
Beyond Electing and Ranking: Collective Dominating
Chains, Dominating Subsets and Dichotomies

Jérôme Lang
Université Paris-Dauphine
PSL Research University

CNRS, LAMSADE
75016 Paris, France

lang@lamsade.dauphine.fr

Jérôme Monnot
Université Paris-Dauphine
PSL Research University

CNRS, LAMSADE
75016 Paris, France

monnot@lamsade.dauphine.fr

Arkadii Slinko
The University of Auckland

Private Bag 92019, Auckland
New Zealand

a.slinko@auckland.ac.nz

William S. Zwicker
Department of Mathematics
Union College, Schenectady

NY 12308, USA
zwickerw@union.edu

ABSTRACT
Classical voting rules output a winning alternative (or a
nonempty set of tied alternatives). Social welfare functions
output a ranking over alternatives. There are many prac-
tical situations where we have to output a different struc-
ture than a winner or a ranking: for instance, a ranked or
non-ranked set of k winning alternatives, or an ordered par-
tition of alternatives. We define three classes of such aggre-
gation functions, whose output can have any structure we
want; we focus on aggregation functions that output dom-
inating chains, dominating subsets, and dichotomies. We
address the computation of our rules, and start studying
their normative properties by focusing on a generalisation
of Condorcet-consistency.

1. INTRODUCTION
Most of the work in preference aggregation focuses on so-

cial choice rules, also called voting rules, that output a single
winner or a set of tied co-winners, and on social welfare func-
tions, that output a ranking of all alternatives. However, in
many contexts the desired output has a different structure.
We give below a few typical examples:

1. deciding on a ranked list of k candidates for an up-
coming election based on party lists (the voters can
be, for instance, the caucus members of that party in
the legislature);

2. finding a ranked shortlist of k candidates to be invited
for a job interview; voters are the members of a re-
cruiting committee;

3. electing a committee of exactly k persons (e.g., a city
council);

4. finding an optimal way of partitioning students be-
tween two or more groups with homogeneous level of
ability in each group.

Appears in: Proceedings of the 16th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2017), S. Das, E. Durfee, K. Larson, M. Winikoff
(eds.), May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

In Examples 1 and 2, the output should be a ranking of
a subset of alternatives of fixed size, with all remaining
alternatives implicitly ranked below them. In Example 3,
the output should be a subset of alternatives of fixed size,
again with all remaining alternatives implicitly ranked be-
low them. In Example 4, the output should be an ordered
partition in a given number of classes, with some flexibility
on the cardinality of classes.

The amount of work on single-winner voting rules and so-
cial welfare functions overwhelmingly exceed the amount of
work on aggregation procedures which output a subset, a
partial list or an ordered partition. Myerson [19] pioneered
the study of aggregation rules free of the structures social
choice typically places on inputs and outputs, with the goal
of characterizing axiomatically scoring rules in this widest
setting (see the Conclusion for a comparison with our work).
We will briefly mention a few other developments. Firstly,
there is a number of recent important works on multi-winner
voting rules, also called committee selection rules, where the
goal is to output a subset of candidates, i.e., a committee
of a predetermined size. Especially, Barberà and Coelho
[2] considered methods of selecting a ‘non-controversial’ list
of k names and introduced the notion of stability for the
rule which means electing a weak Condorcet set, if there is
one; Ratliff [23] extended some Condorcet-consistent rules
like Kemeny and Dodgson to multiwinner setting; Elkind
et al. [9] introduced committee scoring rules and analysed a
number of common multiwinner voting rules from axiomatic
perspective (see also many bibliographical pointers there,
which can guide the reader through the earlier the liter-
ature). Zwicker [25] and Duddy et al. [8] study the rules
which aggregate preference profiles into dichotomies (we will
come back to their work further in the text).

Procaccia et al. [22] consider a setting where votes are
seen as noisy signals about the actual ranking of alterna-
tives; the problems considered are to output a set of k al-
ternatives most likely containing the true alternative, or the
set of best k alternatives (ranked or not), and they define,
through likelihood maximization, a generic class of rules that
can be instantiated on each of these three types of output.

Judgment aggregation rules provide a general and ab-
stract setting that can be instantiated on many different
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collective decision making contexts, including classical vot-
ing, but not only. See for instance [20] for examples of rules
that can be instantiated for aggregating preferences, com-
mittee selection, and also equivalence relations or opinions
about budget allocation. (Again, see the Conclusion.) A
generic framework for aggregating graphs is studied in [11].

We proceed in a systematic way — as does judgment ag-
gregation — and define, first, a general setting in which the
input consists of a classical profile V (a collection of ranking
over the set of alternatives). A generalised preference aggre-
gation rule is defined independently from C and can then be
instantiated on every conceivable class C.

We remain, however, at a slightly less general level than
judgment aggregation, since we require that the input is a
set of linear orders and that the output class C is a class
of relations. For instance, we do not cover the aggregation
of equivalence relations. Also, although our methodology
can be applied to a large variety of families of rules, here we
only consider rules that are C1 or C2 according to Fishburn’s
classification [13], that is, that are based on the (unweighted
or weighted) comparison matrix, and thus takes place in
the wider field of the computational study of tournament
solutions [4] and of weighted tournament solutions [12].

The outline of our paper is as follows. We introduce a
general framework for aggregating profiles into various kinds
of relations (dominating k-chains, dominating k-subsets, di-
chotomies). We discuss two versions of each class, called
‘plain’ and ‘extended’, depending on whether or not we care
about the relations between the alternatives that are inside
the relevant groups (or, for k-chains, between the alterna-
tives dominated by the chain). Then we define three general,
or graph rules that map any profile into an element of the
chosen class of graphs: one based on the unweighted ma-
jority graph, namely the minimum Hamming distance rule,
together with an agreement-maximizing variant; and two
based on the weighted majority graph, namely the median
and generalised ranked pairs rules. Each such rule, plus each
class of outputs, defines a rule whose outputs fits the desired
structure (i.e., a k-chain rule, a k-subset rule or a dichotomy
rule). We investigate the computation of our rules. Lastly,
we introduce a generalised notion of Condorcet-consistency
and position our rules with respect to it.

Some of our proofs are omitted due to page limits.1

2. PRELIMINARIES AND NOTATION
Let X = {x1, . . . , xm} be a set of m ≥ 3 alternatives.

A binary relation E on X is any set of ordered pairs E ⊆
X×X. It can be represented as a directed graphG = (X,E),
where an arrow is drawn from x to y iff (x, y) ∈ E; we use the
alternative notation →G for E, and thus denote (x, y) ∈ E
by x →G y. We will use the terms ‘binary relation’ and
‘graph’ interchangeably and we will often omit the adjective
‘directed’. Let also L(X) be the set of all (strict) linear
orders over X. By Subk(X) we denote the set of all subsets
of X of cardinality k. For any k ≤ m let Lk(X) be the set
of all linear orders over k alternatives from X.

A profile V = 〈�1, . . . ,�n〉 is a collection of linear orders
on X. For simplicity, we assume throughout the paper that
n is odd. The set of all n-voter profiles over X is L(X)n. Let
T (X) be the set of all tournaments over X; a tournament

1They can be found in the long version http://www.lamsade.
dauphine.fr/~lang/papers/JL-JM-AS-WZ-long.pdf.

over X is a directed graph (digraph) obtained by assigning
a direction for each edge in an undirected complete graph
over X. When (x, y) ∈ T we also write x �T y. A weighted
tournament over X is a function W : X ×X → Z satisfying
(1) W (x, y) = −W (y, x) for all x, y ∈ X, and (2) all W (x, y)
have the same parity. Any profile V induces a weighted
tournament WV as follows:

WV (x, y) = #{i ∈ [n] | x �i y} −#{i ∈ [n] | y �i x},

i.e., WV (x, y) is the difference between the number of voters
who prefer x to y and the number of voters who prefer y to x.
We say that a profile V generates weighted tournament WV .
We note that all integersWV (x, y) have the same parity. The
classical (nonweighted) majority relation �V on C is defined
by x �V y ⇐⇒WV (x, y) > 0. The corresponding graph will
be denoted T (V ). Since n is odd, T (V ) is a tournament.

A vertex c ∈ X in a weighted (or unweighted) tournament
W is a Condorcet winner if W (c, x) > 0 for all x ∈ X. A
vertex c ∈ X is a Copeland winner if its Copeland score
CopV (c) = |{x ∈ X,W (c, x) > 0}| is maximal.

We use the notation x → y1 . . . yk for a graph containing
an edge from x to each of y1, . . . , yk. For instance, the set
of edges {(x1, x2),(x2, x3),(x3, x1),(x1, x4),(x2, x4),(x4, x3)}
is represented by [x1 → x2x4, x2 → x3x4, x3 → x1, x4 → x3].
We use arrows between subgraphs to denote that there is an
arrow from each element on the left to each element on the
right. For instance, [{x1 → x2, x2 → x3, x3 → x1} → {x4 →
x5, x5 → x6, x6 → x4}] denotes the graph containing an
upper cycle and a lower cycle, with every element of the
upper cycle dominating every element of the lower cycle.
Similarly, if S, S′ ⊂ X, S → S′ denotes the set of edges
(x, y) for all x ∈ S, y ∈ S′. Sometimes we omit brackets.

The star graph centered on x, denoted by star(x), is the
directed graph whose set of edges is {(x, y) | y ∈ X \ {x}}.

3. CONSTRAINTS
A constraint is a class of binary relations over X. We

define below several particular constraints.
Let G = (X,E) be a directed, irreflexive and asymmetric

graph. We say that G is a plain dominating k-chain if there
exists A ∈ Subk(X) such that

(a) the restriction of →G to A is in Lk(X),

(b) x→G y for all x ∈ A and y ∈ X \A, and

(c) for any two distinct alternatives x, y in X \A, neither
x→G y nor y →G x.

We denote a plain dominating k-chain this way, here for
m = 5 and k = 3: x1 → x2 → x3 → x4x5.

We say that G is an extended dominating k-chain if there
exists A ∈ Subk(X) such that

(a) the restriction of →G to A is in Lk(X), and

(b) x→G y for all x ∈ A and y ∈ X \A.

(c) G is a tournament.

We denote an extended dominating k-chain this way, here
for m = 5 and k = 2:

{x1 → x2} → {x3 → x4, x4 → x5, x5 → x3}.
Thus the difference between a plain and an extended domi-
nating k-chain lies in the edges below the dominating chain:
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in a plain chain, alternatives that are dominated by the chain
should be incomparable, while in an extended chain there
should be an edge between each pair of such alternatives in
one direction or the other.

We say that G is a plain dominating k-subset if there is a
partition {X1, X2} of X such that

(a) |X1| = k,

(b) x→G y for all x ∈ X1, y ∈ X2,

(c) for i ∈ {1, 2} and for any two distinct alternatives x, y
in Xi, neither x→G y nor y →G x hold.

Here is a plain dominating 2-subset: x1x2 → x3x4x5.
We say that G is an extended dominating k-subset2 if there

is a partition {X1, X2} of X such that

(a) |X1| = k,

(b) for all x ∈ X1, y ∈ X2 we have x→G y,

(c) G is a tournament.

Here is an extended dominating 3-subset:
{x1 → x2, x2 → x3, x3 → x1}→{x4 → x5, x5 → x6, x6 → x4}.

Figure 1 depicts a plain dominating 2-chain, an extended
dominating 2-chain, a plain dominating 2-subset and an ex-
tended dominating 2-subset.

plain dom. ext. dom. plain dom. ext. dom.

2-chain G1 2-chain G2 2-subset G2 2-subset G4

x1

x2

x3 x4 x5

x1

x2

x3 x4 x5

x1 x2

x3 x4 x5

x1 x2

x3 x4 x5

Figure 1: Dominating k-chains and k-subsets

We now define a plain dichotomy as a plain dominating
k-subset for some k ∈ {1, . . . ,m− 1}.3

Importantly, when k is fixed, for each of the five classes of
graphs defined so far (plain/extended dominating k-chain,
plain/extended dominating k-subset, plain dichotomy), the
subset A or the partition {X1, X2} of the definition can be
uniquely defined fromG. Formally, given a plain or extended
k-chain G, let rtopk(G) be the k-chain consisting of the top
k elements of G, ranked as in G; given a plain or extended
dominating k-subset G, let topk(G) be the k-subset consist-
ing of the top k elements of G; and given a plain dichotomy
G, let top(G) be its (unambiguously defined) upper part.

We have not defined yet the notion of an extended di-
chotomy. First observe that defining an extended dichotomy
simply as an extended dominating k-subset for some k leads
to the following problem: while for a plain dichotomy it
is straightforward to reconstruct the top and the bottom

2Also called Condorcet set of size k by Gehrlein [15].
3Observe that for dominating k-chains or k-subsets, the
value of k is exogenously determined (so we may think of
it as a parameter and as part of a pair (P, k) that serves as
the input to the rule); while for dichotomies, k is endoge-
nously determined by P alone.

part, for the notion of extended dichotomy the top and
the bottom component may not always be uniquely defined.
For instance, let X = {x1, x2, x3} and G the linear order
x1 � x2 � x3. It is an extended dominating k-subset for
k = 1 and k = 2, henceforth would be an extended di-
chotomy as well, but it would be ambiguous whether the
upper part of the dichotomy is {x1} or {x1, x2}. One so-
lution is to define an extended dichotomy as an augmented
graph, that is, a pair G̃ = (G,X1) where G is an extended
dominating k-subset for some k, and X1 ⊂ X denotes the
upper part of the dichotomy. Given an extended dichotomy
G̃ = (G,X1), let top(G) = X1. Figure 2 depicts two ex-
tended dichotomies corresponding to the same graph G but
two different augmented graphs. X1 is the set of alternatives
above the bar.

x1

x2

x3 x4 x5

x1

x2

x3 x4 x5

Figure 2: Two dichotomies

We denote by ExtChk the set of all extended k-chains;
PlChk the set of all plain k-chains; ExtDomk the set of
all extended dominating k-subsets; PlDomk the set of all
plain dominating k-subsets; ExtDich the set of all extended
dichotomies; and PlDich the set of all plain dichotomies.

Constraints are used to force the output of the rule to be
in a particular class of graphs: for instance, we may require
that the output is always a dominating k-chain for a fixed k.
In this paper, we focus on a few important classes of con-
straints, namely k-chains, k-subsets, and dichotomies, but
some other classes of constraints may be considered. For in-
stance, if a committee has three PhD grants to distribute to
applicant students, it makes sense to output a (non-ranked)
set of three students, followed by a few ranked students. Yet
another example of a constraint would be the set of (plain
or extended) multichotomies, that is the set of ordered par-
titions of X into m nonempty classes.

A constraint C is said to be cardinality-homogeneous if any
two elements of C have the same number of edges. While
ExtChk, PlChk, ExtDomk and PlDomk are cardinality-
homogeneous, ExtDich and PlDich are not.

An irresolute C-rule, for n voters, is a function FC map-
ping a profile (or, simply, a tournament or a weighted tour-
nament) to a nonempty set of relations of class C. When C
is omitted, i.e., when we note F instead of FC , we assume
that F is defined for any possible class C (F then defines a
family of rules – one for each C). A resolute C-rule is defined
similarly, with the output being a single element of C.

A profile V is C-majority-consistent iff T (V ) ∈ C. A C-rule
FC is C-consistent iff, for every C-majority-consistent profile
V , we have FC(V ) = {T (V )}.

A directed graph G over X is C-compatible if there is G′ ⊇
G such that G′ ∈ C.

We may need to have aggregated preferences in some spe-
cific form. For example, we may need to determine a set of
winners of fixed size k or a ranked set of k winners. Our
outputs are chosen so as to make this choice simple. For ex-
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ample, if the class C is a plain or extended k-chain, then we
can select k ranked winners; if our class C is a dominating
k-set, then we can select a winning committee of size k; if
our class C is a plain or extended dichotomy, we can select
a winning committee without restriction on the size of the
committee. More precisely, an irresolute k-chain rule is a
function mapping a profile to a nonempty set of k-chains
in Lk(X); an irresolute k-subset rule is a function mapping
a profile to a nonempty set of k-subsets in Subk(X); and
an irresolute dichotomy rule is a function mapping a profile
to a nonempty set of nontrivial partitions of X. Resolute
versions are defined similarly.

A PlChk-rule or an ExtChk-rule F induces a k-chain rule
F ∗ defined by

F ∗(V ) = rtopk(F (V )).

Similarly, a PlDomk-rule or an ExtDomk-rule F induces a
k-dominating subset rule F ∗ defined by

F ∗(V ) = topk(F (V )).

Finally, a PlDich-rule or an ExtDich-rule F induces the
dichotomy rule F ∗ defined by

F ∗(V ) = (top(F (V )), X \ top(F (V ))).

We will now define three families of rules, where a family
of rules is of the form {FC} for C varying.

4. MINIMUM HAMMING DISTANCE AND
MAXIMAL AGREEMENT

The symmetric distance between two graphs G and G′ [3]
is defined by ∆(G,G′)= |G \G′|+|G′ \G| (remember that
we treat graphs as sets of edges). Given an input tournament
T ∈ T (X), we define MHC(T ) to be the set of graphs G ∈
C such that ∆(G,T ) is minimal. If V is a profile, then
MHC(V ) = MHC(T (V )).

Instead of minimising the Hamming distance to T , we
could choose instead to maximize the number of agreements
with T (V ), leading to the maximal agreement rule: we define
MAC(T ) to be the set of graphs G ∈ C such that |G ∩ T |
is maximal. A simple but important fact is that if C is
cardinality-homogeneous then MAC = MHC. This applies
to plain and extended k-chains and k-subsets, but not to
dichotomies.

4.1 Dominating k-chains
Informally, MHExtChk (V ) (resp. MHPlChk (V )) is the set

of all tournaments obtained by changing a minimum number
of edges in T (V ) such that the resulting graph is an extended
(resp. plain) dominating k-chain.

Observation 1. (i) MHPlChm(V ) (and, equivalently,
MHExtChm(V )) is the set of all Slater rankings for V .4

(ii) MHPlCh1(V ) is the set of all star graphs whose centre
is a Copeland winner, i.e., the set of graphs star(c) for
all Copeland winners c of V .

(iii) MHExtCh1(V ) is the set of all graphs Gc containing
{(c, y) | y ∈ X \ {c}}, where c is a Copeland winner of
V , and which, for each u 6= c, v 6= c, contains (u, v) if
u→T v and (v, u) if v →T u.

4A Slater ranking for a tournament T over X is a ranking of
X minimising the number of edges that are directed in the
opposite way as in T .

Proof. (i) This is the definition of a Slater ranking. (ii)
Let G be a plain 1-chain with dominating element x; we have
∆(G,T (V )) = 2[(m− 1)− CopV (x)] + 1

2
(m− 1)(m− 2), which

implies the result. (iii) Since for an extended 1-chain we
have total freedom about the edges between vertices below
the dominating element x, minimum distance is obtained by
taking the same edges as in T (V ) below x; for such an ex-
tended 1-chain, we have ∆(G,T (V )) = 2[(m−1)−CopV (x)],
which implies the result.

Observation 2. For each G ∈MHExtChk (V ) there is a
G′ ∈MHPlChk (V ) such that rtopk(G) = rtopk(G′), and for
each G′ ∈MHPlChk (V ) there is a G ∈MHExtChk (V ) such
that rtopk(G) = rtopk(G′).

Proof. Recall from above that for extended k-chains, the
minimum Hamming distance is obtained for extended chains
that are exactly as in the original tournament below the top
k candidates. Now, let G ∈MHExtChk (V ) and let G′ be the
corresponding plain k-chain (with edges (y, z) suppressed for
all y, z below the top k alternatives). Then ∆(G′, T (V )) =
∆(G,T (V )), from which the result follows.

Therefore, as far as k-chains are concerned, whether we
take the ‘plain’ or the ‘extended’ notion does not make a dif-
ference: the resulting chains or subsets are the same (recall
the definition of F ∗ at the end of Section 3):

Corollary 1. MH∗PlChk
= MH∗ExtChk

.

The following straightforward observation is a direct con-
sequence of the NP-hardness of winner determination for the
Slater rule [1, 7, 5]:5

Proposition 2. Computing MHExtChk and MHPlChk

are NP-hard, even if k = m.

Let Cop∗2(T (V )) be the set of all ordered pairs (x, y) such
that (a) for all z 6= x, y, min(CopV (x),CopV (y)) ≥ CopV (z)
and (b) (x, y) ∈ T (V ). In other words, Cop∗2(T (V )) is the
set of all pairs with the highest two Copeland scores, these
two candidates being ordered according to majority.

Proposition 3. MHPlCh2(V ) consists of the plain 2-
chains x→ y → X \ {x, y} for (x, y) ∈ Cop∗2(T (V )).

Proof. Let T = T (V ). Let Gx,y be the plain 2-chain
x → y → X \ {x, y}. If x �T y, then ∆(Gx,y, T ) = 2[(m −
1)−CopV (x)] + 2[(m− 2)−CopV (y)] + (m−2)(m−3)

2
= K −

(CopV (x) + CopV (y)) (K being a constant). If y �T x
then ∆(Gx,y, T ) = ∆(Gy,x, T ) + 2. Therefore, the minimal
value of ∆(Gx,y, T ) is obtained when CopV (x) + CopV (y) is
maximal and (x, y) ∈ T .

4.2 Dominating k-subsets
For dominating k-subsets, the following counterparts of

Observation 2 and Corollary 1 hold.

Observation 3. For each G ∈ MHExtDomk (V ) there is
a G′ ∈ MHPlDomk (V ) such that topk(G) = topk(G′), and
for each G′ ∈MHPlDomk (V ) there is a G ∈MHExtDomk (V )
such that topk(G) = topk(G′).

5On the other hand, for a fixed k, MHExtChk (V ) and

MHPlChk (V ) can be computed in O(mk), since there are
only m(m− 1) . . . (m− k + 1) k-chains to be considered.
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Corollary 4. MH∗PlDomk
= MH∗ExtDomk

.

Let Copk(T (V )) be the set of all subsets Z of Sk(X) such
that for all x ∈ Z and t ∈ X \ Z, CopV (z) ≥ CopV (t).
In other words, Copk(T (V )) is the set of all subsets of k
alternatives highest Copeland scores.

Theorem 1. MHPlDomk (V ) consists of all plain subsets
whose dominating k-set is in Copk(T (V )).

Proof. Let GZ = Z → X \ Z be a dominating k-subset
with |Z| = k. Since

∑
z∈Z CopV (z) = #{(z, t) ∈ Z ×

(X \ Z)|z →G t} − #{(z, z′) ∈ Z2|z →G s′} = |GZ ∩
T (V )| − k(k−1)

2
and ∆(GZ , T (V )) = m(m−1)

2
− |GZ ∩ T (V )|,

∆(G,T (V )) is minimal when
∑

z∈Z CopV (z) is maximal.

Thus this rule is the NED rule of Coelho [6] or else k-
Copeland rule [9]. As a corollary, MHPlDomk (and similarly
MHExtDomk ) can be computed in polynomial time.

4.3 Dichotomies
Unlike dominating k-chains and k-subsets, dichotomy con-

straints are not cardinality-homogeneous; therefore, MAC
does not in general coincide with MHC . Moreover, it makes
a difference whether plain or extended dichotomies are con-
sidered. This leads to four different rules. It is unclear
whether all of them are interesting, or can they be easily
characterised. However, using a result from [25], we have
the following characterisation of plain dichotomies for the
maximum agreement rule.

Given a profile V over X, the average Copeland score
w.r.t. V of all alternatives is m(m− 1)/2. Define High(V )
(respectively, Low(V ) and Average(V )) the set of alter-
natives whose Copeland score is larger than (respectively,
smaller than, equal to) m(m − 1)/2. Reformulating from
[25], a maximally separating dichotomy for V is a partition
of X in two subsets (XT , XB) such that High(V ) ⊆ XT and
Low(V ) ⊆ XB (elements of Average(V ) can be put either
in XT or in XB).

Theorem 2. [25] MA∗PlDich(V ) is the set of all maxi-
mally separating dichotomies for V .

As a consequence, MAPlDich is computable in polynomial
time. This is also the case for MHPlDich, which comes from
the fact that finding the optimal dichotomy corresponds to
finding a minimal cut in a directed graph, which is polyno-
mial [21].

4.4 Example
Consider these two tournaments W = T (V ), W ′ = T (V ′):

W a b c d e
a ? 1 1 −1 −1
b −1 ? 1 1 −1
c −1 −1 ? 1 −1
d 1 −1 −1 ? 1
e 1 1 1 −1 ?

W ′ a b c d e
a ? 1 1 1 1
b −1 ? 1 −1 1
c −1 −1 ? 1 1
d −1 1 −1 ? −1
e −1 −1 −1 1 ?

We have
•MHPlCh1(V ) = {[e→ abcd]}
•MHExtCh1(V )={[e→ abcd,a→ bc,b→ cd,c→ d,d→ ae]}
•MHPlCh2(V ) = {[e→ a→ bcd], [d→ e→ abc]}
•MHPlCh3(V ) = {[e→ a→ b→ cd], [d→ e→ a→ b, c]}
•MHPlDom2(V ) = {[a, e→ b, c, d], [de→ abc]}
•MHExtDom2(V )= {[(e→a)→(b→c→d)], [(d→e)→ [a→b→c]}
and
•MAPlDich(V ′)={[abc→de],[ab→cde],[ac→bde],[a→bcde]}
•MAExtDich(V ′) = MHExtDich(V ′) = {[a→ bcde]}

5. THE MEDIAN RULE
Let C be a class of graphs and G ∈ C. We define

• W (G,V ) =
∑

(x,y)∈GWV (x, y), and

• MEDC(V ) = argmaxG∈CW (G,V ).

Thus, the score of a graph G ∈ C is the sum of all the
weights associated with the edges this graph contains.

5.1 Dominating k-chains

Observation 4.

(i) MEDPlCh1(V ) = {star(c) | c ∈ Borda(V )}, where
Borda(V ) denotes the set of winners under Borda rule.6

(ii) MEDPlChm(V ) (and equivalently MEDExtChm(V ))
is the set of all Kemeny rankings for V .7

Proof. Every plain 1-chain is a star graph star(x), and
W (star(x), V ) =

∑
y 6=xW (x, y) = BV (x), where BV (x) is

the Borda score of x for profile V . This proves (i). As to
(ii), it follows from the definition of a Kemeny ranking.

On the other hand, MEDExtCh1(V ) does not always se-
lect the Borda winners, as we can see on this example:

a b c d e
a 0 +5 −3 +5 −3
b −5 0 +5 +1 +1
c +3 −5 0 +1 +1
d −5 −1 −1 0 +3
e +3 −1 −1 −3 0

The Borda winner is a. However, MEDExtCh1(V ) contain
the following two graphs: Gc = [c → abde, b → de, d →
e, e → a], and Ge = [e → abcd, a → bd, b → cd, c → ad],
with W (Gc, V ) = W (G2, V ) = 18, while, if Ga = [a →
bcde, b→ cde, c→ de, d→ e], then W (Ga, V ) = 16.

Since winner determination for the Kemeny rule is NP-
hard, winner determination forMEDExtChk andMEDPlCh1

is NP-hard too, even if k = m.

5.2 k-dominating subsets
Unlike plain and extended chains, plain dominating sub-

sets under MED are very easy to characterize.

Observation 5. MED∗PlDomk
(V ) is the set of the alter-

natives with the highest k Borda scores (or the sets of sets
of alternatives with k highest Borda scores, in case of a tie).

Proof. Let S = {x1, . . . , xk}, and GS be the asso-
ciated plain k-dominating set. We have W (GS , V ) =∑

(x,y)∈GS
WV (x, y) =

∑
x∈S,y∈X\S WV (x, y) =∑

x∈S(BV (x) −
∑

z∈S WV (x, z)) =
∑

x∈S BV (x) −∑
x∈S

∑
z∈S WV (x, z) =

∑
x∈S BV (x), since

WV (x, z) +WV (z, x) = 0 for all x, z ∈ S.

Theorem 3. Computing MEDExtDomk (V ) is NP-hard,
even for k = m

2
.

The proof (by reduction from oneway section) is in the
long version of the paper.
6There are two equivalent ways of defining the Borda rule:
either as a positional scoring rule, or as a C2 rule: the Borda
score of an alternative x is

∑
y 6=xWV (x, y), and the Borda

winners are the alternatives that maximise this score.
7A Kemeny ranking for a weighted tournament W is a rank-
ing � of X maximising

∑
x�yWV (x, y).
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5.3 Dichotomies
For plain dichotomies we have a result similar to Theorem

2, with Copeland scored being replaced by Borda scores.
Details can be found in the long version.

6. GENERALISED RANKED PAIRS
We now define a family of resolute rules that follows the

same construction as the ranked pairs rules [24]. This rule
works by constructing a ranking of alternatives by consider-
ing pairs of alternatives successively, in the decreasing order
of their majority margin, and add them to the ranking if
they do not introduce a cycle. Here we consider, and we
generalise, the resolute version of the rule, where ties in the
order of pairs are broken as soon as they appear via a pri-
ority rule over pairs of alternatives.

Recall that G is C-compatible if there is G′ ⊇ G such that
G′ ∈ C. The GRP rule proceeds as follows.

1: order all the pairs of alternatives (x, y) in decreasing or-
der of WV (x, y) (breaking ties, if any, using a predefined
priority relation over pairs of alternatives)

2: initialize G with an empty set of edges
3: repeat
4: take the next pair (x, y) according to the order in-

duced by WV

5: if adding (x, y) to G results in a C-compatible graph
then

6: add (x, y) to G
7: end if
8: until all pairs have been considered
9: return G

6.1 Dominating k-chains
If C = PlChk, then GRPPlChk is defined by arranging

in a sequence all pairs of alternatives (x, y) in decreasing
order of WV (x, y) and adding the corresponding edge if the
resulting graph can still be extended to a graph containing
a k-chain. In particular, for the two extreme values of k we
recover two well-known rules:

Proposition 5. Let V be a profile. Then

(i) GRPPlCh1 = {star(x) | x ∈Maximin(V )};

(ii) GRPPlChm is the set of rankings obtained by the ranked
pairs rules.

Proof. (ii) is obvious, let us prove (i). We recap that x
is a maximin winner for V if it maximises miny 6=xWV (x, y).
Let x be a maximin winner, and α = miny 6=xWV (x, y). All
edges incoming to x have weight at most α. So as long as
we consider pairs (u, v) such that W (u, v) > α, they can be
added to G without violating PlCh1-compatibility. There-
fore, after considering all those pairs, all alternatives but the
maximin winners have an incoming edge, which implies that
the output will be a star centred at a maximin winner. (See
Proposition 4 in [18] for a similar result.)

For example, consider the following weighted tournament:

W x1 x2 x3 x4 x5
x1 0 +39 +31 −35 +29
x2 −39 0 +27 +23 −33
x3 −31 −27 0 +37 −25
x4 +35 −23 −37 0 +21
x5 −29 +33 +25 −21 0

The maximin winner is x5 and the ranked pairs winner
(independently of the tie-breaking) is x3. Let us compute
GRPChain2 . We first add x1 → x2, then x3 → x4, then
x4 → x1, then x5 → x2; we cannot add x1 → x3 and skip it;
we add x1 → x5; at this point the winning 2-chain is known:
GRPChain2(V ) = x3 → x4 → {x1, x2, x5}.

Because the GRP rules repeatedly need C-compatibility
checks, we need to know how to check when a directed,
asymmetric graph G over X can be completed into a graph
satisfying the different types of constraints.

Lemma 1. Checking whether G is ExtChk-compatible can
be done in polynomial time.

Proof. For S ⊆ X let undom(S,G) be the set of all alter-
natives s ∈ S such that there is no s′ ∈ S that dominates s in
G. Consider the following algorithm:

1: begin
2: i← 1;
3: C ← ∅;
4: while |C| < k and undom(X \ C) 6= ∅ do
5: Ci := undom(X \ C);
6: C := C ∪ Ci

7: end while
8: if |C| ≥ k then
9: return a chain starting by all elements in C1 in an

arbitrary order, then all elements in C2, etc. until we
have a k-chain

10: else
11: return no
12: end if

Because at each step Ci is undominated in X \ (C1 ∪ . . .∪
Ci−1), C1∪ . . .∪Ci can be extended to a chain in G. There-
fore, if we end up with k elements in this union, then G is
ExtChk consistent. Conversely, if we have to stop before
we get a k-chain, then it means that we have reached a step
where undom(X \C) 6= ∅, and then, it is not possible to ob-
tain a k-chain without removing edges: therefore, G is not
ExtChk-consistent.

Note that G is ExtCh1-compatible if and only if it has an
undominated element, and ExtChm-compatible if and only
if it is acyclic.

For plain k-chains, the condition is much simpler:

Lemma 2. G is PlChk-compatible if and only if the fol-
lowing two conditions hold: (1) G is acyclic; and (2) G has
at least m− k alternatives with no outgoing edges.

Proof. If G is not acyclic, or if it contains less than m−k
alternatives without outgoing edge, then it cannot be ex-
tended into a plain k-chain. Conversely, if Conditions 1 and
2 are satisfied, then let B be a set of m−k alternatives with-
out outgoing edge, and S = X \B. Complete the restriction
of G to S into a ranking of S (which is possible since G is
acyclic) and add edges from all elements of S to all elements
of B; this results in a plain k-chain.

Corollary 6. For all k, GRPExtChk and GRPPlChk are
polynomial-time computable.

6.2 Dominating k-subsets
Checking Domk-compatibility is far less easy. We show

below that the problem is NP-complete, which in turn will
enable us to show that computing GRPExtDomk is NP-hard.
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Lemma 3. G is ExtDomk-compatible if and only if its
transitive closure G∗ is ExtDomk-compatible.

Proof. Note first that G is ExtDomk-compatible if and
only if there is some A ∈ Subk(X) such that there is no
edge in G from X \ A to A. This, in turn, happens if and
only if there is no edge from X \A to A in G∗, therefore, the
ExtDomk-compatibility of G is equivalent to the ExtDomk-
compatibility of G∗.

Since computing transitive closure is polynomial, Lemma
3 allows us to assume without loss of generality that G is a
partially ordered set. Now, let C1, . . . , Cq be the maximally
connected components of G, and let Ci �G Cj if for all
x ∈ Ci and y ∈ Cj we have x→G y. Then

Lemma 4. G is ExtDomk-compatible iff there is J ⊂
{1, . . . , q} such that (1) j ∈ J and Ci �G Cj implies i ∈ J ;
and (2)

∑
i∈J |Ci| = k.

For instance, assume that G∗ contains 5 maximally con-
nected components C1, . . . , C5 with |C1| = 4, |C2| = 3,
|C3| = 4, |C4| = 1, |C5| = 2, and C1 � C2 � C4, C1 �
C3 � C4, C2 � C5. Then G is Domk-compatible for k ∈
{4, 7, 8, 9, 11, 12, 13}.

The problem is a generalisation of subset sum with the
integers encoded in unary, which we define formally:

constrained subset sum

Input A directed acyclic graph (V, E) where each vertex
v ∈ V is associated with a positive integer weight w(v),
encoded in unary; and an integer K.

Question Is there S ⊆ V such that (a) for each (v, v′) ∈ E,
if v ∈ S then v′ ∈ S, and (ii)

∑
v∈S w(v) = K?

Constrained subset sum is a generalisation of Subset
Sum, since the latter is obtained when E = ∅. While Subset
Sum is weakly NP–complete (Problem [SP13], page 223 in
[14]), and thus polynomial if weighted are encoded in unary,
this is no longer the case for its constrained version:

Theorem 4. Constrained subset sum is strongly NP-
complete, even if the number of distinct weights w(v) is two.

The proof (consisting of a reduction from Clique) is in
the long version of the paper.

Proposition 7. Computing RSExtDomk is NP-hard.

The proof (consisting of a reduction from constrained
subset sum) is in the long version of the paper.

For PlDomk, compatibility is much more drastic:

Lemma 5. G is PlDomk-compatible if and only if (1) for
all x ∈ X, x has only outgoing edges or only ingoing edges
in G, and (2) the number of alternatives with at least one
outgoing (resp. ingoing) edge is at most k (resp. at most
m− k).

Proof. If 1 or 2 fails to hold then G cannot be completed
into a plain dominating k-subset. If 1 and 2 hold then ini-
tialize S with the set of p alternatives with an outgoing edge
(we know that p ≤ k), and add to S k− p more alternatives
with no ingoing edge; we add edges from all alternatives of
S to all alternatives of X \ S; and we then obtain a plain
dominating k-set.

Corollary 8. For all k, GRPExtChk and GRPPlChk are
polynomial-time computable.

6.3 Dichotomies

Lemma 6. G is ExtDich-compatible if and only if it does
not contain a cycle with all the elements of X.

Proof. If G contains a cycle with all elements of X then
any extension of G does not have a proper dominating set,
therefore G is not ExtDich-compatible. Conversely, if G
does not contain a cycle with all elements of X then there
are two vertices x, y such that no path exists in G from x to
y. Let S be the set of all vertices which can be reached from
x (including x itself). Note that y /∈ S, therefore S 6= X.
For any two vertices u ∈ S and v ∈ X \ S, there is either
no arrow between them or an arrow from v to u. Adding
all missing arrows from X \ S to S we obtain a dichotomy.
Therefore, G is ExtDich-compatible.

Corollary 9. Checking whether G is ExtDich-
compatible can be done in polynomial time.

Lemma 7. G is PlDich-compatible if and only if every
x ∈ X has only outgoing edges or only ingoing edges in G.

Proof. In a plain dichotomy S � X \ S, any x in the
upper (resp. lower) part S (resp. X \ S) has only outgoing
(resp. ingoing) edges. Therefore, if for some x there is at
least one outgoing edge x → y and an ingoing edge z → x
in G, then G cannot be completed into a plain dichotomy.
Now, if for all x ∈ X, x has only outgoing edges or only
ingoing edges in G, let U be the set of all x ∈ X for which
there are only outgoing edges: then G can be completed into
the plain dichotomy U � X \ U .

Corollary 10. Checking whether G is PlDich-
compatible can be done in polynomial time.

Corollary 11. RSExtDich and RSPlDich are polynomial-
time computable

7. GENERALISED CONDORCET CONSIS-
TENCY

We first define a uniform definition of Condorcet-
consistency, applicable to any constraint C; then we will fo-
cus on specific classes of constraints. Recall that we have an
odd number of voters, and thus T (V ) is a tournament.

A C-rule FC is generalised Condorcet-consistent (GCC) if
for every profile V , whenever T (V ) is in C, FC(V ) = T (V ).
A family of C-rules F is GCC if it is GCC for all C

We extend GCC-consistency to chain and subset rules as
follows: we say that a k-chain rule F ∗ is GCC if for every
profile V , whenever T (V ) is an extended k-chain, of the
form x1 → . . .→ xk → X \ {x1, . . . xk}, then F ∗(V ) = x1 �
. . . � xk. A k-subset rule F ∗ is said to be GCC if whenever
T (V ) is an extended k-subset of the form {x1, . . . , xk} →
X \ {x1, . . . xk}, then F ∗(V ) = {x1, . . . , xk}. The latter is
similar to Condorcet-consistency as defined in [6, 2, 16].

Proposition 12. MH and GRP are GCC.

Proof. For MH, it is a corollary of the fact that the me-
dian rule in judgment aggregation is Condorcet-consistent
[20]. For GRP , if T (V ) is in C then all edges (u, v)
with W (u, v) > 0 are added to G without violating C-
compatibility; since n is odd, there is no pair (u, v) with
W (u, v) = 0, therefore, after all edges (u, v) with W (u, v) >
0, we have a complete graph.
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MED is not GCC, because, for instance, MEDPlCh1

(and MEDPlSubset1) corresponds to the Borda rule, which
is not Condorcet-consistent. However, it is easy to check
that MEDExtChk and MEDExtSubsetk are GCC.

Moreover, for dominating chains and subsets, MH satis-
fies a stronger property, which can be seen as a generalisation
of Smith-consistency (a rule is Smith-consistent if it selects
from the top cycle). Let T be a tournament and T ∗ its tran-
sitive closure. Let C1, . . . , Cr be the maximal indifference
classes of T ∗, that is, Ci is a maximal subset of alternatives
such that T ∗ contains (x, y) for each x, y ∈ Ci, and the in-
dices being chosen such that for each x ∈ Ci and y ∈ Cj ,
j > i, T ∗ contains (x, y). We call (C1, . . . , Cr) the ordered
decomposition of T . Note that C1 is the top cycle of T .

Let (C1, . . . , Cr) be the ordered decomposition of a tour-
nament T . For k ≤ m, let s be the smallest integer such that
|C1|+. . .+|Cs| ≥ k. A k-subset rule F ∗ is said to satisfy gen-
eralised Smith-consistency if F ∗(T ) contains C1 ∪ . . .∪Cs−1

and is contained in C1 ∪ . . . ∪ Cs. A k-chain rule is said to
satisfy generalised Smith-consistency if (a) the k elements
x1, . . . , xk of the chain contain C1∪ . . .∪Cs−1, are contained
in C1 ∪ . . . ∪ Cs, and are such that if xi ∈ Ch(i), xi ∈ Ch(j),
and h(i) < h(j) then xi appears above xj in the k-chain.

Proposition 13. MH∗C satisfies generalised Smith-
consistency for C ∈ {ExtChk, P lChk, ExtDomk, P lDomk},

Proof sketch We give the proof only forMH∗PlDomk
(for

MH∗PlChk
it is similar). Assume S ∈ MH∗Domk

(T ), x ∈ Ci,

y ∈ Cj , j > i, x /∈ S and y ∈ S. Let S′ = S ∪{x}\{y}. The
pairs that are in G but not in G′ are (y, z) for all z /∈ S, (t, x)
for all x ∈ S, and (y, x). The pairs that are in G′ but not
in G are (x, z) for all z /∈ S, (t, y) for all x ∈ S, and (x, y).
Also, (a) (x, y) ∈ T and (y, x) /∈ T ; (b) for all z, (y, z) ∈ T
implies (x, z) ∈ T and (z, x) ∈ T implies (z, y) ∈ T . Let
G and G′ the PlDomk graphs associated with S and S′,
respectively. Now,

|G′ ∩ T | − |G ∩ T |
= |{(x, z), z /∈ S, (x, z) ∈ T}|+ |{(t, y), z ∈ S, (t, y) ∈ T}|+ 1
−|{(y, z), z /∈ S, (y, z) ∈ T}| − |{(t, x), z /∈ S, (t, x) ∈ T}|

= (|{(x, z), z /∈ S, (x, z) ∈ T}| − |{(y, z), z /∈ S, (y, z) ∈ T}|)
+(|{(t, y), z ∈ S, (t, y) ∈ T}| − |{(t, x), z /∈ S, (t, x) ∈ T}|) + 1

> 0

which contradicts S ∈MH∗Domk
(T ).

Since the maximin rule is not Smith-consistent, this result
does not carry on to GRP .

8. DISCUSSION
Our contribution is mainly methodological: we give a uni-

fied framework that can be instantiated on every meaningful
class of graphs. We focused on dominating k-chains, dom-
inating k-subsets and dichotomies because they are partic-
ularly interesting, but our notions and some of our results
extend beyond. Also, clearly, other rules need to be studied.

We have considered two series of classes, ‘plain’ and ‘ex-
tended’. The question of which one makes more sense is
of particular interest. It seems that there is no firm an-
swer to this question, which boils down to deciding whether
we have to care about what happens inside the clusters of
alternatives (such as the set of alternatives below a domi-
nating chain) or not. The fact that well-known rules were
sometimes obtained for the ‘plain’ notion (Borda), some for
the ‘extended’ notion (ranked pairs, maximin) and some for

both (Copeland, Slater, Kemeny) can be seen as a sign that
so far there is no clear way of choosing between both. This
choice may depend both on the application we have in mind,
and of the rule (for instance, for GRP the extended versions
seem to make more sense than the plain versions).

We have considered only one property, a generalisation of
Condorcet-consistency. Other classical properties of voting
rules and social welfare functions need to be generalised as
well. For some of them, such as monotonicity, this is rather
simple, at least for dominating k-chains and k-subsets. For
some other, such as strategyproofness, this is less easy.

In the Introduction we mentioned Myerson’s work [19],
which pioneered the study of aggregation rules free of the
structures social choice typically places on inputs and out-
puts – an important similarity with our work. His (par-
tially met) goal, however, was axiomatic characterization of
scoring rules in this widest setting, extending the success
of Young and others in the narrower setting. Our ends are
structural rather than axiomatic — we aim to show that
two highly general aggregation procedures yield a variety of
interesting and diverse rules when specialized to particular
input/output classes. One procedure – Minimum Hamming
Distance – is quite different from scoring rules. The other
– the Median Rule – coincides with an important subclass
of “generalized” scoring rules in Myerson’s sense, but Myer-
son’s focus was not on the median rule, nor on several of the
output classes of interest to us.

Also, our work is highly related to judgment aggregation.
Judgment aggregation also defines general rules that can be
applied to various output structures. The three rules we fo-
cus on correspond to rules considered in [20, 17, 11]. Our
work is however more specific than corresponding works in
judgment aggregation; because we focus on ordered struc-
tures (k-chains, k-subsets, dichotomies), we are able to de-
rive specific results that do not necessarily correspond to
something in the general case. For instance, while Propo-
sition 12 can be derived as a corollary of a result in [20],
Proposition 13 cannot, because Smith-Consistency is specific
to ordered structures as considered here. A minor difference,
also, is that in judgment aggregation the constraints on the
input and the output coincide, which is not the case in our
work. In any case, the relation between our methodology
and judgment aggregation needs to be explored further.

Our work also takes inspiration from the rationalization
of voting rules by a distance and a consensus class. The two
frameworks have some similarity but also significant differ-
ences. The first major difference is that in [10] the approach
was based on consensus classes with a single unambiguous
winner (e.g., a profile with a Condorcet winner). From [10] it
was unclear how to adopt the approach to multiwinner rules.
Our approach allows us to rationalise multiwinner rules and
more. Not only can we rationalise rules that output a com-
mittee of a predetermined size but also rules that output a
committee with structure (e.g., an ordered one). Another
major difference is that [10] worked with rules whose input
is a profile (since votewise distances can be defined only in
this case) while in our framework we mostly work with C1
and C2 rules in Fishburn’s classification, which can be either
profile-based or tournament-based.
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