithms include ADOPT [10] and
its variants [22, 4, 7], ConFB [11], and so on. DPOP [13]
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and its variants [14, 15] are typical inference-based complete
algorithms which use dynamic programming technique to
solve DCOPs. Although they can find the optimal solution,
complete algorithms exhibit an exponentially increasing co-
ordination overhead, which prohibits them from scaling up
to large real application problems. In contrast, incomplete
algorithms require very little local computation and commu-
nication to find solutions at the cost of sacrificing optimality.
For solving practical applications, considerable research ef-
forts have been made to develop incomplete algorithms.

Local search algorithms are typical incomplete algorithms
including DBA [5, 20], MGM [9], DSA [23], etc. In recent
years, many mechanisms such as k-optimality [12] and any-
time local search (ALS) framework [24] have been investi-
gated in this field. In local search, agents keep exchanging
self states (i.e., assignments or gains) with their neighbours,
and then determine whether to replace their assignments
based on the received states from their neighbours. The
major difference among those algorithms lies on assignment
replacement strategy. For example, agents in DSA decide
to replace their assignments by making stochastic decisions
every iteration, while agents who hold the maximal gain
among their neighbours replace their assignments in MGM.
However, local search algorithms often converge to poor-
quality solutions since agents only communicate their pre-
ferred states based on current preferred states of their neigh-
bours.

Max-sum [3] is another popular inference-based incom-
plete algorithm based on the Generalized Distributive Law
[1]. Rather than exchanging self states with their neigh-
bours in local search, agents in Max-sum propagate and ac-
cumulate utilities through the whole factor graph. There-
fore, agents can obtain global utilities for each possible value
assignment. Nevertheless, Max-sum only guarantees to con-
verge in cycle-free factor graphs which are very rare in DCOPs.
Bounded Max-sum (BMS) [17] was proposed to tackle this
problem by removing dependencies, which have the least
impact on the solution quality, between function-nodes and
variable-nodes. Concretely, agents shrink those binary de-
pendencies to unary functions by minimizing the dependen-
cies. Consequently, the algorithm transforms a cyclic factor
graph into a tree-structured problem, uses Max-sum to solve
it, and provides a bound on the approximation of the optimal
solution. However, a large approximation ratio in BMS re-
flects lack of confidence in the solution. Recently, Improved
Bounded Max-sum (IBMS) [18] was proposed to provide a
tighter approximation ratio. Instead of only solving a prob-
lem with minimized dependencies in BMS, IBMS also solves

195



the maximized one and selects the best result to calculate
the approximation ratio. Besides, ED-IBMS [19] and AD-
IBMS [19] improve IBMS in terms of binary dependencies
decomposing.

Different than removing dependencies in Bounded Max-
sum, Max-sum AD [25] makes a factor graph acyclic by con-
verting it to a direct acyclic graph (DAG) according to a pre-
defined order and performing message-passing on it. That is,
instead of sending messages to every neighbour in Max-sum,
nodes in Max-sum AD only send messages to whom ordered
after them. When the algorithm converges after a number
of iterations, the order from which the direction of the DAG
is derived is reversed. It has been proved that Max-sum AD
can converge after l iterations, where l is no less than the
length of the longest path in a cyclic factor graph. However,
ties among utilities and inconsistent contexts make Max-
sum AD traverse states with low quality. Max-sum ADVP
[25] was proposed to overcome the pathologies using a two-
phase value propagation, where variable-nodes propagate
both utilities and their values, and function-nodes produce
messages by considering the value assignments received from
variable-nodes. However, the timing for starting value prop-
agation is a major concern in Max-sum ADVP. If value prop-
agation starts too early, variable-nodes don’t have enough
knowledge to produce high-quality assignments. As a result,
those low-quality assignments will be propagated through
the whole factor graph and lead to a poor result.

The main contributions of this paper are as follows:

• We analyze how value propagation affects Max-sum.
We find that value propagation can restrict the ex-
ploration brought by Max-sum. Max-sum ADVP will
block utilities propagation and accumulation, which
are essential in the GDL, and can only make use of
local benefits to make decisions.

• We propose Max-sum ADSSVP with a new value prop-
agation schema to solve the problem of timing selec-
tion. It performs two phases in every two convergences,
one phase which enables value propagation to guaran-
tee solution quality and the other phase which enables
the exploration to find potential optima. Our experi-
mental results show that the value propagation phase
can help the exploration phase to reduce the inconsis-
tent contexts and the exploration phase with less in-
consistent contexts will provide higher-quality assign-
ments for the value propagation phase.

• We speed up the convergence process by introducing
local search after the value propagation phase. Max-
sum ADSSVP requires more iterations to converge than
Max-sum ADVP due to the existence of inconsistent
contexts in every exploration phase. Local search is
performed after the value propagation phase to pro-
vide higher-quality solution for the exploration phase
so as to eliminate more inconsistent contexts. Our ex-
perimental results also show that Max-sum ADSSVP
with local search can effectively suppress the cost fluc-
tuation in the exploration phase.

The rest of the paper is organized as follow. The formal
definition of DCOPs is presented in Section 2. Section 3
presents Max-sum, Max-sum AD and Max-sum ADVP. In
Section 4, we analyze the limitation of Max-sum ADVP and
present the detail about our proposed Max-sum ADSSVP.

xi

xj xk

xi

fij

xj fjk xk

fik

(a) (b)

Figure 1: DCOP and factor graph

The evaluation of our methods in comparison with Max-sum
and its variants is given in Section 5. Section 6 concludes
the paper and gives our future research work.

2. DISTRIBUTED CONSTRAINT OPTIMIZA-
TION PROBLEMS

A DCOP is defined as a tuple 〈A,X,D, F 〉 such that:

• A = {a1, . . . , aq} is a set of agents.

• X = {x1, . . . , xn} is a set of variables. Each variable
xi is controlled by an agent.

• D = {D1, . . . , Dn} is a set of finite variable domains,
variable xi taking a value in Di.

• F = {f1, . . . , fm} is a set of constraints, where a con-
straint fi is any function with the scope (xi1 , . . . xik ), fi :
Di1 ×· · ·×Dik → R+ which denotes how much utility
is assigned to each possible combination of values of
the involved variables.

Without loss of generality, a solution to a DCOP is an
assignment to all variables that maximizes the total utilities,
which is the sum of all constraints:

X∗ = arg max
X∈D

∑
fi∈F

fi

To facilitate understanding, we assume that each agent has
a single variable and constraints are binary. Here, the term
”agent”and ”variable”can be used interchangeably. A binary
constraint is a constraint involving exactly two variables de-
fined as fij : Di ×Dj → R+. Consequently, a solution to a
DCOP can be formalized as

X∗ = arg max
di∈Di,dj∈Dj

∑
fij∈F

fij(xi = di, xj = dj)

A DCOP can be visualized by a constraint graph where
the nodes represent agents and the edges represent con-
straints. Figure 1(a) gives a constraint graph of a DCOP
which comprises of three agents and three constraints.

3. ALGORITHM PRELIMINARIES

3.1 Standard Max-sum
Max-sum is a message-passing inference-based algorithm

operating on factor graphs. A factor graph [6] corresponds
to a bipartite graph comprising two types of nodes: variable-
nodes and function-nodes. Function-nodes which represent
constraints in the original DCOP are connected to variable-
nodes they depend on. Similarly, variable-nodes which rep-
resent variables in the original DCOP are connected to all
function-nodes they are involved in.
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Algorithm 1: Max-sum AD(node n)

1 current order ← select an order on all nodes in the
factor graph;

2 Nn ← all of n’s neighbouring nodes;
3 while no termination condition is met do
4 Nprev n ← {n̂ ∈ Nn :

n̂ is before n in current order};
5 Nfollow n ← Nn\Nprev n;
6 for k iterations do
7 collect messages from Nprev n;
8 foreach n′ ∈ Nfollow n do
9 if n is a variable-node then

10 produce message mn′ using messages
received from Nn\{n′};

11 end
12 if n is a function-node then
13 produce message mn′ using constraint

and messages received from Nn\{n′};
14 end
15 send mn′ to n′;

16 end

17 end
18 current order ← reverse(current order);

19 end

Figure 2: Pseudo-code for Max-sum AD

When computing a message to a function-node f , variable-
node xi sums up all the last messages received from neigh-
bouring function-nodes except the target function-node f .
When computing a message to a variable-node xj , function-
node projects out xj from the function that results by sum-
ming up the local function f and the last messages received
from neighbouring variable-nodes except the target variable-
node xj .

Figure 1(b) shows the factor graph deriving from Figure
1(a). The message sent from xi to fik is defined by

qxi→fik (xi) = α+
∑

n∈Ni\k

rfni→xi(xi)

where Ni\k is a set of neighbour indexes of xi except target
node index k (i.e., Ni\k = {j}) and rfni→xi(xi) is the mes-
sage sent from function-node fni to xi. Besides, in order to
avoid the entries in the messages uncontrollably growing in
a cyclic factor graph, a scaler α such that∑

xi

qxi→fik (xi) = 0

is chosen to normalize utilities. The message sent from fij
to xj is defined by

rfij→xj (xj) = max
xi

(fij + qxi→fij (xi))

where fij is the local function that represents the constraint
between xi and xj .

When a variable-node is making decision, it accumulates
all utilities it receives, and selects a value to maximize the
total utilities. The procedure can be formalized by

x∗i = arg max
xi

∑
n∈Ni

rfni→xi(xi)

xi

fij

xj fjk xk

fik

Figure 3: A directed acyclic factor graph

3.2 Max-sum_AD and Max-sum_ADVP
Max-sum AD avoids cycles in a factor graph by perform-

ing message-passing on a DAG determined by a predefined
order in the factor graph. Each node sends messages only to
its neighbouring nodes that follow it in the selected order.
After a linear number of iterations in which the algorithm is
guaranteed to converge, the order is reversed and messages
are sent in the opposite direction. The order is alternated
following each convergence until termination. The pseudo-
code of Max-sum AD is shown in Figure 2.

It has been proved that Max-sum AD can converge after
l iterations, where l is no less than the length of the longest
path in a cyclic factor graph.

Although Max-sum AD can guarantee convergence in one
direction, one variable-node may not make a high-quality
decision when there are ties among utilities. Here, the utility
ties refer to the phenomenon that several values correspond
to the same utility. Besides, the inconsistent contexts can
also lead to low quality solutions. Figure 3 gives an example
of a DAG corresponding to Figure 1(b).

According to Max-sum AD, the messages sent in 4 cycles
are as follows1:

Cycle 1:xi → fik : 0

xi → fij : 0

Cycle 2:fij → xj : max
xi

fij

fik → xk : max
xi

fik

Cycle 3:xj → fjk : max
xi

fij

Cycle 4:fjk → xk : max
xj

(fjk + max
xi

fij)

Eventually, variable-node xk uses rfik→xk and rfjk→xk to
select a value to maximize the total utilities. That is

arg max
xk

max
xj

(fjk + max
xi

fij + max
xi

fik)

However, the optimal decision for xk is

arg max
xk

(max
xixj

(fij + fjk + fik))

which is equivalent to

arg max
xk

(max
xj

(fjk + max
xi

(fij + fik)))

Obviously, Max-sum AD approximates maxxi(fik + fij) as
maxxi fij +maxxi fik. In other words, it computes functions

1For sake of simplicity, we present the message-passing pro-
cess in a sequential way. In fact, agents in Max-sum AD
perform concurrently. However, the messages from an agent
keep changing until the agent receives all stable messages
from its precursors. Thus, we present the messages when
they converge.
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xi fij xj

Figure 4: Simple factor graph with two variable-
nodes and a function-node

in the different contexts rather than the identical context,
which will lead to low quality solutions.

Max-sum ADVP tackles those problems using value prop-
agation. Specifically, variable-nodes enclose messages sent to
function-nodes with the values they select. When function-
nodes produce messages, they consider the received assign-
ments. That is, instead of traversing domain of upstream
variable-nodes to obtain the optimal utility for every target
value, function-nodes in Max-sum ADVP fix the values of
upstream variable-nodes to the received assignments. As a
result, function-nodes that have the same upstream variable-
node now share the identical context. So, value propagation
can eliminate the inconsistent contexts and break ties among
utilities. However, the timing for starting value propagation
becomes a major concern in value propagation.

4. ITERATIVE REFINED MAX-SUM_AD AL-
GORITHM

4.1 Motivation
Although it can greatly improve the solution quality of

Max-sum AD, value propagation restricts the exploration
brought by Max-sum. Next, we prove that value propaga-
tion can block utilities propagation and accumulation, and
will eventually make Max-sum ADVP behave like a greedy
local search algorithm.

Lemma 1. Function-nodes will block global utility propa-
gation and propagate only local functions when value propa-
gation is enabled.

Proof. Without loss of generality, let us focus on a part
of a DAG which includes two variable-nodes and a function-
node shown as Figure 4. Variable-node xi selects its value
based on the utilities it receives. Assume that xi = k .
According to Max-sum ADVP, the message from xi to fij
is defined as

xi → fij : qxi→fij (xi) =
∑

n∈Ni\j

rfni→xi(xi), xi = k (1)

fij produces the message sent to xj in terms of xi = k. That
is

fij → xj : rfij→xj (xj) = fij(k, xj) + qxi→fij (k) (2)

Since it is a constant and has no influence on decision mak-
ing of xj , qxi→fij (k) can be removed safely. Consequently,
formula(2) can be simplified as

fij → xj : rfij→xj (xj) = fij(k, xj) (3)

Obviously, formula(3) is equivalent to a local function with a
given variable assignment. Besides, it can be concluded from
formula(2) and formula(3) that value propagation blocks
utility propagation by restricting a variable to a certain as-
signment, which degenerates global utility (i.e., qxi→fij (xi) )
into a constant (i.e., qxi→fij (k) ). So, Lemma 1 is proved.

The immediate corollary from Lemma 1 is that messages
from function-nodes are all local functions after the first con-
vergence when value propagation is enabled. At the same
time, variable-nodes also fail to collect and forward global
utility. In other words, value propagation restricts the ex-
ploration brought by Max-sum.

Proposition 1. Max-sum ADVP shares the same decision-
making strategy with greedy local search algorithms after the
first convergence of value propagation.

Proof. Consider the factor graph shown in Figure 4. As-
sume that value propagation has been enabled and the al-
gorithm has converged for the first time in the direction of
right to left. According to Lemma 1, variable-node xi selects
its value by

arg max
xi

(
∑

n∈Ni\j

fni(k
l
n, xi) + fij(xi, k

l−1
j )) (4)

where kln is the assignment of variable-node xn in the l-th
convergence phase. Because xj is a downstream variable-
node of xi, xi makes decision based on the previous assign-
ment of xj . Thus, formula(4) indicates that xi produces
the best response in terms of the given assignments from
its neighbours. On the other hand, agents in greedy local
search algorithms (e.g., DSA and MGM) also make optimal
decisions by considering all neighbours’ assignments. That
is,

arg max
xi

∑
n∈Ni

fni(kn, xi) (5)

It can be concluded from formula(4) and formula(5) that
Max-sum ADVP is equivalent to greedy local search algo-
rithms in terms of decision-making strategy. So, Proposition
1 is proved.

Proposition 1 also illustrates that agents in Max-sum ADVP
cannot make their decisions based on the global utilities and
Max-sum ADVP will eventually behave like a sequential lo-
cal search algorithm.

4.2 Max-sum_ADSSVP
To solve the problem of value propagation, we propose a

new iterative refined Max-sum AD algorithm with single-
side value propagation, called Max-sum ADSSVP. It can
keep the balance between the exploration brought by Max-
sum and the accuracy brought by value propagation. More-
over, it can overcome the drawback of timing selection in
Max-sum ADVP.

For the sake of clarity, we use the term ”forward direction”
as initial message-passing order, and ”backward direction”
as reversed message-passing order. When value propagation
is enabled, Max-sum ADSSVP performs the following two
phases in every two convergences.

• Exploration Phase: performing like standard Max-
sum AD to find higher-quality initial assignments for
value propagation when the current message-passing
order is forward direction.

• Value Propagation Phase: enabling value propa-
gation to guarantee solution quality when the current
message-passing order is backward direction.
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Figure 5: Comparison of Max-sum AD,Max-
sum ADVP,Max-sum ADSSVP on inconsistent con-
texts

The exploration phase and value propagation phase can
collaborate with each other to iteratively refine the solu-
tion quality. Specifically, the value propagation phase can
help the exploration phase to eliminate inconsistent con-
texts, meanwhile the exploration phase with less inconsis-
tent contexts will provide higher-quality initial assignments
for value propagation.

To demonstrate the above relationship between the two
phases, the number of inconsistent contexts for Max-sum AD,
Max-sum ADVP and Max-sum ADSSVP is compared when
applied to solve Random DCOPs where n = 120, p = 0.05
and domain size is 10. Here, n represents the number of
agents and p refers to graph density. We average the ex-
perimental results over 25 DCOP instances with randomly
generated constraints and randomly generated integer con-
straint costs in the range of 1 to 100. To make sure algo-
rithms converge, the compared algorithms change their di-
rections every 240 iterations and stop after 20 convergences.
Moreover, value propagation starts after the second conver-
gence for Max-sum ADVP and Max-sum ADSSVP to ob-
tain the better performance.

The experimental results are shown as Figure 5. Obvi-
ously, the number of inconsistent contexts in Max-sum ADVP
decreases to zero after value propagation is enabled, which
indicates that value propagation can eliminate inconsistent
contexts. Since Max-sum ADSSVP behaves the same as
Max-sum AD in the first three convergences, the number of
the inconsistent contexts in Max-sum ADSSVP is close to
that of Max-sum AD. When single-side value propagation
is enabled, a remarkable decrease of inconsistent contexts
appears in every exploration phase, which indicates that the
value propagation phase can help the exploration phase to
eliminate inconsistent contexts. In contrast, the number of
inconsistent contexts fluctuates slightly in a high state in
Max-sum AD.

4.3 Max-sum_ADSSVP with Local Search
Although Max-sum ADSSVP can obtain a balance be-

tween the exploration and the accuracy, it needs more iter-
ations to converge due to the existence of inconsistent con-
texts in every exploration phase. We introduce local search
after the value propagation phase to provide higher-quality

Algorithm 2: Max-sum ADSSVP with local
search(agent i, local search, forward direction,k,l)

1 current order ← forward direction ;
2 backward direction← reverse(forward direction) ;
3 while no termination condition is met do
4 for k iterations do
5 if current order is forward direction then
6 perform Max-sum AD;
7 end
8 if current order is backward direction then
9 xi ← current optimal decision;

10 perform Max-sum ADVP using assignment
xi;

11 end

12 end
13 if current order is backward direction then
14 perform l iterations local search with initial

assignment xi;
15 xi ← current optimal decision;
16 for k iterations do
17 perform Max-sum ADVP using assignment

xi;

18 end

19 end
20 current order ← reverse(current order);

21 end

Figure 6: Sketch of Max-sum ADSSVP with local
search

solutions for the exploration phase to eliminate more incon-
sistent contexts. Specifically, the following two phases are
performed after the value propagation phase:

• Refining Phase: performing short-range local search
with the initial assignments generated by the value
propagation phase to produce a higher-quality solu-
tion.

• Modification Phase: performing value propagation
with the assignments generated by the refining phase
to apply new assignments into a factor graph.

The sketch of the algorithm is presented in Figure 6. The
algorithm has three parameters, i.e., local search algorithm,
iterations for Max-sum AD and Max-sum ADVP, and iter-
ations for local search. An agent performs the exploration
phase (i.e., Max-sum AD schema) when current message-
passing order is forward direction (line 5 - 7), while agent
performs the value propagation phase when current message-
passing order is backward direction (line 8 - 11). If current
message-passing order is backward direction, the refining
phase and modification phase are trigged consecutively af-
ter the value propagation. Each agent takes its assignment
generated by value propagation as its initial assignment and
performs l-iteration local search (line 14). After that, each
agent performs k-iteration value propagation with the new
assignment generated by the refining phase (line 15 - 18).

It is worth mentioning that only Max-sum ADSSVP can
be (or needs to be) enhanced by local search. The aim of per-
forming local search after the value propagation phase is to
eliminate more inconsistent contexts. Since Max-sum ADVP
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Figure 7: Comparison of Max-sum ADVP and Max-
sum ADSSVP on different value propagation tim-
ings

doesn’t have any inconsistent contexts after value propaga-
tion is enabled, it is not necessary to be enhanced by local
search. Max-sum and Max-sum AD suffer from lots of in-
consistent contexts, which leads them to traverse states with
low quality. However, they don’t have the value propagation
phase, which indicates that the assignments of agents can-
not affect the optimization process. As a result, Max-sum
and Max-sum AD cannot utilize the assignments produced
by local search. In other words, Max-sum and Max-sum AD
cannot be enhanced by local search.

The extra overheads of our proposed methods mainly lie
on the computation. Specifically, a function-node in value
propagation phases requires O(d) operations to produce a
message by fixing the value of upstream variable-node, while
a function-node in exploration phases requires O(d2) oper-
ations to produce a message by traversing the domain of
upstream variable-node. Here, d = maxDi∈D |Di|. Thus,
compared to Max-sum ADVP, Max-sum ADSSVP will in-
cur O(d2) operations when producing messages to variable-
nodes in every exploration phase. Further, Max-sum ADSSVP
with local search has two additional phases, i.e., refining
phase and modification phase. Since it is very short, the re-
fining phase usually incurs a minor overhead. Besides, given
the maximum iterations, the number of exploration phases
is much reduced due to existence of the modification phase.
Moreover, the modification phase behaves just like the value
propagation phase and only incurs O(d) operations when
producing a message from a function-node. Thus, Max-
sum ADSSVP with local search has a smaller computational
overhead than Max-sum ADSSVP in general.

5. EMPIRICAL EVALUATION

5.1 Experimental Configurations
We use two DCOP problem types in our experiments, i.e.,

random DCOPs and scale-free networks [2]. For random
DCOPs, we set the agent number to 120, the domain size
to 10, graph density to 0.05 for sparse configuration and 0.6
for dense configuration, and uniformly select constraint costs
from the range of 1 to 100. We use Barabási-Albert model
to generate scale-free networks with an initial set of m0 = 15
connected agents. At each iteration of the Barabási-Albert

Figure 8: Comparison of Max-sum variants on
sparse configuration of random DCOPs

Figure 9: Comparison of Max-sum variants on dense
configuration of random DCOPs

model procedure a new agent is connected to m1 = 3 other
agents (sparse configuration) or m1 = 10 other agents (dense
configuration) with a probability that is proportional to the
number of links that the existing agents already have. The
agent number, the domain size and the range of constraint
costs in scale-free networks are the same as ones in random
DCOPs.

We have applied DSA and MGM into Max-sum ADSSVP,
and found that Max-sum ADSSVP with MGM works slightly
better. The reason could be the monotonicity of MGM.
Thus, in our experiments, we use MGM for Max-sum ADSSVP
with local search, named Max-sum ADSSVP MGM. We will
compare Max-sum ADSSVP and Max-sum ADSSVP MGM
to standard Max-sum and its variants (i.e., Max-sum AD
and Max-sum ADVP) for the above problems. To guaran-
tee convergence, Max-sum AD, Max-sum ADVP and Max-
sum ADSSVP change their message-passing directions ev-
ery 240 iterations and stop after 20 convergences. Besides,
for obtaining the best results, we start value propagation
for Max-sum ADVP and Max-sum ADSSVP after the sec-
ond convergence. The iterations of each refining phase in
Max-sum ADSSVP MGM are 30. Finally, we average the
experimental results over 25 independently generated prob-
lems that are each solved by each algorithm 20 times.
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Figure 10: Comparison of Max-sum variants on
sparse configuration of scale-free networks

5.2 Experimental Results
To demonstrate how initial assignments affect Max-sum ADVP

and Max-sum ADSSVP, we vary the timing for starting value
propagation from the first to the fifth convergence. The re-
sults for sparse random DCOPs are shown in Figure 7.

It can be inferred from Figure 7 that Max-sum ADVP
is sensitive to the initial assignments since the results vary
a lot among different value propagation timings. However,
Max-sum ADSSVP has similar performances for different
value propagation timings, which indicates that our method
is independent of initial assignments and thus overcomes the
drawback of timing selection in Max-sum ADVP. Besides,
it is interesting to find that both algorithms report the best
solution qualities when starting value propagation after the
third convergence. But it is still worth mentioning that the
best timing of starting value propagation is problem-specific
and usually presented as an empirical value.

Figure 8 shows the comparison among Max-sum, Max-
sum AD, Max-sum ADVP, Max-sum ADSSVP and Max-
sum ADSSVP MGM for random DCOPs under the sparse
configuration. It can be concluded that Max-sum and Max-
sum AD cannot converge and traverse the states with high
costs. In contrast, Max-sum ADVP converges after the fifth
convergence (1200 iterations). However, Max-sum ADVP
gets trapped in local optima. Max-sum ADSSVP iteratively
refines the solution after the second convergence (480 it-
erations) in every two convergences and eventually tran-
scends Max-sum ADVP (after 3600 iterations). Moreover,
it can be observed from Figure 8 that Max-sum ADSSVP
needs lots of iterations to show its superiority since solu-
tions are not sufficiently optimized in every two conver-
gences. Max-sum ADSSVP MGM overcomes the pathology
by performing short-range optimization to the solution af-
ter every value propagation phase (i.e., 960 iterations, 1740
iterations, 2520 iterations, etc.) and suppressing cost fluctu-
ations efficiently in the exploration phases, and transcends
Max-sum ADVP after 2260 iterations. Compared to Max-
sum ADSSVP, Max-sum ADSSVP MGM has smoother cost
fluctuations during the transitions from value propagation
phases to exploration phases, which indicates that local search
can help Max-sum ADSSVP to suppress cost fluctuations.
Besides, it is noticeable that the improvements of our pro-

Figure 11: Comparison of Max-sum variants on
dense configuration of scale-free networks

posed methods over Max-sum ADVP are about 6.8% and
9% at the end of execution.

Figure 9 shows the similar trend for random DCOPs un-
der the dense configuration. Max-sum AD fluctuates wildly
around the states with high costs because the factor graphs
for the dense problems include more cycles which are prone
to produce more inconsistent contexts. Conversely, Max-
sum ADSSVP exhibits obvious cost decreases in every ex-
ploration phase (i.e., 1200 iterations, 1680 iterations and so
on), which indicates that the value propagation phase can
help the exploration phase to eliminate inconsistence con-
texts. It is worth mentioning that Max-sum ADSSVP MGM
suppresses the cost fluctuations more effectively for the dense
problems and is superior to Max-sum ADVP after 1300 it-
erations. Due to tremendous inconsistent contexts in dense
problems, our proposed methods need more iterations to
iteratively refine solutions. Although it only improves the
Max-sum ADVP by 1.1% at the end of execution, there is an
apparent downtrend in Max-sum ADSSVP, which indicates
that our method still has great potential.

Figure 10 and Figure 11 show the performance compar-
isons among all 5 algorithms under the sparse configuration
(m1 = 3) and dense configuration (m1 = 10) for scale-free
networks, respectively. It can be seen that Max-sum ADVP
converges very fast for the sparse configuration (1200 itera-
tions). This is because these sparse problems have the ultra-
small diameters, which is a fundamental property of scale-
free networks. We can also see that Max-sum ADSSVP out-
performs Max-sum ADVP after the ninth direction change
(2160 iterations) for the sparse configuration and the sev-
enth direction change (1680 iterations) for the dense config-
uration, which demonstrates that the single-side value prop-
agation schema has an advantage over the two-phase value
propagation in Max-sum ADVP.

6. CONCLUSION
In this paper, we analyze how value propagation affects

the Max-sum process, and propose an iteratively refined
Max-sum AD algorithm which has both the exploration brought
by Max-sum and the accuracy brought by value propaga-
tion. Also, our proposed algorithm solves the timing selec-
tion problem in Max-sum ADVP, which is a major concern
in value propagation. Besides, we speed up the converge pro-
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cess by introducing local search after the value propagation
phase. The experiment results demonstrate that our pro-
posed algorithms are superior to Max-sum, Max-sum AD
and Max-sum ADVP.

However, we also notice that the construction of a DAG
in Max-sum AD and its variants is problem-irrelevant since
agent id which is independent of problem structure is used
to determine the message-passing order. As a result, the al-
gorithms cannot utilize structures of problems to eliminate
potential inconsistent contexts. So, our future work is to ex-
plore various heuristics (such as the degree of each node) and
provide a problem-specific method for DAG construction.
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