
Proactive Project Scheduling with Time-dependent
Workability Uncertainty

Wen Song, Donghun Kang, Jie Zhanga, Hui Xib
Rolls-Royce@NTU Corp Lab, Nanyang Technological University, Singapore

aSchool of Computer Science and Engineering, Nanyang Technological University, Singapore
bRolls-Royce Singapore Pte Ltd, Singapore

{songwen, donghun.kang, azhangj}@ntu.edu.sg, bhui.xi@rolls-royce.com

ABSTRACT
Proactive scheduling can effectively handle activity duration
uncertainty in real-world projects, by generating a baseline
solution according to a prior stochastic knowledge. However,
most of the previous approaches cannot deal with the activ-
ity duration uncertainty caused by time-dependent worka-
bility uncertainty. In this paper, we aim at finding a partial-
order schedule (POS) that produces the minimum expected
makespan on a given probability model of workability un-
certainty. Since this is a hard discrete stochastic optimiza-
tion problem, we propose an approximation approach based
on Sample Average Approximation (SAA), and develop a
branch-and-bound algorithm to optimally solve the SAA
problem. Empirical results on benchmark problem instances
and real-world distribution data show that our approach
outperforms the best general-purpose POS generation ap-
proaches that do not exploit the stochastic knowledge.

CCS Concepts
•Computing methodologies → Planning under un-
certainty;

Keywords
Proactive project scheduling, time-dependent duration un-
certainty, sample average approximation, resource allocation

1. INTRODUCTION
Project managers in the industry often need to deal with

Resource-Constrained Project Scheduling Problem (RCPSP),
a general model for describing and solving various schedul-
ing problems, to arrange, control and optimize their business
processes. While deterministic RCPSP and its extensions
are well studied for decades (e.g. [10, 17, 28]), the assump-
tions of perfect information and deterministic problem pa-
rameters are frequently violated in practice. Since real-world
project activities are usually highly sensitive to different un-
certainties (e.g. transportation time, manpower availability,
weather changes), models and approaches incorporating un-
certainties are of great practical value. Proactive scheduling
refers to a class of approaches that exploit a prior knowl-
edge about the uncertainties to generate a baseline solution,

Appears in: Proc. of the 16th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2017),

S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),

May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

either a schedule or policy, before execution. Compared to
complete online scheduling (e.g. [22, 29]) that generates no
baseline solution and rescheduling (e.g. [2, 11]) that con-
tinuously revises the baseline solution, proactive approaches
tend to produce solutions with higher quality and robust-
ness [5]. Moreover, decisions made in the baseline solutions
(e.g. activity start times, resource allocation commitments)
could serve important functionalities in providing visibility
for better coordination of the execution process [20, 23].

A number of proactive approaches have been developed
for project scheduling under uncertainty [13, 14]. Most of
them deal with models where the duration of each activity
is modeled as a random variable that is independent of its
scheduled start time [4]. However, as mentioned in [7], this
model cannot cover the full spectrum of uncertainty sources.
For example, in a quality assurance project, each testing ac-
tivity must secure enough times or days to carry out the test
successfully under certain weather conditions (e.g. tempera-
ture, humidity, wind speed). In other words, the uncertainty
on the activity duration comes from the workability of each
time slot in the scheduling horizon. Due to seasonality, du-
ration of an activity could be affected differently by its start
time (e.g. July or December). As will be mentioned in Sec-
tion 2, previous approaches cannot handle this case.

This paper studies proactive scheduling for RCPSP under
time-dependent workability uncertainty, with the objective
of minimizing the expected makespan. We present a rea-
soning approach for an autonomous agent responsible for
proactive scheduling on behalf of the project manager. In-
stead of generating a complete schedule, our agent computes
a partial-order schedule (POS) [27] as a solution, since it is
more flexible in handling unforeseen events [13]. Several ap-
proaches in [3, 26, 27] can generate a feasible POS for a
given RCPSP instance. However, they are general-purpose
approaches and do not use a prior stochastic knowledge. In
contrast, we propose a stochastic optimization model that
explicitly incorporates the workability uncertainty model.

It is non-trivial for our agent to find the optimal solution;
RCPSP is known to be intractable [6], and the presence of
uncertainty makes it more complex [4]. To address these
challenges, we propose a novel approach based on Sample
Average Approximation (SAA) [15], which provides a gen-
eral framework for approximately solving stochastic opti-
mization problems, with the proven ability of converging to
the optimal solution. Our approach first generates a set
of samples from the workability uncertainty model, then
optimally solves the SAA problem built on these samples
through a branch-and-bound process. By exploiting the

221

properties of the SAA problem, we design several techniques
for pruning, branching and lower bounding. Empirical re-
sults on benchmark problems and real-world distribution
data show that our approach can generate solutions with
higher quality than the best general-purpose approaches.

2. RELATED WORK
In this section, we briefly review the works in proactive

project scheduling. Based on the taxonomy in [5], we classify
existing approaches into two categories according to their
solution types. The first category of approaches generates
a generic solution that makes complete decisions, such as
a start-time schedule. These approaches often try to opti-
mize a risk-aware objective, i.e. the schedule should be valid
with a high probability in execution time. The current best
approaches [18, 31] in this category introduce a probability
constraint to the deterministic problem model to restrict the
probability of schedule invalidation. Both approaches rely
on SAA to handle the hardness of the probability constraint.
However, their models and approaches cannot be applied to
solve our problem, since the samples of activity duration
cannot be obtained from the workability distributions with-
out knowing their start times.

Different from those in the first category, approaches in
the second category generate flexible solutions that make
part of the decisions, and leave the remaining ones to the
execution time. A typical flexible solution is the dynam-
ically controllable Simple Temporal Network with Uncer-
tainty (STNU) [8, 25, 24]. However, STNU based approaches
mainly focus on temporal reasoning. They are not directly
applicable to the context of project scheduling since they
cannot handle resource constraints. Another way to gener-
ate flexible solutions is the redundancy-based techniques [9,
19], which insert extra slacks to protect activities against
machine breakdowns. Their problem settings are somehow
similar to ours, since the machine breakdown probability is
related to the time slot in the horizon. However, their ap-
proaches are limited to specific probability distributions (e.g.
normal [9] and exponential [19]) of machine breakdown. In
contrast, our approach does not put any assumption on the
stochastic knowledge about the workability uncertainty.

POS is another type of flexible solutions. A POS specifies
an additional set of precedence constraints, such that any
temporal feasible schedule is also resource feasible. In [27],
two approaches that directly generate POS from RCPSP in-
stances are proposed, namely 1) Envelop Based Algorithm
(EBA) that generates a POS by detecting and removing
potential resource conflicts and 2) Earliest Start Time Al-
gorithm (ESTAC) that transforms an earliest start time so-
lution to a POS using a chaining process. For EBA, the
current best resource conflict detection algorithm is the min-
flow approach [21], while the state-of-the-art ESTAC algo-
rithm is the iterative chaining procedure [26]. A major lim-
itation of these approaches is that they do not exploit the
stochastic knowledge about uncertainties. As will be shown
in our experiments, significant improvement can be obtained
by our approach, where the stochastic knowledge is explicitly
considered in generating POS. Recently, several approaches
are developed to generate a robust POS that is adapted to
the known activity duration distributions [4, 12, 13]. How-
ever, a major assumption of these approaches is that the
probability model of activity durations is independent of ac-
tivity start times, which cannot hold in our problem.

3. PRELIMINARIES
We first introduce the basic notations and concepts.

3.1 Deterministic RCPSP
In a deterministic RCPSP instance, a set of non-preemptive

activities A = {a1, ..., aN} from a project needs to be sched-
uled on a set of renewable resources R = {r1, ..., rK}, with a
horizon of T consecutive time slots. Each ai ∈ A has a fixed
duration of dsi ∈ N time slots, and requires bik ∈ N units
of resource rk ∈ R, which has a finite capacity of ck ∈ N
units in each time slot. Usually two dummy activities a0 and
aN+1 having zero durations and no resource requirement are
added to represent the start and completion of the project.
Denote Ap = A∪{a0, aN+1}. A pair of activities in Ap could
have a precedence relation ai ≺ aj , indicating that aj must
start after the completion of ai. Denote the set of all prece-
dence relations as E = {(i, j)|ai ≺ aj , ∀i, j ∈ {0, ..., N +1}}.
The precedence relations within a project can be represented
as an Activity-On-Node (AON) network, which is a graph
G = (Ap, E). Throughout this paper, we denote V (G) and
E(G) as vertex and edge sets of a graph G, respectively.
We also denote Tr(G) as the transitive closure of G, where
(i, j) ∈ Tr(G) indicates there is a path from ai to aj .

A schedule of RCPSP is a vector S = (s0, ..., sN+1), where
si is the start time of ai. For the deterministic RCPSP, once
si is determined, the completion time ci = si + dsi of ai is
also determined. A feasible schedule must satisfy all the
resource and precedence constraints. A feasible schedule S∗

is optimal if it minimizes the makespan MS(S) = maxi{ci}.

3.2 Partial-order Schedule
A POS is a graph GR = (Ap, E ∪ ER) that augments

the AON network by adding an additional set of precedence
constraints ER, such that any temporal feasible solution of
GR is also resource feasible [27]. The advantage of POS in
handling uncertain activity durations is that it provides an
efficient way to obtain a feasible solution by simply propa-
gating the realized activity durations di through the POS,
without the need of complex reasoning on the resource ca-
pacity constraints. Suppose a POS GR is generated as a
proactive solution. During execution time, the start time si
of ai can be computed very easily using the equation below:

si = max{cj = sj + dj |(j, i) ∈ E ∪ ER}. (1)

In other words, ai is started after the completion of all its
predecessors in GR. Along with execution, the start times of
all ai ∈ Ap can be calculated, hence a schedule is obtained.

One limitation of the POS defined above is that it does not
include the resource allocation decisions (i.e. which resource
unit is allocated to which activity), which are considered to
be important in preparing and coordinating the execution
process [20]. Therefore, in this paper we use the AON-flow
Network [3] as our solution. Essentially, AON-flow Network
can be considered as a special type of POS where the re-
source allocation decisions are explicitly specified by a set
of resource flows between activities. Denote an AON-flow
Network as GF = (Ap, E ∪ EF). Each edge (i, j) ∈ EF is
associated with a resource flow vector fij = (fij1, ..., fijK),
where 0 ≤ fijk ≤ ck is the amount of resource rk being
transfered from ai to aj . It should be noted that E ∩ EF
is not necessarily to be ∅, i.e. some edges in E may also
carry resource flows. An AON-flow Network is feasible if it

222

satisfies the following conditions:

∃rk ∈ R, fijk > 0, ∀(i, j) ∈ EF ,∑
(j,i)∈EF

fjik = bik =
∑

(i,j)∈EF

fijk, ∀i ∈ A, rk ∈ R,

∑
(0,j)∈EF

f0jk = ck, ∀rk ∈ R,

∑
(j,N+1)∈EF

fj,(N+1),k = ck, ∀rk ∈ R,

(2)

where the first condition guarantees that an edge in EF in-
deed carries resource flows, and the remaining three guar-
antee that the resource flows are balanced. We denote the
set of all feasible AON-flow Networks that satisfy the four
conditions in Equation (2) as GF .

4. PROBLEM FORMULATION
In this section, we formulate our proactive scheduling prob-

lem. We first introduce the workability uncertainty. With-
out loss of generality, we assume all activities in A can be
classified into Z types, and activities of the same type have
the same workability uncertainty (e.g. requiring the same
weather condition). Denote the type of ai as zi ∈ {1, ..., Z}.
For each type z, we model the activity workability using a
random vector Xz = (Xz1, ..., XzT), where Xzt is a ran-
dom variable representing the workability of a time slot
t ∈ {1, ..., T} for type z. Let xzt be the realization of
Xzt. Here we assume xzt ∈ {0, 1}, where activities of type
z can only work on t when xzt = 1.1 We call the collection
X = (X1, ..., XZ) the workability uncertainty model.

Under the workability uncertainty, the duration of ai is no
longer a deterministic value dsi , but a random variable Di.
Meanwhile, dsi is a condition for determining the completion
of ai: an activity must acquire at least dsi workable time
slots before completion. Denote the realization of Di as di,
the cumulative distribution function of Di conditioning on
si can be formulated as:

FDi (di | si = t) = P (Di ≤ di | si = t)

= P

(
t+di−1∑
τ=t

Xziτ ≥ d
s
i

∣∣∣∣∣si = t

)
.

(3)

Depending on application, it may be costly or inconve-
nient to obtain the probability distribution in Equation (3).
For example, Xz may be modeled using a stochastic process,
or even implicitly embedded in a simulator. Moreover, the
dependence of start time makes it even harder for scheduling,
since the duration of an activity depends on the scheduling
decisions of other activities. Therefore, we directly exploit
the workability model, and formulate the problem studied
in this paper as follows: given a RCPSP instance and the
workability uncertainty model X, find a feasible AON-flow
Network G∗F ∈ GF that minimizes the expected makespan:

G∗F = argmin
GF∈GF

{g(GF) = E[MS(GF , X)]} , (4)

where MS(GF , X) is a random variable representing the
(stochastic) makespan of GF on X.

1This assumption is somehow restrictive; however our ap-
proach can be easily adapted to support more “fine-grained”
models where the domain of xzt has more values.

5. SAMPLE AVERAGE APPROXIMATION
Equation (4) describes a hard stochastic optimization prob-

lem, not only due to the combinatorial nature of RCPSP. In
fact, given GF , it is costly to even compute the exact ex-
pected value g(GF). This is because the number of possible
realizations of X is 2ZT , which grows exponentially with the
problem size. We tackle this hardness using Sample Average
Approximation (SAA). The basic idea of SAA is to substi-
tute the original problem with an approximated one, where
the original distribution and the expected value function are
replaced by a set of independent samples and a sample av-
erage function, respectively. To approximate our problem in
Equation (4) using SAA, we first denote x = (x1, ..., xZ) as
a sample generated from the workability uncertainty model
X, where xz = (xz1, ..., xzT) is a realization of Xz. Let
x = (x1, ..., xM) be a set of M randomly generated samples.
Then, the SAA problem can be formulated as:

Ĝ∗F = argmin
GF∈GF

ĝ(GF) =
1

M

M∑
ξ=1

MS(GF , x
ξ)

 , (5)

where Ĝ∗F is the optimal solution of the SAA problem, ĝ(GF)
is the sample average function of the original expected value
function g(GF) in Equation (4), and MS(GF , x

ξ) is the
makespan of a solution GF on a sample xξ. As proved in
[15], with the increase of sample size M , Ĝ∗F will converge
to G∗F at an exponential rate.

Next, we discuss the computation of MS(GF , x). Given a
POS GF , we know that the start time si of ai can be com-
puted using Equation (1), hence we only need to determine
the duration dj on the sample xξ of all its predecessors spec-
ified by GF . Given a start time si of ai, a duration di is said
to be feasible on x if it satisfies the completion condition, i.e.∑ci−1
τ=si

xziτ ≥ dsi , where ci = si + di is the completion time.
There are many di that can satisfy the above condition, but
we can show that it is sufficient to use the equation below:

di(si, x) = min

{
d ≥ 0

∣∣∣∣∣
si+d−1∑
τ=si

xziτ ≥ d
s
i

}
. (6)

In other words, an activity is considered to be completed
once it acquires enough workable time slots. By definition,
di(si, x) is the smallest feasible duration. To show the ra-
tionale, we first prove the following lemma:

Lemma 1. Given two start times s1i and s2i of an activity
ai on a sample x, if s1i ≤ s2i , then for any feasible duration
d2i of s2i , s

1
i + d1i (s

1
i , x) ≤ s2i + d2i .

Proof. We only need to show that s1i + d1i (s
1
i , x) ≤ s2i +

d2i (s
2
i , x), since d2i (s

2
i , x) is less than any other feasible d2i .

Denote the completion time as c1i = s1i + d1i (s
1
i , x), c2i =

s2i + d2i (s
2
i , x), respectively. According to Equation (6),

c1i−1∑
t=s1i

xzit =

c2i−1∑
t=s2i

xzit = dsi . (7)

It is easy to verify that the lemma holds if s2i ≥ c1i . When
s1i ≤ s2i < c2i , we first assume c1i > c2i . Then, we have

s2i−1∑
t=s1i

xzit +

c2i−1∑
t=s2i

xzit +

c1i−1∑
t=c2i

xzit = dsi . (8)

223

Since the second term in the left hand side of Equation (8)

equals to dsi , we have
∑s2i−1

t=s1i
xzit +

∑c1i−1

t=c2i
xzit = 0, indicat-

ing
∑c1i−1

t=c2i
xzit = 0. Hence, the third term in the left hand

side of Equation (8) can be removed, indicating d′i = c2i − s1i
is a feasible duration. However, based on the assumption,
d′i < c1i −s1i = d1i (s

1
i , x), which contradicts Equation (6).

Based on Lemma 1, an activity can never complete earlier
on a sample by starting later (though a smaller duration may
be obtained). Hence, we can prove the following proposition:

Proposition 1. Given a partial-order schedule GF and a
sample x, the schedule S(GF , x) generated by using Equation
(6) produces the lowest makespan.

Proof. Let S′(GF , x) be a schedule obtained by setting
the duration of an activity ai to d′i > di(si, x). Then, all
its immediate successors j can only start no earlier than its
start time in S(GF , x), indicating a completion time equal
or larger than that of S(GF , x) according to Lemma 1. This
delay will be further propagated through GF , and finally
lead to a makespan equal or larger than MS(S(GF , x)).

Let MS(GF , x
ξ) = MS(S(GF , x

ξ)) be the makespan of
GF on x. Then, we can have another conclusion as below:

Observation 1. Given two partial-order schedules G1
F

and G2
F , if V (G1

F) = V (G2
F) = A and E(G1

F) ⊆ E(G2
F),

then MS(G1
F , x) ≤MS(G2

F , x) holds for any sample x.

The reason is that, for any ai ∈ A, it cannot start earlier
in S(G2

F , x) than in S(G1
F , x), since it needs to respect more

precedence constraints specified in E(G2
F)\E(G1

F). Accord-
ing to Lemma 1, it cannot complete earlier either. Thus, G2

F

results in an equal or larger makespan than G1
F .

The computation of MS(GF , x
ξ) is very efficient with a

complexity of O(N2T). Therefore, it is tractable to evalu-
ate the objective ĝ(GF), with a complexity of O(MN2T).
However, the SAA problem is intractable, as stated below:

Proposition 2. The SAA problem is NP-hard.

Proof. We follow the proof for deterministic RCPSP [6],
where it is reduced from a NP-complete problem Partition
Into Triangles (PIT): for a graph G = (V,E) where |V | = 3q,
is there a partition of G into q disjoint subsets, such that
each subset contains three pairwise adjacent vertices?

For any PIT instance, we first construct a RCPSP instance
as in [6]. For each i ∈ V , an activity ai is created with
dsi = 1. For each pair (i, j) /∈ E, a resource rij with capacity
cij = 1 is added, which is only required by ai and aj with
bi,ij = bj,ij = 1, and bl,ij = 0 for other activities al. Then
we construct an instance for the SAA problem, by adding
one sample x where xzt = 1 for all z and t. We claim that
the SAA problem has a solution GF with ĝ(GF) ≤ t if and
only if the PIT instance has a solution.

If we can find a solution to the PIT instance, then we
immediately have a schedule S with MS(S) ≤ t. From S,
a feasible GF can be constructed by sequencing the activ-
ities on each resource and adding a resource carrying edge
from one activity to its immediate successor in the sequence.
Propagating this GF on x will produce a schedule with the
makespan MS(GF , x) ≤ t, hence ĝ(GF) ≤ t. On the other
hand, if we can find a GF satisfying ĝ(GF) ≤ t, then the
schedule S(GF , x) must satisfy MS(GF , x) ≤ t, indicating
that the PIT instance has a feasible solution.

6. THE BRANCH-AND-BOUND APPROACH
Due to the intractability of the SAA problem, in this sec-

tion we design a branch-and-bound approach for efficiently
finding the optimal solution to the SAA problem.

6.1 Branching Scheme
Our approach employs a depth-first tree search algorithm

to systematically explore the feasible solution domain GF

by continuously extending a partial solution G′F . To deter-
mine the edges (i, j) and the corresponding resource flows
fij in an AON-flow Network, our approach employs a two-
level branching scheme, as shown in Algorithm 1. At the
first level (activity level), a set of precedence feasible ac-
tivities ES is identified first, where ES = {ai ∈ Ap|ai /∈
V (G′F), aj ∈ V (G′F),∀(j, i) ∈ E}. If ES is empty, then
a feasible solution is reached and the algorithm backtracks
(Lines 3-7). Otherwise, an activity al is chosen and removed
from ES for branching, according to some heuristics (see
Section 6.4). Then, a lower bound LB(G′F , al) of linking al
to G′F is computed to determine whether the search path
should be pruned or not. If not, the algorithm enters the
second level (link level), where a set of feasible links LK
is generated as branching candidates for linking al to G′F .
A link lk = {(i, l)|i ∈ V (lk)} is a set of edges that link a
set of vertices V (lk) ⊆ V (G′F) in G′F to al. The method
of identifying LK will be discussed in Section 6.2. Then,
the algorithm iteratively chooses and removes one link lk
from LK to branch by calling the function ChooseLink, un-
til LK is empty (Lines 15-20). The function LinkActivity
in Line 17 is called to link al to G′F using lk, by generating
a new partial solution Ḡ′F = (V (G′F) ∪ {al}, E(G′F) ∪ lk).
The function RemoveActivity in Line 19 does the inverse
operation as LinkActivity upon backtracking to remove al
and lk from G′F . The branching and pruning at the link
level are embedded in ChooseLink (Algorithm 2), and will
be discussed in Section 6.2.

During the searching process, an outgoing capacity matrix
OC = [ocik](N+2)×K is maintained to record the remaining
capacity of resources that can be transferred from a linked
activity in V (G′F) to an unlinked one. In the initial OC,
denoted as OC0, oc0ik is set to bik for all 1 ≤ i ≤ N , while
oc00k and oc0N+1,k are set to ck and 0, respectively. In Al-
gorithm 1, when al is linked by LinkActivity, ocik will be
set to ocik − filk if lk contains a resource flow from ai to
al, and an inverse operation will be conducted in Remove-
Activity when backtracking. At the beginning, an initial

partial solution G
′0
F = ({0}, ∅) is created with the dummy

start activity only. Then the searching process is invoked

by calling BnB(G
′0
F , null, L,OC

0), where L is a large double
value. If the lower bounds adopted in the algorithm are ad-
missible, i.e. they never overestimate the best objective that
can be achieved by the subtree rooted from the correspond-
ing search node, our algorithm guarantees to terminate with
the optimal solution to the SAA problem.

6.2 Finding and Choosing Feasible Links
This section describes how feasible links are identified and

chosen. We first define the link feasibility. Suppose a partial
solution Ḡ′F is obtained by linking al to G′F using lk. Then
lk is feasible when the following conditions are satisfied:

(i, l) ∈ Tr(Ḡ′F), ∀i ∈ {i|(i, l) ∈ E},∑
(i,l)∈lk

filk = bik, ∀rk ∈ R, (9)

224

Algorithm 1: BnB(G′F , Ĝ
∗
F , ĝ

∗, OC)

Input: G′F : current partial solution; Ĝ∗F : current best
solution; ĝ∗: current best objective value; OC:
outgoing capacity matrix

1 ES ← FindEligibleActivities(V (G′F)) ;

2 if ES = ∅ then
3 ĝ′ ←ComputeObj(G′F) ;

4 if ĝ′ < ĝ∗ then
5 ĝ∗ ← ĝ′;

6 Ĝ∗F = G′F ;

7 return;

8 while ES 6= ∅ do
9 al ← ChooseActivity(ES);

10 ES ← ES \ {al};
11 LB(G′F , al)← ComputeLB A(G′F , al);
12 if LB(G′F , al) < ĝ∗ then
13 LK ← FindFeasibleLinks(G′F , al, OC);

14 lk ←ChooseLink(G′F , LK, ĝ∗);
15 while lk 6= null do
16 LK ← LK \ {lk};
17 Ḡ′F ←LinkActivity(al, G

′
F , lk, OC);

18 BnB(Ḡ′F , Ĝ
∗
F , ĝ
∗, OC);

19 G′F ←RemoveActivity(al, Ḡ
′
F , lk, OC);

20 lk ←ChooseLink(G′F , LK, ĝ∗);

21 return;

where the first one guarantees the precedence constraints
regarding al in E is respected, and the second one makes
sure al receives enough resource units from the edges in lk.
Next, we show that for our problem, the search space can
be limited to integer resource flows.

Proposition 3. For all k and i, if ck ∈ N and bik ∈ N,
then it is sufficient to consider only integer flows.

Proof. For any AON-flow Network GF , we first con-
struct a flow network GTF (k) for each rk by augmenting GF
as follows: 1) ∀ai, i 6= N + 1, add an edge (i,N + 1); 2) set
the demands of a0 and aN+1 to ck and −ck, respectively; 3)
split each non-dummy activity ai into two vertices ais and
ait with demands bik and −bik, respectively, linked with
an edge (is, it); 4) set the constraint of flow fisitk of each
(is, it) to bik ≤ fisitk ≤ bik, while other flows with only
nonnegative constraints. It is easy to verify that if GTF (k)
has a feasible flow, then GF also has a feasible flow where
fijk = fitjsk, ∀(i, j) ∈ EF . Next, we augment GTF (k) to con-

struct another network GT
′

F (k): 1) add two virtual vertices,
source as and sink at; 2) for each ais , add an edge (s, is)
with capacity bik; 3) for each ait , add an edge (it, t) with
capacity bik; 4) add two edges, (s, 0) with capacity ck and
(N + 1, t) with capacity ck. According to network optimiza-
tion theory [1], a feasible flow exists in GTF (k) if and only

if the maximum flow from as to at in GT
′

F (k) saturates all
edges added from GTF (k). In addition, due to the integrality

property [1], if all the edge capacities in GT
′

F (k) are integers,
then the maximum flow is also integer. Therefore, we can
obtain a feasible integer flow in GF if it is feasible.

To find all the feasible integer flows, we first identify all
ai ∈ G′F with positive ocik as candidates for linking al.
Then, all the feasible resource flows are enumerated to form
the set LK. Finally, each link in LK is verified against the
first condition in Equation (9). If any immediate predeces-

Algorithm 2: ChooseLink(G′F , LK, ĝ
∗)

Input: G′F : current partial solution; LK: current set of
feasible links; ĝ∗: current best objective value

Output: lk: the chosen edge
1 while LK 6= ∅ do
2 lk ←GetLink(LK);
3 LB(G′F , lk)←ComputeLB L(G′F , lk);

4 if LB(G′F , lk) < ĝ∗ then
5 return lk;

6 else
7 LK ←RemoveLinks(LK, lk);

8 return null;

sor ai of al cannot reach al by lk, an edge (i, l) with zero
resource flow is added to lk to make it precedence feasible2.

Due to the combinatorial nature, LK could contain many
branching alternatives. To further reduce the size of LK, we
design the ChooseLink function that embeds an additional
pruning step. As shown in Algorithm 2, ChooseLink tries to
find a feasible link lk ∈ LK that is not pruned by ĝ∗. It first
selects a link lk from LK using some heuristics (see Section
6.4), and then computes its lower bound. If lk is not pruned,
the function returns it as the chosen link. Otherwise, a
function RemoveLinks is called to remove any lk′ satisfying
V (lk) ⊆ V (lk′). This is based on the following observation:

Observation 2. Given two links lk1 and lk2 for link-
ing al to G′F , if V (lk1) ⊆ V (lk2), then LB(G′F , lk

1) ≤
LB(G′F , lk

2).

Observation 2 will be justified in Section 6.3 when the
function ComputeLB L is discussed.3 Basically, when a link
lk is pruned, all links that involve additional activities in the
partial solution can also be safely pruned, since they result
in equal or larger lower bounds than that of lk.

6.3 Lower Bounds
To guarantee the optimality, two admissible lower bound-

ing functions are needed, i.e. ComputeLB A for the activity
level, and ComputeLB L for the link level. Before going into
details, we first give a general lower bound on the objective
function. Given a partial solution G′F , it is easy to verify
that ĝLB in the below equation is a lower bound of ĝ:

ĝLB(G′F) =
1

M

M∑
ξ=1

MSLB(G′F , x
ξ), (10)

where MSLB(G′F , x
ξ) is a lower bound of the makespan of

G′F on xξ. In other words, to lower bound G′F on ĝ, we
only need to lower bound G′F on each individual sample
xξ. Based on Equation (10), we construct the two lower
bounds based on the critical path lower bound for solving
the deterministic RCPSP [10]. Basically, for the activities
that have not been linked to G′F , only precedence constraints
are considered in computing the makespan. Below we first
discuss the lower bounding computation at the link level.

ComputeLB L. To compute the lower bound of a feasi-
ble link lk, we first construct the new partial solution Ḡ′F
obtained by linking al to G′F using lk. Then, we construct

2This does not violate the first condition in Equation (2),
since (i, l) simply represents a precedence constraint in E.
3Note that not all admissible lower bounds satisfy this ob-
servation, but the one we design in Section 6.3 does.

225

another graph Ḡ′′F = (Ap, E(Ḡ′F)∪E) that augments Ḡ′F by
linking ai /∈ V (Ḡ′F) to Ḡ′F using the edges in E. By propa-
gating Ḡ′′F on x, we can obtain a temporal feasible schedule
S(Ḡ′′F , x), where ai /∈ Ḡ′F is not necessarily resource feasi-
ble. According to Observation 1, MS(Ḡ′′F , x) is an admis-
sible lower bound for the branching choice of linking al to
G′F using lk. The reason is that, ∀GF ∈ GF obtained by
extending G′F , we have E(Ḡ′′F) ⊆ E(GF) since additional
edges are added to resolve resource conflicts. Therefore, by
propagating Ḡ′′F on each sample xξ, we have

LB(G′F , lk) =
1

M

M∑
ξ=1

MS(Ḡ′′F , x
ξ). (11)

Now we can show the correctness of Observation 2. For
two links lk1 and lk2 satisfying the conditions in Observation

2, we have E(Ḡ
′′1
F) ⊆ E(Ḡ

′′2
F) by the above construction pro-

cess. Based on Observation 1, LB(G′F , lk
1) ≤ LB(G′F , lk

2).

ComputeLB A. Unlike in ComputeLB L, we cannot con-
struct a common solution to propagate on all samples to
compute LB(G′F , al), since the feasible links have not been
identified yet. Therefore, we take a different approach here.
Given a partial solution G′F , we first construct a graph

G
′r
F = (Arp, E

r) for the unlinked activities except al, where
Arp = Ap \ (V (G′F) ∪ {al}) and Er = {(i, j) ∈ E|i, j ∈ Arp}.
Then, G′F is propagated on a sample x to obtain a partial
schedule S(G′F , x). Next, we find the earliest precedence
and resource feasible start time sl for al based on S(G′F , x),
and compute the duration dl(sl, x) using Equation (6). Fi-

nally, we obtain a complete schedule by propagating G
′r
F

on x based on S(G′F , x), cl = sl + dl(sl, x), and a set of
precedence relations El = {(i, j) ∈ E|i /∈ Arp, j ∈ Arp}.
Denote this schedule as S(G′F , al, x), then for a sample x,
MS(G′F , al, x) is a lower bound for the makespan of any Ḡ′F
obtained by incorporating al to G′F using a feasible link lk.
The reason is that ∀S(Ḡ′F , x), al cannot start earlier than
sl. According to Lemma 1, MS(G′F , al, x) ≤ MS(Ḡ′F , x).
By conducting the above process on each sample x, we have

LB(G′F , al) =
1

M

M∑
ξ=1

MS(G′F , al, x
ξ). (12)

6.4 Branching Heuristics
The general intuition in designing the branching heuristics

is that we want to find high quality solutions as early as pos-
sible to prune more search space. Therefore, for the activity
choosing step in Line 9 of Algorithm 1, we adopt two com-
monly used priority rules from the deterministic RCPSP for
selecting activities, Maximum Total Successors (MTS) and
Minimum Latest Finish Time (MLFT) [16]. These two rules
often produce good solutions with heuristic schedule gener-
ation schemes [16] that are similar to our approach without
backtracking. MTS prefers the activity with more imme-
diate successors, while MLFT gives priority to the activity
with smaller LFT value. Here the computation of MTS is
the same as that of deterministic RCPSP since the original
precedence relations are not affected by the workability un-
certainty. On the other hand, we compute the LFT value
for each activity by propagating the original project net-
work G on a randomly generated sample x, which takes the
workability uncertainty into consideration.

For the link choosing step in Line 5 of Algorithm 2, we de-

sign two heuristics, Minimum Average Earliest Start Time
(MAEST) and Minimum Link Predecessors (MLP). The in-
tuition of MAEST is based on Lemma 1. Specifically, for
each link, MAEST computes the earliest start time est(lk, xξ)
of the chosen activity on each xξ, and prefers the one with
smaller average value 1/M ·

∑M
ξ=1 est(lk, x

ξ). MLP is de-
signed based on Observation 1, which prefers a link with
fewer edges, i.e. a smaller value of |V (lk)|.

7. EMPIRICAL EVALUATION
In this section, we conduct a series of experiments on

benchmark problem instances using real-world workability
distribution data to evaluate different configurations of our
approach, and to compare our approach with the best general-
purpose POS generation approaches in the literature.

7.1 Experiment Setting
To model the workability uncertainty, here we use a distri-

bution dataset collected from a real-world aero engine test-
ing project. As shown in Figure 1, this dataset describes the
Probability of Workability (POW) of four types of activities
in each month of a year. To obtain a sample of workability
from this distribution, we conduct a procedure that deter-
mines the workability of each time slot (day) in the horizon
using a random sampling according to the corresponding
POW value. We use this method to generate samples for
both the SAA problem and the objective evaluation.

The RCPSP instances used in the experiments are gener-
ated using a benchmark problem generator RanGen2 [30].
Besides the number of activities N and resources K, several
parameters need to be specified, including order strength
(OS), resource factor (RF) and resource-constrainedness (RC).
OS specifies the project network G, and a lower OS indicates
that more activities can be executed in parallel. RF and RC
measure the resource utilization; a higher RF means that ac-
tivities have more non-zero resource requirements bik, while
a higher RC means that activities require more resources,
i.e. bik is closer to ck. More details of these parameters
can be found in [30]. Two sets of instances (Set1 and Set2)
are generated in our experiments. Below we describe Set1
which will be used in both Section 7.2 and 7.3, while details
of Set2 will be discussed in Section 7.3. In Set1, the values
of N and K are chosen from {10,20,30} and {1,2,3}, respec-
tively, while the values of OS, RF and RC are chosen from
{0.2,0.7} to represent the “low” and “high” level. For each
combination of these five parameters, we generate a subset
of 10 instances, therefore Set1 consists of 720 instances in to-
tal. For each activity in these instances, we randomly assign
a type z ∈ {1, 2, 3, 4}. In addition, we increase the deter-
ministic activity durations dsi of each instance to elongate
the critical path length to a random integer value in [200,
300] such that most of the POW data can be covered.

In our experiments, all algorithms are implemented using
JAVA 1.8, and runs on an Intel Xeon Workstation (3.5GHz,
16GB). We limit the CPU time of our branch-and-bound
algorithm to 300 seconds, and use the best solution found.
As mentioned in Section 5, it is intractable to compute the
exact value of g(GF). Hence, we use Monte Carlo simulation
to compute an estimated value ĝMs(GF), which is to gen-
erate a set of Ms testing samples and compute the sample
average function in Equation (5). This is a reliable way for
estimating an expected value, when Ms is large [15]. Here
we choose Ms = 2000 as in [15].

226

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

P
ro

b
a

b
il

it
y
 o

f
W

o
rk

a
b

il
it

y

Month

Type 1
Type 2
Type 3
Type 4

Figure 1: Monthly probability of workability

7.2 Performance of our Approach
This section summarizes the results for evaluating our ap-

proach. Instances in Set1 will be used in this section.

7.2.1 Impact of Sample Size
Sample size M is an important parameter that affects the

performance of SAA. Intuitively, a larger M produces better
solutions, but requires longer computation time. Here we
evaluate the impact of M using the optimality gap estimator
σ in [15] as the criterion for solution quality. Suppose Mr

replications of SAA problems are solved independently, i.e.
each problem η is solved on its own sample set xη to obtain
a solution GηF , with the objective ĝ(GηF) on xη. Denote Gη∗F
as the solution with the lowest objective value, then σ =
1/Mr

∑Mr
η=1 |ĝ(GηF)− ĝMs(Gη∗F)|. In addition, the variance of

σ is computed as varσ = S2
Ms
/Ms+S

2
Mr
/Mr, where S2

Ms
and

S2
Mr

are the variance of the objective values in Ms times of
simulations and Mr times of SAA replications, respectively.
Here we choose Mr = 20. For clarity and brevity, we report
the results on a representative instance subset (contains 10
instances), while a similar phenomenon is observed in other
instances. For each instance in this subset, we normalize σ
and varσ using ĝMs(Gη∗F), and plot their average percentage
values in Figure 2, along with the average computation time.
The curves in Figure 2 clearly show the trade-off between
solution quality and computational effort. In general, both
the average value and variance of σ become stable whenM ≥
20. Therefore, we set M = 20 in the remaining experiments.

7.2.2 Comparison of Branching Heuristics
In Section 6.4, we propose several heuristics for choosing

the next branching alternative in the activity and link lev-
els. To evaluate their performance, here we run the branch-
and-bound algorithm with all the four possible configura-
tions, i.e. MLFT+MAEST, MLFT+MLP, MTS+MAEST,
and MTS+MLP. Specifically, when one heuristic is used, the
other one for the same level will be used for tie-breaking.
We report the performance of these configurations on 240
instances from Set1 with N = 20 in Table 1, classified ac-
cording to the other four parameters. We can conclude
that in general, MLFT and MAEST give better performance
than MTS and MLP, respectively. A possible explanation
is that MLFT and MAEST are more “focused” than MTS
and MLP in optimizing our objective function, since they
are time-related criteria while the other two are based on
the graph structure of POS. In the remaining experiments,
we use MLFT+MAEST as the branching heuristics.

0

10

20

30

40

50

60

70

80

90

0

1

2

3

4

5

6

0 5 10 15 20 25 30

A
v

er
a

g
e

co
m

p
u

a
ti

o
n

 t
im

e
(s

ec
o

n
d

)

A
v

er
a

g
e

g
a

p
 a

n
d

 v
a

ri
a

ti
o

n
 (

%
)

M

Average gap

Average variation

Average computation time

Figure 2: Impact of sample size

0

10

20

30

40

50

60

70

0

20

40

60

80

100

120

140

160

180

200

P
e
rc

e
n

ta
g
e
 o

f
ti

m
-e

o
u

t
in

st
a

n
c
e
s

(%
)

A
v
ra

g
e
 c

o
m

p
u

ta
ti

o
n

 t
im

e
 (

se
c
o

n
d

)

Average computation time Percentage of time-out instances

Figure 3: Impact of problem parameters

7.2.3 Impact of Problem Parameters
In the experiments, our branch-and-bound algorithm is

able to find the optimal solutions for 65.6% of the instances
in Set1 (472 out of 720), with an average computation time
of 108.3 seconds. In this section, we examine the computa-
tional efficiency of our algorithm against the problem param-
eters, including N , K, OS, RF and RC. We classify the 720
instances according to the parameter values, and plot the
average computation time and the percentage of time-out
instances in Figure 3. As shown in this figure, the hard-
ness for solving an instance increases with N , K, RF and
RC, but decreases with OS. Below we give a brief analy-
sis. For N and K, it is easy to see that the problem size
grows with these two parameters. For RF and RC, larger
values indicate that an activity tends to require more types
of resources with higher demands, which leads to a larger
search space since more branching alternatives exist in the
link level of the algorithm. For OS, a higher value means
that the project network G contains more precedence con-
straints, and in this case the search space is smaller since the
number of branching alternatives in the activity level tends
to decrease. Aside from the above observation, we can also
see that our algorithm seems to be more sensitive to the re-
source related parameters RF and RC, which implies that
the number of link level branching alternatives, i.e. |LK|,
may give more impact on the computational efficiency.

7.3 Comparison with other Approaches
In this section, we compare the quality of solutions pro-

duced by our approach with the ones generated by the best
general-purpose approaches (those do not exploit a prior
stochastic knowledge). Specifically, we implement another

227

Table 1: Comparison of branching heuristics
Instance MLFT+MAEST MLFT+MLP MTS+MAEST MTS+MLP

group Best1 First2 Time3 PTO4 Best First Time PTO Best First Time PTO Best First Time PTO
K=1 575.41 586.9 92.65 30.0 576.34 626.18 92.68 30.0 571.96 589.25 92.89 30.0 574.71 653.21 89.14 28.75
K=2 634.74 654.1 120.4 40.0 632.5 692.82 120.58 40.0 634.36 658.26 131.69 43.75 633.82 700.29 127.93 42.5
K=3 672.6 688.0 147.7 48.75 685.68 774.88 151.41 50.0 683.13 702.16 146.98 48.75 698.39 793.23 154.55 51.25

OS=0.2 813.6 838.9 150.6 50.0 821.33 937.24 153.26 50.83 820.65 853.42 165.66 55.0 832.07 972.79 165.65 55.0
OS=0.7 441.62 447.1 89.93 29.17 441.7 458.68 89.85 29.17 438.98 446.37 82.04 26.67 439.21 458.36 82.09 26.67
RF=0.2 469.3 477.3 57.74 19.17 469.28 491.21 57.75 19.17 470.22 481.66 57.72 19.17 470.25 495.94 57.73 19.17
RF=0.7 785.9 808.7 182.8 60.0 793.76 904.71 185.36 60.83 789.41 818.13 189.98 62.5 801.03 935.21 190.02 62.5
RC=0.2 531.9 535.2 33.23 10.83 537.46 640.07 35.82 11.67 536.39 541.14 42.82 14.17 545.21 666.38 42.83 14.17
RC=0.7 723.29 750.7 207.28 68.33 725.58 755.86 207.29 68.33 723.24 758.65 204.88 67.5 726.07 764.77 204.92 67.5

1 The average of the best objective values upon termination.
2 The average of the first objective values found in searching.

3 The average computation time.
4 The percentage (%) of time-out instances.

Table 2: Quality of partial-order schedules
Results on Set1 Results on Set2

Instance BnB ESTA-Iter EBA-Minflow Artigues03 Instance BnB ESTA-Iter EBA-Minflow Artigues03
group AvgObj1 AvgObj Diff(%)2 AvgObj Diff(%) AvgObj Diff(%) group AvgObj AvgObj Diff(%) AvgObj Diff(%) AvgObj Diff(%)
N=10 699.36 722.31 3.18 744.01 6 743.07 5.88 N=10 897.02 996.22 9.96 1127.67 20.45 1028.67 12.8
N=20 627.75 654.82 4.13 722.88 13.16 678.14 7.43 N=20 941.3 1079.82 12.83 1333.94 29.43 1170.69 19.59
N=30 639.25 656.47 2.62 754.91 15.32 683.71 6.5 N=30 992.41 1117.48 11.19 1513.08 34.41 1185.34 16.28
K=1 608.62 615.6 1.13 673.94 9.69 644.27 5.53 K=1 852.64 957.02 10.91 1213.79 29.75 1021.23 16.51
K=2 646.7 667.45 3.11 733.08 11.78 694.71 6.91 K=2 937.84 1070.7 12.41 1340.17 30.02 1131.93 17.15
K=3 711.04 750.55 5.26 814.69 12.72 765.98 7.17 K=3 1040.23 1165.79 10.77 1420.72 26.78 1231.53 15.53

OS=0.2 842.39 887.06 5.04 1001.15 15.86 921.62 8.6 OS=0.2 1119.1 1369.51 18.28 1754.99 36.23 1408.78 20.56
OS=0.7 468.51 468.67 0.03 479.28 2.25 481.09 2.62 OS=0.5 759.5 768.05 1.11 894.8 14.17 847.68 9.39
RF=0.2 512.16 514.44 0.44 520.2 1.55 522.35 1.95 RF=0.7 874.67 968.65 9.7 1210.94 27.77 1031.08 15.17
RF=0.7 798.75 841.29 5.06 961.58 16.93 881.48 9.39 RF=0.9 1012.47 1160.36 12.75 1438.86 29.63 1225.38 17.37
RC=0.2 548.6 573.08 4.27 695.12 21.08 599.52 8.49 RC=0.2 750.16 826.36 9.22 1142.79 34.36 911.96 17.74
RC=0.7 762.31 782.65 2.6 786.17 3.04 804.09 5.2 RC=0.4 1136.98 1302.65 12.72 1507 24.55 1344.5 15.43

1 The average of the objective values.
2 The difference (%) of the average objective value from that of the branch-and-bound algorithm.

three algorithms, including EBA with the min-flow based re-
source conflict detection (EBA-Minflow) [21], ESTAC with
iterative chaining (ESTA-Iter) [26], and a schedule genera-
tion scheme based method (Artigues03) in [3]. On the 720
instances from Set1, our approach is able to give the best
results on 99.3% (715 out of 720) instances. In the left part
of Table 2, we list the results of the four approaches on
the instances in Set1, grouped by the problem parameters.
As shown in this table, our approach outperforms the other
three on all groups, which clearly shows the advantage of ex-
ploiting the stochastic knowledge about the workability un-
certainties. Another observation is that EBA-Minflow tends
to give worse performance than ESTA-Iter and Artigues03.
This is because EBA based approaches generate a feasible
POS by iteratively identifying and removing potential re-
source conflicts, but gives little attention to the precedence
constraints in the original project graph G. On the other
hand, ESTA-Iter tries to minimize the “dependencies” be-
tween activities, which can reduce the number of edges in
the generated POS. This observation verifies our intuition
of designing the branching heuristic MLP.

Another observation from the results in the left part of
Table 2 is that the improvement of our approach tends to
be lower on instances with higher OS, lower RF and higher
RC. Below we give an intuitive explanation. For a higher
OS, the original project graph G is denser, thus a large
portion of the edges in the POS is already determined by
E. For a lower RF, the activities tend to require less re-
sources, which also leads to a POS where a majority num-
ber of edges are from E. For a higher RC, a possible reason
is that the search space is larger, hence our approach can-
not find the optimal solutions within the time limit. To
further examine the performance of our approach on lower

OS, higher RF and lower RC, we generate another instance
set (Set2) which is more focused on these three parameters.
Set2 is generated using the same process described in Section
7.1, with N ∈ {10, 20, 30}, K ∈ {1, 2, 3}, OS∈ {0.2, 0.5},
RF∈ {0.7, 0.9}, and RC∈ {0.2, 0.4}. Results on these 720
instances are summarized in the right part of Table 2, which
shows a more prominent improvement compared to other ap-
proaches. To summarize, by exploiting the stochastic knowl-
edge, our approach can generate POS with lower expected
makespan than general-purpose approaches.

8. CONCLUSION AND FUTURE WORK
This paper studies the problem of proactive project schedul-

ing under time-dependent workability uncertainty. We em-
ploy SAA to tackle the hard stochastic optimization prob-
lem, and propose a branch-and-bound algorithm to solve the
resulting SAA problem to find the partial-order solution that
minimizes the expected makespan. Experiment results show
the effectiveness of our approach. The presented approach
will be implemented as an intelligent scheduling agent in an
agent-based simulation platform for complex business pro-
cesses. For future work, an immediate direction is to im-
prove the computational efficiency, by designing more effec-
tive lower bounds and introducing dominance rules that can
prune a large portion of the search space. Another direction
is to extend our approach to other objectives, such as solu-
tion stability and robustness, which are also considered as
practical objectives as the expected makespan.

Acknowledgments
This work was conducted within the Rolls-Royce@NTU Cor-
porate Lab with support from the National Research Foun-
dation (NRF) Singapore under the CorpLab@University Scheme.

228

REFERENCES
[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin.

Network flows: theory, algorithms, and applications.
Prentice hall, 1993.

[2] O. Alagöz and M. Azizoğlu. Rescheduling of identical
parallel machines under machine eligibility
constraints. European Journal of Operational
Research, 149(3):523–532, 2003.

[3] C. Artigues, P. Michelon, and S. Reusser. Insertion
techniques for static and dynamic resource-constrained
project scheduling. European Journal of Operational
Research, 149(2):249–267, 2003.

[4] J. C. Beck and N. Wilson. Proactive algorithms for job
shop scheduling with probabilistic durations. Journal
of Artificial Intelligence Research, 28:183–232, 2007.

[5] J. Bidot, T. Vidal, P. Laborie, and J. C. Beck. A
general framework for scheduling in a stochastic
environment. In IJCAI, pages 56–61, 2007.

[6] J. Blazewicz, J. K. Lenstra, and A. R. Kan.
Scheduling subject to resource constraints:
classification and complexity. Discrete Applied
Mathematics, 5(1):11–24, 1983.

[7] M. E. Bruni, P. Beraldi, and F. Guerriero. The
stochastic resource-constrained project scheduling
problem. In Handbook on Project Management and
Scheduling Vol. 2, pages 811–835. Springer, 2015.

[8] J. Cui, P. Yu, C. Fang, P. Haslum, and B. C. Williams.
Optimising bounds in simple temporal networks with
uncertainty under dynamic controllability constraints.
In ICAPS, pages 52–60, 2015.

[9] A. Davenport, C. Gefflot, and C. Beck. Slack-based
techniques for robust schedules. In Sixth European
Conference on Planning (ECP), pages 43–49, 2001.

[10] E. L. Demeulemeester and W. S. Herroelen. New
benchmark results for the resource-constrained project
scheduling problem. Management Science,
43(11):1485–1492, 1997.

[11] H. El Sakkout and M. Wallace. Probe backtrack
search for minimal perturbation in dynamic
scheduling. Constraints, 5(4):359–388, 2000.

[12] N. Fu, H. C. Lau, and P. Varakantham. Robust
execution strategies for project scheduling with
unreliable resources and stochastic durations. Journal
of Scheduling, 18(6):607–622, 2015.

[13] N. Fu, H. C. Lau, P. Varakantham, and F. Xiao.
Robust local search for solving rcpsp/max with
durational uncertainty. Journal of Artificial
Intelligence Research, 43:43–86, 2012.

[14] W. Herroelen and R. Leus. Project scheduling under
uncertainty: Survey and research potentials. European
Journal of Operational Research, 165(2):289–306, 2005.

[15] A. J. Kleywegt, A. Shapiro, and T. Homem-de Mello.
The sample average approximation method for
stochastic discrete optimization. SIAM Journal on
Optimization, 12(2):479–502, 2002.

[16] R. Kolisch. Serial and parallel resource-constrained
project scheduling methods revisited: Theory and
computation. European Journal of Operational
Research, 90(2):320–333, 1996.

[17] P. Laborie. Complete mcsv-based search: Application
to resource constrained project scheduling. In IJCAI,

pages 181–186, 2005.

[18] P. Lamas and E. Demeulemeester. A purely proactive
scheduling procedure for the resource-constrained
project scheduling problem with stochastic activity
durations. Journal of Scheduling, pages 1–20, 2015.

[19] O. Lambrechts, E. Demeulemeester, and
W. Herroelen. Time slack-based techniques for robust
project scheduling subject to resource uncertainty.
Annals of Operations Research, 186(1):443–464, 2011.

[20] R. Leus and W. Herroelen. Stability and resource
allocation in project planning. IIE transactions,
36(7):667–682, 2004.

[21] M. Lombardi and M. Milano. A min-flow algorithm
for minimal critical set detection in resource
constrained project scheduling. Artificial Intelligence,
182:58–67, 2012.

[22] X. Mao, N. Roos, and A. Salden. Stable multi-project
scheduling of airport ground handling services by
heterogeneous agents. In AAMAS, pages 537–544,
2009.

[23] S. V. Mehta and R. M. Uzsoy. Predictable scheduling
of a job shop subject to breakdowns. IEEE
Transactions on Robotics and Automation,
14(3):365–378, 1998.

[24] P. Morris and N. Muscettola. Temporal dynamic
controllability revisited. In AAAI, pages 1193–1198,
2005.

[25] P. Morris, N. Muscettola, and T. Vidal. Dynamic
control of plans with temporal uncertainty. In IJCAI,
pages 494–499, 2001.

[26] N. Policella, A. Cesta, A. Oddi, and S. F. Smith.
Solve-and-robustify. Journal of Scheduling,
12(3):299–314, 2009.

[27] N. Policella, S. F. Smith, A. Cesta, and A. Oddi.
Generating robust schedules through temporal
flexibility. In ICAPS, volume 4, pages 209–218, 2004.

[28] W. Song, D. Kang, J. Zhang, and H. Xi. Decentralized
multi-project scheduling via multi-unit combinatorial
auction. In AAMAS, pages 836–844, 2016.

[29] P. Ströhle, E. H. Gerding, M. M. de Weerdt, S. Stein,
and V. Robu. Online mechanism design for scheduling
non-preemptive jobs under uncertain supply and
demand. In AAMAS, pages 437–444, 2014.

[30] M. Vanhoucke, J. Coelho, D. Debels, B. Maenhout,
and L. V. Tavares. An evaluation of the adequacy of
project network generators with systematically
sampled networks. European Journal of Operational
Research, 187(2):511–524, 2008.

[31] P. Varakantham, N. Fu, and H. C. Lau. A proactive
sampling approach to project scheduling under
uncertainty. In AAAI, 2016.

229

