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ABSTRACT
The class of CRC constraints generalizes several tractable classes
of constraints and is expressive enough to model problems in do-
mains such as temporal reasoning, geometric reasoning, and scene
labelling. This paper presents the first distributed deterministic
algorithm for connected row-convex (CRC) constraints. Our dis-
tributed (partial) path consistency algorithm efficiently transforms
a CRC constraint network into an equivalent constraint network,
where all constraints are minimal (i.e., they are the tightest con-
straints) and generating all solutions can be done in a backtrack-
free manner. When compared with the state-of-the-art distributed
algorithm for CRC constraints, which is a randomized one, our al-
gorithm guarantees to generate a solution for satisfiable CRC con-
straint networks and it is applicable to solve large networks in real
distributed systems. The experimental evaluations show that our al-
gorithm outperforms the state-of-the-art algorithm in both practice
and theory.
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1. INTRODUCTION
Although solving general constraint satisfaction problems (CSPs)

is known to be NP-hard, many subclasses have been identified as
tractable. The class of connected row-convex (CRC) constraints
[5] is an important tractable subclass of CSPs, which generalizes
several subclasses of constraints such as 2SAT, binary integer lin-
ear constraints, and monotone constraints [5]. The CRC constraint
class is very expressive and can model problems in domains such
as temporal reasoning [18, 10], VLSI design [3], geometric reason-
ing [9], scene labelling [22] as well as logical filtering [12].

In this paper we are interested in handling CRC constraints from
a distributed CSP perspective. Modelling problems from a dis-
tributed perspective is attractive when privacy and autonomy are
of concern, as the conventional centralized approaches are often
not applicable in this case. The following example illustrates a dis-
tributed CSP involving CRC constraints.
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Example 1. Two agentsA,B have their private variables V AP =
{xA, yA} and V BP = {yB , zB}, respectively, defined on finite do-
mains. The private variables are subject to binary constraints such
as fA(yA) + xA · yA ≤ 0.5, where fA is a real-valued function
that is either strictly increasing or decreasing. Agents A and B
also have shared variables V AS = {zA, tA} and V BS = {xB , tB},
respectively, which are connected with other agent’s shared vari-
ables through constraints, such as fA(zA) + xB ≤ 0.3. They
can be also connected with the agent’s private variables through
constraints. Each agent has control over only its own variables,
where the values of its private variables are not known to the other
agent. Figure 1 illustrates an example constraint graph, where all

Figure 1: A constraint graph of Example 1.

edges correspond to the constraints mentioned in the example. All
constraints here are CRC [5]. The problem cannot be solved in a
centralized way; a distributed algorithm is therefore required so as
to take consideration of the privacy of agents.

In the literature, Yokoo et al. [24] proposed a distributed back-
tracking algorithm for general distributed CSPs and, since then,
efficient algorithms have been developed for specific distributed
CSPs that are tailored to the problem domains of interest, e.g., the
distributed scheduling problem [14], the distributed plan coordi-
nation problem [4], and the distributed simple temporal problem
(STP) [2].

Recently, Kumar et al. [11] proposed a distributed algorithm,
called D-CRC, for solving CRC constraints, which was shown to
be more efficient than the state-of-the-art centralized algorithm for
CRC constraints. There are, however, several drawbacks of D-
CRC: (i) it is based on randomization and as such it does not guar-
antee to return a solution even when the input CSP is consistent
and (ii) cannot determine the inconsistency of the input; and (iii) it
cannot assign more than one variable to each agent, which makes
the algorithm unrealistic to solve large networks in real distributed
systems.

The previous observations suggest us that designing an efficient
deterministic distributed algorithm for reasoning with CRC con-
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straints is critically important. To tackle this problem, we adopt in
this paper a powerful method, called P3C [20], which was originally
designed to solve simple temporal networks (STNs) and makes use
of the convex property of simple temporal constraints. Recently,
Boerkoel and Durfee [2] successfully extended P3C to STNs in
distributed settings, which suggests that their approach can also be
adapted to distributed solving of other convex constraints, such as
CRC constraints. However, while the classes of CRC constraints
and simple temporal constraints both share the convex properties,
it was observed that, as opposed to simple temporal constraints,
CRC constraints are not distributive in the sense that the relational
composition operation is not distributive over nonempty intersec-
tions [15]. This presents a significant obstacle for a straightforward
adaptation of the machinery devised for STNs to CRC constraints.

In this paper, we present a deterministic distributed algorithm,
called D∆CRC, for solving CRC constraint networks. To this end,
we prove that P3C can indeed be adapted to transform an input CRC
constraint network into an equivalent constraint network, where all
constraints are minimal (i.e., they are the tightest constraints) and
generating all solutions can be done in a backtrack-free manner.
Then we extend the result to distributed settings by employing the
communication mechanism by Boerkoel and Durfee [2] that was
originally devised for distributed STNs. Our algorithm D∆CRC
does not suffer from the aforementioned deficiencies that the state-
of-the-art algorithm D-CRC has, and it is more efficient than D-
CRC in theory as well as in practice.

The remainder of the paper is organized as follows. After a short
introduction of basic definitions and notations in section 2, we pro-
pose in section 3 a centralized strong partial path consistency al-
gorithm (4CRC) for CRC constraint networks. Then in section 4
we extend this to a distributed setting and present the distributed
4CRC algorithm (D∆CRC) for CRC constraint networks, where
we adopt the communication mechanism from [2]. In section 5 we
evaluate the D∆CRC algorithm against the state-of-the-art algo-
rithm for solving CRC constraints and conclude the paper in sec-
tion 6 with further discussion.

2. PRELIMINARIES
In this section, we recall some basic notions and results about bi-

nary constraint networks, triangulated constraint graphs, and con-
nected row-convex constraints.

2.1 Constraints and Constraint Networks

Definition 1. A binary constraint networkN is a triple 〈V,D,C〉,
where:

• V = {v1, . . . , vn} is a non-empty finite set of variables;

• D = {D1, . . . , Dn} is a collection of finite sets of values,
where Di serves as the domain of variable vi ∈ V ;

• C = {(sk, Rk) | 1 ≤ k ≤ m} is a set of binary constraints,
where sk is a pair of variables in V , say (vi, vj), and Rk ⊆
Di ×Dj .

LetN = 〈V,D,C〉 be a binary constraint network. Throughout
this paper we assume that for any pair of variables (vi, vj), there
exists at most one constraint ((vi, vj), Rij) ∈ C between them.
We also assume that Rji = R−1

ij , where

R−1
ij := {〈y, x〉 | 〈x, y〉 ∈ Rij}

is the inverse of Rij . For brevity, we often write Rij for the con-
straint ((vi, vj), Rij).

The image of a ∈ Di under Rij , denoted by Rij(a), is the set
{b ∈ Dj | 〈a, b〉 ∈ Rij}. A solution of N is an assignment of val-
ues fromD1, . . . , Dn to the variables v1, . . . , vn s.t. all constraints
in C are satisfied. We use sol(N ) to denote the set of solutions of
N and say that N is consistent if sol(N ) 6= ∅, and inconsistent
otherwise.

The underlying graph structure of a constraint network N =
〈V,D,C〉 can be always represented as an undirected graphGN =
(V,E(N )), called the constraint graph ofN , where an edge eij ∈
E(N ) iff Rij ∈ C or Rji ∈ C. In this paper, we assume that
each edge eij ∈ E(N ) is associated with a relation Rij ∈ C, and
we use the constraint network N and its corresponding constraint
graph GN interchangeably to represent the same problem at hand.

Definition 2. [19] Let N = 〈V,D,C〉 be a constraint network
and ≺= (v1, . . . , vn) an ordering of variables in V . Write V≤i =
{vj | j ≤ i}. We say thatN is decomposable w.r.t. ≺ if for any i <
n, any consistent assignment to V≤i can be consistently extended
to an assignment to V≤i+1. We say N is decomposable if it is
decomposable w.r.t. every ordering of variables in V .

Definition 3. [17] Let N = 〈V,D,C〉 be a constraint network
and GN its constraint graph. Let eij be an edge in GN and πij =
(vi = u0, u1, . . . , uk = vj) a path in GN with eij ∈ E(N ).
We say that eij (or Rij) is arc-consistent (AC) if for each element
a ∈ Di there is an element b ∈ Dj s.t. 〈a, b〉 ∈ Rij ; we say πij
is path-consistent (PC) if, for every 〈c0, ck〉 ∈ Rij , we can find
values for all intermediate variables ux (0 < x < k) s.t. all the
constraints Rux,ux+1 (0 ≤ x < k) are satisfied.

Specially, a path of length 1 is always PC.

Definition 4. [17, 1] Let N = 〈V,D,C〉 be a constraint net-
work and GN its constraint graph. We say N is AC iff all edges
in GN are AC, and say N is partial path-consistent (PPC) if every
path πij in GN with eij ∈ E(N ) is PC. Moreover, a PPC network
is called PC if its constraint graph is complete.

Therefore, PC is a special case of PPC. We say a constraint network
is strong PC (PPC, resp.) if it is both AC and PC (PPC, resp.).

Definition 5. [19] Let N = 〈V,D,C〉 be a constraint network.
We say a non-empty constraint Rij ∈ C is minimal if any assign-
ment 〈ai, aj〉 ∈ Rij to variables vi, vj can be extended to a so-
lution of N . We say N is minimal if it has a complete constraint
graph and every constraint inN is minimal.

Decomposable network is always minimal and a constraint network
that admits a minimal constraint is always consistent.

2.2 Triangulated Constraint Networks
Triangulated graphs play a key role in efficiently solving large

sparse constraint networks [1, 23, 20, 16]. An undirected graph
G = (V,E) is said to be triangulated or chordal if every cycle
of length greater than 3 has a chord, i.e., an edge connecting two
non-consecutive vertices of the cycle. A networkN is said to be tri-
angulated (resp. complete) if GN is triangulated (resp. complete).

Triangulated constraint graphs have the following nice property.

THEOREM 1. [1] A triangulated constraint graph is PPC if ev-
ery path of length 2 is PC.

If a constraint graph is not triangulated, we may add new edges
(labeled with universal constraints) to make it triangulated. In the
following, we give a characterization of triangulated graphs.
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Definition 6. [7] An ordering≺ in a graphG = (V,E) is called
a perfect vertex elimination ordering in G, if the set of successors
of v

Fv := {w | (v, w) ∈ E, v ≺ w}

induces a complete subgraph of G for all v ∈ V .

For example, consider the graph G = (V,E) in Figure 2, the
ordering (v1, v2, v3, v4) is a perfect vertex elimination ordering in
G, whereas the ordering (v2, v1, v3, v4) is not.

Figure 2: A graph G = (V,E).

PROPOSITION 1. [7] A graph G is triangulated iff there exists
a perfect vertex elimination ordering in G.

We next introduce the notion of row-convex constraints.

2.3 Connected Row-Convex Constraints
SupposeR ⊆ D1×D2 is a binary relation. The (0,1)-matrix rep-

resentation of a relation R consists of |D1| rows and |D2| columns
subject to orderings imposed on D1, D2. The entry in the i-th row
and j-th column of the matrix is 1, if the corresponding pair of
values from D1 ×D2 is in R, and is 0 otherwise.

Definition 7. [5] A binary relation R, represented as a (0,1)-
matrix, is row-convex if in each row all of the ‘1’s are consecutive.
We say R is a connected row-convex (CRC) relation if, after re-
moving empty rows and columns in the matrix ofR, (i) bothR and
its transpose are row-convex, and (ii) the positions of the ‘1’s in any
two consecutive rows or columns intersect, or are consecutive

Fig. 3 shows two row-convex constraints, where the left one is CRC
but the right one is not.

(a) A CRC constraint. (b) A non-CRC constraint.

Figure 3: A CRC constraint and a non-CRC constraint.

Row convex constraints are not closed under intersection and
composition [5]—the two operations to enforce PC, but CRC con-
straints are closed under these operations.

LEMMA 1. [5] CRC constraints are closed under intersection
and composition.

Row-convex constraint networks have the following property.

LEMMA 2. [22] A row-convex constraint network is decompos-
able and minimal if it is strong PC.

The following lemma shows that enforcing PPC on a triangulation
of a CRC network has the same effect as enforcing PC as far as
only edges in the triangulation are concerned.

LEMMA 3. [1] Let N be a CRC constraint network. Suppose
G ⊇ GN is a triangulation of GN and G∗ is the completion of
GN . Further, let N4 = 〈V,D,C4〉 and N ∗ = 〈V,D,C∗〉 be
the constraint networks obtained by enforcing PPC on N w.r.t G
and G∗, respectively. Then C4 ⊆ C∗.

As a corollary of Lemmas 2 and 3, we have

COROLLARY 1. Let N be a CRC constraint network and G a
triangulation of GN . Suppose N ′ = 〈V,D,C′〉 is the network
obtained by enforcing PPC on N w.r.t. G. If no inconsistency is
detected, then all constraints in C′ are minimal.

PROOF. Suppose N is consistent. Let N ∗ = 〈V,D,C∗〉 be
the path-consistent constraint network that is equivalent to N , i.e.,
N ∗ is obtained by enforcing PPC on N w.r.t. the completion of
GN . By Lemma 2, N ∗ is decomposable and minimal. Further, by
Lemma 3, we have C′ ⊆ C∗, which finishes our proof.

By Lemma 3 and Theorem 1, enforcing PPC on a CRC constraint
network N can be done by the following two steps: (i) obtain a
triangulationG ofGN by adding edges labeled with universal con-
straints, and (ii) make every path of length two inG path-consistent
by using relational intersection and composition. The following
section then presents such an algorithm for enforcing strong PPC.

3. AN EFFICIENT CENTRALIZED ALGO-
RITHM FOR CRC CONSTRAINTS

In this section we present an efficient algorithm to enforce strong
partial path-consistency (PPC) on CRC constraint networks. The
algorithm, called 4CRC, is adapted from the well-known P3C al-
gorithm [20], which enforces PPC on simple temporal networks
and was further generalized to enforce PPC on qualitative con-
straint networks defined over distributive subalgebras [16].

As opposed to simple temporal constraints and distributive sub-
algebras, CRC constraints are defined over finite domains and are
not distributive [15] (i.e., the relational composition operation is not
distributive over nonempty intersections of CRC constraints). Con-
sequently, naively adapting the algorithms from [20, 16] to CRC
constraints does not lead to an algorithm that enforces strong PPC
on CRC constraint networks. We solve this in the following way:

First, as the domains of CRC networks are finite, arc-consistency
(AC) is not automatically achieved with a naive adaptation of P3C.
Therefore, including an AC enforcing mechanism in the algorithm
is necessary for enforcing strong PPC on the CRC networks. In-
stead of simply including an AC enforcing mechanism as a pre-
processing procedure (cf. [25]) that can cause extra computing ef-
fort, we integrate the AC enforcing mechanism tightly into the al-
gorithm.

Second, contrary to the proofs in [20, 15], which implicitly make
use of distributivity of constraints, we prove that 4CRC enforces
strong PPC without making use of distributivity of CRC constraints
(cf. Theroem 2).

Algorithm.
Our algorithm4CRC is presented as Algorithm 1. It takes as in-

put a CRC networkN = 〈V,D,C〉 and an ordering ≺= (vn, . . . ,
v1) on V . It first eliminates variables vk along the ordering ≺
and propagates the information of constraints involving vk to its
successors Fk := {vi |Rki ∈ C, i < k} by using the following
elimination rule.
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Algorithm 1:4CRC

Input : A constraint networkN = 〈V,D,C〉, where C is a
set of CRC constraints;
An ordering ≺= (vn, . . . , v1) on V .

Output: A triangulated PPC network that is equivalent toN if
N is consistent, or “inconsistent”.

// Phase 1: Eliminate variables
1 for k ← n to 2 do
2 (result,N )← ELIMINATE(vk,N ,≺)
3 if result = False then
4 return “inconsistent”

// Phase 2: Reinstate variables
5 for k ← 2 to n do
6 N ← REINSTATE(vk,N , ≺)

7 returnN
8 Function ELIMINATE(vk,N = 〈V,D,C〉,≺)
9 for i← k − 1 to 1 s.t. Rik ∈ C do

10 for j ← i− 1 to 1 s.t. Rjk ∈ C do
11 if Rij 6∈ C then
12 add constraint Rij := Di ×Dj to C

13 Rij ← Rij ∩ (Rik ◦Rkj)
14 if Rij = ∅ then
15 return (False,N )

16 Di ← Di ∩Rki(Dk)
17 if Di = ∅ then
18 return (False,N )

19 return (True,N )

20 Function REINSTATE(vk,N = 〈V,D,C〉,≺)
21 C∗ ← C
22 for i← k−1 to 1 s.t. Rik ∈ C do
23 for j ← i−1 to 1 s.t. Rjk ∈ C do

// R∗kj and R∗ki are in C∗

24 Rki ← Rki ∩ (R∗kj ◦Rji)
25 Rkj ← Rkj ∩ (R∗ki ◦Rij)
26 Dk ← Dk ∩Rik(Di)

27 return 〈V,D,C〉

Eliminate vk: For all vi, vj ∈ Fk updateRij asRij∩(Rik◦Rkj)
and update Di as Di ∩Rki(Dk).

After the elimination phase, Algorithm 1 reinstates the variables
according the inverse ordering≺−1 and propagates the information
of the constraints back to the neighboring predecessors.

Reinstate vk : For all vi, vj ∈ Fk, update Rik as Rik ∩ (Rij ◦
Rjk) and Rjk as Rjk ∩ (Rji ◦Rik) and update Dk as Dk ∩
Rik(Di).

We first show that Algorithm 1 outputs a triangulated network.

LEMMA 4. Let (N ,≺) be an input to Algorithm 1 where N
is consistent. Then Algorithm 1 outputs a triangulated CRC con-
straint network N ′ which is equivalent to N and has ≺ as its per-
fect elimination ordering.

PROOF. Suppose N is consistent and N ′ is the output of Al-
gorithm 1. Because CRC constraints are closed under intersection
and composition (cf. Lemma 1), N ′ is also a CRC constraint net-
work. Moreover, as the operations (i.e., intersection, composition

and adding universal relations) in Algorithm 1 do not modify the
solution space ofN ,N ′ is equivalent toN .

We next prove that N ′ is triangulated. Write N d = 〈V,D,Cd〉
for the network obtained after the elimination phase (lines 1–4) of
Algorithm 1. For any 1 < k ≤ n, note that the set of variables Fk
induces a subnetwork of N d whose constraint graph is complete.
This shows that ≺= (vn, . . . , v1) is a perfect vertex elimination
ordering in GNd . Since the reinstatement phase does not alter the
graph structure, ≺ is also a perfect vertex elimination ordering in
the constraint graph ofN ′. By Proposition 1, we knowN d andN ′
are both triangulated graphs.

Algorithm 1 also decides the consistency of CRC constraint net-
works. The proof uses the Helly property as stated in the following
lemma.

LEMMA 5. [22] Let F be a finite collection of (0,1)-row vectors
that are row-convex and of equal length such that every pair of row
vectors inF have a non-zero entry in common. Then all row vectors
in F have a non-zero entry in common.

The following result follows from [25, Theorem 1]. For complete-
ness we include a proof here.

PROPOSITION 2. Let (N ,≺) be an input to Algorithm 1. Then
N is consistent if and only if the algorithm does not return “incon-
sistent" in the elimination phase.

PROOF. Suppose that the input constraint network N is consis-
tent. Then, because the operations in Algorithm 1 do not modify
the solution set of N , the algorithm does not find any empty rela-
tion in lines 14–15 or empty domain in lines 17–18. Thus, it does
not return “inconsistent” (line 4).

Let N d = 〈V,D,Cd〉 be the network obtained after the elim-
ination phase (lines 1–4) of Algorithm 1. Now suppose that the
elimination step (lines 1–4) of the algorithm did not return “incon-
sistent” as its output. We show that N d is consistent. Let N d

k be
the subnetwork of N d induced by variables v1, . . . , vk. We claim
that N d

k is consistent for k = 1, . . . , n and prove the claim by in-
duction on k. First,N d

1 is consistent, becauseD1 is not empty; oth-
erwise the elimination step would have detected the inconsistency
in lines 17–18. Now, suppose that N d

k is consistent and let Ak :=
〈a1, . . . , ak〉 ∈ D1 × · · · × Dk be a solution for N d

k . We show
that Ak can be extended to a solution Ak+1 = 〈a1, . . . , ak+1〉 for
N d
k+1. To this end, we need to show that 〈ai, ak+1〉 ∈ Ri,k+1

for all i ≤ k with Ri,k+1 ∈ Cd. Observe that after the elimi-
nation phase, (i) for any variable vi with i ≤ k, Ri,k+1 is arc-
consistent, and (ii) for any pair of variables (vi, vj) with i, j ≤ k
with Ri,k+1, Rj,k+1 ∈ Cd, we have that Rij ⊆ Ri,k+1 ◦ Rk+1,j .
Since 〈ai, aj〉 ∈ Rij , we also have Ri,k+1(ai)∩Rj,k+1(aj) 6= ∅
for all i, j ≤ k with Ri,k+1, Rj,k+1 ∈ Cd.

Then, by Lemma 5, the intersection of all Ri,k+1(ai) with i ≤
k,Ri,k+1 ∈ Cd is not empty. Thus there exists a value ak+1 with
〈ai, ak+1〉 ∈ Ri,k+1 for all i ≤ k,Ri,k+1 ∈ Cd and we showed
that Ak+1 = 〈a1, . . . , ak+1〉 is a solution of N d

k+1. Thus N d
k is

consistent for k = 1, . . . , n and in particular for N d = N d
n . Since

operations in Algorithm 1 do not modify the solution set of N ,
networksN d andN are equivalent. Thus,N is consistent.

The preceding proof also shows that one can generate all solutions
of a consistent input network backtrack-free by applying 4CRC
and instantiating the variables along the inverse of the input order-
ing ≺. This is because for all 1 ≤ k < n a solution 〈a1, . . . , ak〉
of N d

k can be extended to a solution 〈a1, . . . , ak+1〉 of N d
k+1 by

choosing an element ak+1 from the intersection of all Ri,k+1(ai)
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with i ≤ k,Ri,k+1 ∈ Cd, which is not empty as shown in the
preceding proof. This proves the following result.

PROPOSITION 3. Algorithm 1 returns, on input (N ,≺), an equiv-
alent CRC network N ′ that is decomposable with respect to the
inverse of ≺, ifN is consistent.

We next show that Algorithm 1 also enforces strong PPC.

THEOREM 2. Algorithm 1 returns, on input (N ,≺), a network
N ′ that is AC and PPC, ifN is consistent.

PROOF. Suppose N is consistent. Let N ′ = 〈V,D,C〉 be the
output of Algorithm 1 on (N ,≺), and N ′k be the subnetwork of
N ′ induced by v1, v2, ..., vk. We note that N ′k is triangulated for
all k (cf. Lemma 4). Now we claim that N ′k is AC and PPC for
1 ≤ k ≤ n. We prove the claim by induction on k.

First,N ′1 is trivially AC and PPC, as D1 is not empty.
Now suppose N ′k−1 is AC and PPC. We first prove that N ′k is

AC. Let i, j < k. Then all Rij ∈ C are AC by the induction
hypothesis. Now suppose Rik ∈ C. Note that Rki is AC due to
line 26 in Algorithm 1. We show that Rik is also AC. If there is no
j 6= i with vj ∈ Fk, then Rik is AC by line16. Thus suppose there
exists j 6= i with vj ∈ Fk and let ai ∈ Di. Then by the induc-
tion hypothesis, Rij is AC and PPC with respect to N ′k−1, thus by
Corollary 1 it is minimal with respect to N ′k−1. There exists a so-
lution for N ′k−1 which assigns ai to vi. Furthermore, this solution
can be extended to a solution σ ofN ′ asN ′ is decomposable with
respect to the inverse of ≺ by Proposition 3. Suppose σ assigns ak
to vk. Then (ai, ak) ∈ Rik holds. This proves thatN ′k is AC.

We now show thatN ′k is PPC. Since all paths π inN ′k−1 are PC
by the induction hypothesis, we can assume that π includes vk, and
because N ′k is triangulated, by Theorem 1 we can assume that π is
of length 2.

Suppose π has the form (vi, vk, vj) with i, j < k (see Figure 4
for an illustration). By induction hypothesis N ′k−1 is PPC and,

Figure 4: Illustration of proof of Theorem 2.

by Corollary 1, Rij is minimal with respect to N ′k−1. Then there
exists a solution ofN ′k−1 that assigns values ai and aj to variables
vi and vj , respectively. This solution can be extended to a solution
σ of N ′ by Proposition 3. Suppose σ assigns ak to vk. Then,
(ai, ak) ∈ Rik and (ak, aj) ∈ Rkj . Thus (vi, vk, vj) is PC.

Now suppose π has the form (vi, vj , vk) with i, j < k. We show
that for any (ai, ak) ∈ Rik there exists aj such that (ai, aj) ∈ Rij
and (aj , ak) ∈ Rjk, i.e., Rij(ai)∩Rkj(ak) 6= ∅. By lines 22–25
in the algorithm, we have for all µ < k with Rkµ ∈ C that

Rkµ = R∗kµ ∩
⋂

vν∈Fk

(R∗kν ◦Rνµ) (1)

This in particular means that

Rkj = R∗kj ∩
⋂

vν∈Fk

(R∗kν ◦Rνj) (2)

Thus, to show that Rij(ai) ∩ Rkj(ak) is not empty, it suffice to
show by the Helly property (cf. Lemma 5) that the intersection of
any two of the following sets is not empty:

Rij(ai), R∗kj(ak),
⋂

vν∈Fk

(R∗kν ◦Rνj)(ak)

First, from equation (1) it follows that Rki ⊆ R∗kν ◦ Rνi for all
vν ∈ Fk. Thus (ak, ai) ∈ Rki ⊆ R∗kj ◦ Rji and the intersection
of Rij(ai) and R∗kj(ak) is not empty.

Then, because Rkj 6= ∅ is AC by the induction hypothesis, we
know Rkj(ak) 6= ∅. Then equation (2) implies that the intersec-
tion of R∗kj(ak) and

⋂
vν∈Fk

(R∗kν ◦Rνj)(ak) is not empty.
Finally, for an arbitrary ν < k with vν ∈ Fk we have by equa-

tion (1) that Rki ⊆ R∗kν ◦ Rνi. Since Rνi is PC with respect to
N ′k−1 we also have that Rki ⊆ R∗kν ◦ (Rνj ◦Rji). Then, because
(ak, ai) ∈ Rki 6= ∅, we have that (ak, ai) ∈ (R∗kν ◦ Rνj) ◦
Rji. Thus, the intersection of Rij(ai) and (R∗kν ◦Rνj)(ak) is not
empty for all ν < k with vν ∈ Fk. Then, by the Helly prop-
erty (cf. Lemma 5), the intersection ofRij(ai) and

⋂
vν∈Fk

(R∗kν ◦
Rνj)(ak) is not empty. Altogether, we have thatRij(ai)∩Rkj(ak)
6= ∅ and have showed π is PC with respect toN ′k.

In summary, we have proved that N ′k is AC and PPC for all 1 ≤
k ≤ n. ThusN ′ = N ′n is AC and PPC.

By Corollary 1 and Theorem 2, we have the following result.

COROLLARY 2. Algorithm 1 transforms an input CRC constraint
network into an equivalent network where all its constraints are
minimal, if no inconsistency is detected.

By the above result, the minimal network of a consistent CRC
constraint networkN can be computed as follows: (i) completeN
by adding edges labeled with universal constraints, and (ii) apply
Algorithm 1 on the completion ofN .

We now turn our attention to the analysis of the time complex-
ity of Algorithm 1. We first recall some concepts in graph theory
required for the analysis of the time complexity of Algorithm 1.

An ordered graph is a pair (G,≺), where G = (V,E) is an
undirected graph and≺ is an ordering on V . The nodes adjacent to
v that succeeds it in the ordering are called its children. The width
of a node in an ordered graph is its number of children. The width
of an ordering ≺, denoted by w(≺), is the maximum width among
all of its nodes. The induced graph of an ordered graph (G,≺) is
an ordered graph (G∗,≺), where G∗ = (V,E∗) is obtained from
G as follows: the nodes of G are processed from first to last with
respect to ≺; when a node v is processed, we connect all of its
children with edges. The induced width of an ordering ≺, denoted
by w∗(≺), is the width of the ordering ≺ with respect to G∗.

PROPOSITION 4. Algorithm 1 runs in timeO(w∗(≺)ed), where
e is the number of edges of the induced graph of GN and d is the
largest domain size.

PROOF. Because the elimination phase and the reinstatement
phase have the same time complexity, we will only consider the
elimination phase. Let (G∗ = (V,E∗),≺) be the induced graph of
(GN ,≺). Given vk ∈ V , let Fk = {vi | i < k, eik ∈ GN }. We
first analyze the time complexity of function ELIMINATE. Lines
11–18 are executed at most |Fk|2 times. Since both the composi-
tion operation and the intersection operation run in O(d) [25, 5],
the operations in line 13 and line 16 takes O(d) time. We can
conclude that it takes O(|Fk|2d) time for function ELIMINATE to
eliminate variable vk. Therefore, the time complexity of the elim-
ination phase is O(

∑n
k=1 |Fk|

2d). Because |Fk| ≤ w∗(≺), we
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have
n∑
k=1

|Fk|2 ≤
n∑
k=1

(|Fk|w∗(≺)) = w∗(≺)

n∑
k=1

|Fk| (3)

= w∗(≺)e, (4)

where e = |E∗|. Therefore, Algorithm 1 runs inO(w∗(≺)ed).

Note that when the constraint network is complete, Algorithm 1
runs in timeO(n3d). This can be compared with PC-CRC [5], the
state-of-the-art PC enforcing algorithm for CRC constraints, which
runs in time O(n3d2). It is worth mentioning that Algorithm 1
performs even more efficiently when the input networks are sparse.

4. AN EFFICIENT DISTRIBUTED ALGO-
RITHM FOR CRC CONSTRAINTS

In this section, we extend 4CRC to a distributed algorithm,
called D∆CRC, for solving distributed CRC networks. Except
for some details, we follow the work by Boerkoel and Durfee [2],
which extends P3C to solving simple temporal networks in dis-
tributed settings. For further details, we refer the readers to [2].

Definition 8. [24] A binary distributed constraint network is a
pairM = 〈P, CX〉, where

• P = {N1, . . . ,Nn} is a set of local binary constraint net-
works, where eachNi is defined asNi = 〈Vi, Di, Ci〉.

• CX = {(sk, Rk) | 1 ≤ k ≤ m} is a set of external con-
straints, where each sk is a pair of variables from Vik × Vjk
with ik 6= jk and Rk ⊆ Dik ×Djk .

We note that in Definition 8 each local constraint network Ni cor-
responds to an agent i and that CX is a set of constraints that are
shared by two different agents.

Definition 9. Given a binary distributed constraint networkM =
(P, CX), a variable v ∈ Vj is called an external variable of agent
i if there is an external constraint ((v, w), R) ∈ CX with v ∈ Vi
and w ∈ Vj , i 6= j. We use the notation V iX for the set of external
variables of agent i.

Definition 10. Let V(CX) be the set of all variables that appear
in some constraints in CX . Then each Vi can be partitioned into
two disjoint sets: the private variable set V iP = {vi | vi ∈ Vi, vi 6∈
V(CX)} and the shared variable set V iS = {vi | vi ∈ Vi, vi ∈
V(CX)}. The private subnetwork of Ni, denoted by N i

p, is the
subnetwork induced by V iP , and the shared subnetwork ofM, de-
noted by MS , is the subnetwork induced by

⋃
Ni∈P V

i
S . ≺S is

an ordering of variables of the shared subnetwork and ≺iP is an
ordering of agent i’s private variables.

D∆CRC, which is presented as Algorithm 2, is a distributed ver-
sion of Algorithm 1. Given a distributed constraint network M,
the algorithm takes as its input agent i’s part of M (i.e., Ni =
〈Vi, Di, Ci〉) as well as private and shared elimination orderings
≺iP and ≺S . Like Algorithm 1, Algorithm 2 eliminates all vari-
ables of Ni and then reinstates them. Concerning private vari-
ables in V iP , agent i can eliminate and reinstate them independently.
However, agent i needs to collaborate with other agents that are
connected through external constraints so as to correctly eliminate
and reinstate shared variables in V iS . In order to avoid using out-
dated information, the algorithm adopts the communication mech-
anism of the distributed PPC algorithm introduced in [2].

We explain the algorithm based on Example 1.

Algorithm 2: D∆CRC

Input :Ni = 〈Vi, Di, Ci〉: Agent i’s part of a distributed
constraint networkM.
≺iP= (vp, . . . , v1): Ni’s private variable elimination
ordering.
≺S= (ws, . . . , w1):M’s shared variable elimination
ordering.

Output: Agent i’s part of a PPC constraint network that is
equivalent toM.

// Phase 1: Eliminate private variables
1 for `← p to 1 do
2 (Result,Ni)← ELIMINATE(v`,Ni,≺iP );
3 ifNi = False then
4 Broadcast “inconsistent”
5 return “inconsistent”

// Phase 2: Eliminate shared variables

6 for `← s to 1 s.t. w` ∈ V iS do
7 foreach wj ∈ V iX s.t. j > ` and Rj` ∈ CX do
8 Wait for the elimination of wj by other agent and for

the updated information about constraints involving
w`.

9 (Result,Ni)← ELIMINATE(w`,Ni,≺S , )
10 if Result = False then
11 Broadcast “inconsistent”
12 return “inconsistent”
13 else
14 for j, k < ` s.t. Rj`, R`k ∈ CX do
15 Send updated information about Rjk to the agents

to whom variables wj and wk belong.

// Phase 3: Reinstate shared variables

16 for `← 1 to s s.t. w` ∈ V iS do
17 for j ← `− 1 to 1 s.t. Rj` ∈ CX do
18 for k ← j − 1 to 1 s.t. Rk` ∈ CX do
19 Wait for the reinstatement of wj and wk by

another agents and for the updated information
about Rjk.

20 Rj` ← Rj` ∩ (Rjk ◦Rk`)
21 Rk` ← Rk` ∩ (Rkj ◦Rj`)
22 D` ← D` ∩Rj`(Dj)
23 for k ← `+ 1 to s s.t. wk ∈ V iX , Rk`, Rkj ∈ CX do
24 Send updated relation about Rj` to the agent to

whom variable wk belongs.

// Phase 4: Reinstate private variables
25 for `← 1 to p do
26 Ni ← REINSTATE(v`,Ni,≺iP )

Phase 1: Agent i eliminates its private variables along the ordering
≺iP independently (see Figure 5a).

Phase 2: Agent i eliminates its shared variables along the order-
ing ≺S . Before eliminating a shared variable v ∈ V iS , agent
i must wait for possible updates related to v (line 8). In Fig-
ure 5b, when agent B eliminates xB , because zA precedes
xB and connected to xB , zA should be eliminated before
xB . Therefore, agent B must wait for agent A to eliminate
zA and update RtAxB .

Phase 3: Agent i reinstates its shared variables along the ordering
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(a) A and B eliminate their own
private variables following the or-
derings ≺AP= (yA, xA) and
≺BP= (zB , yB)

(b) A and B collaborate on elimi-
nating the shared variables follow-
ing ≺S= (zA, tB , xB , tA);

(c) A and B collaborate on reinstat-
ing the shared variables following
the ordering (≺S)−1.

(d) A and B reinstate their own pri-
vate variables following the order-
ings (≺AP )

−1 and (≺BP )−1, re-
spectively.

Figure 5: Execution of D∆CRC on Example 1.

(≺S)−1. When agent i reinstates a variablew` ∈ V iS , for any
pair (wj , wk) of other agents’ shared variables that precede
w` and connected to w` through a relation, agent i must wait
for all updates on Rjk before updating R`j and R`k using
Rjk (line 19). In Figure 5c, when agent A reinstates variable
zA, it needs to update relations RzAxB and RzAtA using
RtAxB . In order to avoid using outdated information, all
possible changes on RtAxB must be made beforehand.

Phase 4: Agent i reinstates its private variables following the or-
dering (≺iP )−1 (see Figure 5d).

We can prove the following using the proof idea in [2, Theorem 6]

THEOREM 3. Algorithm 2 decides the consistency of its input
distributed constraint network and enforces strong PPC on it if no
inconsistency is detected.

Because Algorithm 2 returns the same networks as the its cen-
tralized counterpart Algorithm 1, we can also show the following
results similarly to Proposition 3 and Theorem 2,

PROPOSITION 5. Given an input (M,≺1
P , . . . ,≺mP ,≺S), Al-

gorithm 2 returns a networkM′ that is decomposable with respect
to the inverse of ≺ = (≺1

P , . . . ,≺mP ,≺S), ifM is consistent.

THEOREM 4. Algorithm 2 transforms a consistent input CRC
constraint network into an equivalent one where all its constraints
are minimal.

Consequently, agents can jointly generate any solution of a con-
sistentM backtrack-free by applying Algorithm 2 to it and instan-
tiating the variables following the inverse of≺ = (≺1

P , . . . ,≺mP ,≺S).

PROPOSITION 6. Algorithm 2 has the same time complexity as
its centralized counterpart Algorithm 1.

PROOF. At each constraint update at most one message is sent
or received. Thus the runtime added for communication is O(e),
where e is the number of edges of the triangulated constraint graph
GNi . Since the agents may need to wait for constraints update from
other agents, in the worst case, the elimination and reinstatement of
all shared variables must be done sequentially. Consequently, Al-
gorithm 2 has the same time complexity class as Algorithm 1.

5. EVALUATIONS
In this section we theoretically and experimentally compare our

algorithm D∆CRC against the state-of-the-art algorithm D-CRC

(sections 5.1 and 5.2). Furthermore, we analyze our algorithm in
more detail (section 5.3).

For the experimental comparisons we implemented both D∆CRC
and D-CRC on the FRODO 2.0 [13] platform that simulates parallel
algorithms for CSPs on a single machine. We measured the com-
puting time of both algorithms using the simulated time metric [21],
which is a common metric for computing times of parallel algo-
rithms that run in a simulated environment. In all our experiments
we set for both distributed algorithms the default communication
latency to zero. Our experiments were carried out on a computer
with an Intel Core i5-4570 processor with a 3.2 GHz frequency per
CPU core, 4 GB memory.

5.1 Theoretical Comparisons
First of all, D-CRC by Kumar et al. [11] is a randomized al-

gorithm for solving CRC constraint networks. As such, D-CRC
cannot detect inconsistency of an input CRC constraint network;
at best, the user can stop it after a time-out to declare the input as
inconsistent; nevertheless this does not guarantee the inconsistency
of its input, i.e, it can generate false negatives. By contrast, our
algorithm D∆CRC is deterministic, sound and complete.

The expected time complexity of D-CRC is O(γn2d2), where γ
is the largest vertex degree of the constraint graph. By contrast, the
time complexity of our algorithm D∆CRC is O(w∗(≺)ed) (see
Proposition 6). Since w∗(≺) ≤ γ and e ≤ n2, our algorithm
D∆CRC outperforms D-CRC at least by a factor of d on average.

For our experimental comparisons, we also included a prepro-
cessing procedure for D-CRC and procedures for generating the
input orderings and solutions for D∆CRC. The theoretical time
complexities of those procedures are, however, all dominated by
the main algorithms.

5.2 Experimental Comparisons
We considered random consistent CRC constraint networks that

were used in the literature for evaluations (cf. [5], [25] and [11]).
These CRC constraint networks were generated by varying three
parameters that affect the time complexity of both algorithms: (i)
the number n of variables; (ii) the size d of the largest domain;
(iii) the density ρ = 2|C|/n(n + 1) of the input CRC constraint
network. We fixed two from three parameters and varied the re-
maining parameter. When we fixed ρ we set it 0.5, as distributed
problems usually involve sparse networks, ρ = 0.5 meaning a high
density value for practical distributed problems.

For the comparisons we assigned to each agent only one single
variable (i.e., the number of agents is equal to the number of vari-
ables), because D-CRC has the limitation that it does not allow each
agent to possess more than one variable. By contrast, our algorithm
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(a) Performance evaluation of the two algo-
rithms in the number n of variables. We set
ρ = 0.5 and d = 20.
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(b) Performance evaluation of the two algo-
rithms in the size d of domains. We set ρ = 0.5
and n = 30.
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(c) Performance evaluation of the two algo-
rithms in the density ρ of the input networks.
We set n = 30 and d = 20.

Figure 6: Performance comparisons between D∆CRC and D-CRC.

D∆CRC is more flexible and can assign multiple variables to the
agents. But for fair comparisons, we used the same agent setting
for D-CRC and D∆CRC.

The graphs in Figures 6a–c illustrate the experimental compar-
isons between algorithms D∆CRC and D-CRC. The data points in
each graph are computing times averaged over 20 instances.

We observe in the graphs that both algorithms show linear time
behaviors with respect to n and d and a sublinear time behavior
with respect to ρ. We also observe that the performance differences
between the two algorithms are remarkable. D∆CRC not only runs
faster than D-CRC, but it also scales up to 7 times better than D-
CRC with increasing parameter values. This owes to the theoretical
property of D∆CRC, i.e., it leverages the input network structure
and scales better also in theory with the increasing size of the do-
main. All in all, we can conclude that D∆CRC is more suitable
than D-CRC for distributed problems.

5.3 In-depth Evaluation of D∆CRC

As mentioned previously, the setting for the experimental com-
parisons did not allow assign an agent to two or more variables,
i.e., the number of agents had to be equal to the number of vari-
ables. Therefore, we also evaluated our algorithm exclusively (see
Figure 7), where we changed the number nA of agents in the input
networks. Each agent is assigned to around bnA/nc variables that
are chosen randomly from the input network.
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Figure 7: Evaluation of our algorithm D∆CRC for different num-
ber of agents and network density. We set n = 30 and d = 20.

We observe in Figure 7 that the performance graph of D∆CRC
forms a U-shape for all the network densities. This is because more
agents allows for more constraints to be handled concurrently, but

from a certain number of agents on, this effect is dominated by the
delays caused by the inter-agent communications.

In the figure we also notice that the number of agents needed
for the optimal performance shifts to the right with decreasing net-
work density. This phenomenon owes to the fact that networks with
lower densities involve less constraints between agents, allowing
the agents to handle more constraints concurrently.

The results also show that D∆CRC runs up to two times faster
when the agents are assigned to two or more variables and not to
only one variable. Consequently, D∆CRC can outperform D-CRC
even more significantly.

6. DISCUSSION AND CONCLUSION
In this paper, we have proposed the first deterministic distributed

algorithm, called D∆CRC, for solving CRC constraints. The al-
gorithm can efficiently transform an input CRC constraint network
into an equivalent constraint network, where all constraints are min-
imal, and can generate all solutions in a backtrack-free manner.

D∆CRC does not suffer from the problems that the state-of-the-
art algorithm D-CRC has: (i) it is sound and complete and (ii) it
can assign more than one variable to each agent, allowing the algo-
rithm to solve large networks in real distributed systems. Further-
more, our theoretical and experimental comparisons showed that
D∆CRC significantly outperforms D-CRC.

Since the class of CRC constraints generalizes several subclasses
of constraints such as 2SAT, binary integer linear constraints, and
monotone constraints [5], and can model problems in domains such
as VLSI design [3], scene labelling [22] as well as logical filter-
ing [12], our algorithm for solving CRC constraints can benefit
many multi-agent applications that are based on CRC constraints.

As the class of CRC constraints is closed under a majority op-
eration [6], one may wonder if the algorithms can be extended to
other majority closed constraint languages, e.g., the class of tree-
preserving constraints [8]. However, since the proofs of Proposi-
ton 2 and Theorem 2 heavily rely on the Helly property, which is
not enjoyed by all majority closed constraint languages, we may
need to devise new methods to establish these results.
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