
BDI Agent Testability Revisited∗

(JAAMAS Extended Abstract)
Michael Winikoff

Department of Information Science, University of Otago
Dunedin, New Zealand

michael.winikoff@otago.ac.nz

ABSTRACT
This paper extends our understanding of BDI agent program testa-
bility. It considers this with respect to the all edges test adequacy
criterion, comparing with previous work that considered the all
paths criterion. Our findings extend the earlier analysis to give a
more nuanced understanding of the difficulty of testing BDI agents.
In particular, we include analysis comparing BDI programs with
procedural programs that allow for an exception handling construct.

Keywords
Verification and validation; agent-based systems

1. INTRODUCTION
When any software system is deployed, it is important to have

assurance that it will function as required. Traditionally, this assur-
ance is obtained by testing. However, there is a general intuition
that agents exhibit behaviour that is complex. Given this complex-
ity, a key question is whether agent systems are harder, and possibly
even infeasible, to assure by testing.

The only work that we are aware of that considers the ques-
tion of testability is the recent work by Winikoff & Cranefield [7],
which investigates the testability of Belief-Desire-Intention (BDI)
agent programs with respect to the all paths test adequacy criterion.
They concluded that BDI agent programs do indeed give rise to a
very large number of possible paths. They therefore conclude that
whole BDI programs are likely to be infeasible to assure via test-
ing. They also compared BDI programs with procedural programs,
and found that BDI programs are harder to test than equivalently
sized procedural programs. However, they do acknowledge that
the all paths criterion is known to be overly conservative, i.e. it re-
quires a very large number of tests. Indeed, the all paths criterion
subsumes a wide range of other criteria, including all edges. Addi-
tionally, they did not consider procedural programs that include an
exception handling construct.

In this paper we consider the testability of BDI agent programs
with respect to the all edges [3] test adequacy criterion. Whereas
the all paths criterion used by Winikoff & Cranefield is conser-
vative, the all edges criterion is optimistic: it is regarded as “the
∗This paper is an Extended Abstract description of a JAAMAS pa-
per [6] which itself extends an earlier EMAS paper [5].

Appears in: Proc. of the 16th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2017),
S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),
May 8–12, 2017, São Paulo, Brazil.
Copyright © 2017, International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

generally accepted minimum” [2]. The contribution of this paper
is to extend the previous work to obtain a better understanding of,
and a tighter bound on, the testability of BDI agent programs.

2. ALL-EDGE COVERAGE ANALYSIS
Given a program and a test adequacy criterion the testability of

a program is the smallest number of tests1 that would be required
to satisfy the criterion. The all paths criterion is satisfied iff the
set of tests in the test suite cover all paths in the program’s control
flow graph. The all edges criterion (also referred to as “branch
coverage”) is satisfied iff the set of paths in the test suite covers all
edges in the control-flow graph [3].

We define a BDI program P using the grammar:

P ::= a | g{P
∗} | P1;P2 | P1.P2

where a is an action, gP is a (sub-)goal with associated applica-
ble plans P = {P1, . . . , Pn}, P1;P2 is a sequence, and P1 . P2

represents a “backup plan” (used to model failure handling): if P1

succeeds, then nothing else is done (i.e. P2 is ignored), but if P1

fails, then P2 is used.
One important feature of BDI programs is that the execution of a

BDI program (or sub-program) can either succeed or fail. A failed
execution triggers failure handling. We represent this by mapping
a program P to a graph that is reachable from the start node S, and
that has two outgoing edges: to Y (corresponding to a successful
execution) and to N (corresponding to a failed execution). Each of
Y and N has an edge to the final node E.

We have derived equations (see [6]) that calculate the number of
paths p from S to E required such that all edges appear at least
once in the set of paths. In order to do this, it turns out that we need
to also capture how many of these paths correspond to successful
executions (go via Y) and how many go via N .

Our analysis found that the number of tests required to satisfy
the all edges criterion is not just lower (as expected) but very much
lower (see Table 1, comparing “All Paths” and p(g)). Indeed, the
number of tests required is sufficiently small to be feasible. How-
ever, we do need to emphasise that all edges is generally considered
to be a minimal requirement, and that there are arguments for why
the all paths criterion is more appropriate for history-sensitive sys-
tems, such as agent systems.

3. PROCEDURAL PROGRAMS
Following Winikoff & Cranefield [7] we define an abstract pro-

cedural program as:

Q ::= s | Q+Q | Q;Q | Q � Q

1A single test corresponds to a path through the program’s control-
flow graph from its starting node to its final node.

260

Parameters Number of . . . All Paths All Edges All Edges with exceptions
j k d goals plans actions n4(g) n8(g) p(g) q0(Q) q∞(Q) ne q(n, ne)
2 2 3 21 42 62 (13) 6.33× 1012 1.82× 1013 141 62 1892 1 122
3 3 3 91 273 363 (25) 1.02× 10107 2.56× 10107 6,391 363 65,704 4 1801
2 3 4 259 518 776 (79) 1.82× 10157 7.23× 10157 1,585 776 300,701 8 6940
3 4 3 157 471 627 (41) 3.13× 10184 7.82× 10184 10,777 627 196,252 6 4362

Table 1: Comparison of All Paths and All Edges analyses. The first number under “actions” (e.g. 62) is the number of actions in the
tree, the second (e.g. 13) is the number of actions in a single execution where no failures occur.

where the base case is a statement s, and a compound program
can be a combination of sub-programs in sequence (Q1;Q2), an
alternative choice (Q1 + Q2), or an exception handling construct,
Q1 � Q2, where the execution of Q1 may throw an exception, and
if it does, then Q2 is used to handle it. Mapping these programs to
control-flow graphs is straightforward, and a program is mapped to
a single-entry and single-exit graph.

We have derived equations (see [6]) that calculate how many
paths, q(Q), are required to cover all edges in a procedural pro-
gram Q. We compare a BDI program P that has N actions with
a procedural program Q that has N statements. If P does not
contain any instances of exception handling (q0 in Table 1) then
q(Q) ≤ N . However, if exception handlers are present (q∞ in
Table 1), then q(Q) ≤ 1+½(n(Q)2−n(Q)). This is a significant
change. For example, consider the first row of Table 1: without ex-
ceptions, a program with 62 statements can require at most 62 tests
to cover all edges. If we allow exceptions then the number becomes
1 + ½× (622 − 62) = 1892, which is significantly more than the
number of tests required to test the corresponding BDI program.

However, the program Q that yields this value is pathological: it
consists of deeply nested exception handling of single statements!
We therefore need to consider what a “typical” procedural program
with exception handling might look like. To answer this question
we turn to empirical investigations of programs [1, 4], which shows
that in object-oriented programs between 0.25% and 1% of state-
ments are exception handlers. We derived equations to calculate the
largest possible number of paths (q(n, ne)) required to cover all
edges in the control-flow graph of a procedural program, where the
program has n statements, and ne exception handling construct in-
stances. The rightmost column in Table 1 shows q(n, ne) where ne
corresponds to 1% of statements being exception constructs (e.g. in
the first row there are 62 statements, so 1% of 62, rounded up, is
ne = 1). This shows that if we allow a reasonable (empirically
justified) proportion of exception statements, then BDI programs
are mostly harder to test (i.e. q(n, ne) ≤ p(g)) than an equivalent
sized procedural program (with exception handling).

When comparing BDI programs to procedural programs, our
conclusion lends strength to the earlier result of Winikoff & Crane-
field. They found that BDI agent programs were harder to test
than equivalently sized procedural programs (with respect to the
all paths criterion). We found that this is also the case for the all
edges criterion, but somewhat less so.

We also extended their all paths analysis of procedural programs
by adding exceptions. We found that even allowing for patholog-
ical procedural programs, it was still the case that BDI programs
required more tests to cover all paths2. This strengthens some-
what the conclusion of Winikoff & Cranefield that BDI programs
are harder to test than (equivalently sized) procedural programs by
adding “even if we allow pathological programs”.

2If we only allow empirically-justified numbers of exception han-
dling constructs then the number of tests required barely changes.

4. CONCLUSIONS
To summarise, we found a number of (unexpected) results:

• The number of tests required with respect to the all edges
criterion was not just smaller than for all paths, but much
smaller.

• Unlike the case for all paths, disabling failure handling did
not significantly reduce the number of tests required (this re-
sult has not been discussed earlier in this extended abstract
and is included here for completeness — see [6] for details).

• A BDI program requires more tests than an equivalently sized
procedural program with respect to all edges. This conclu-
sion still holds if we allow a realistic number of exceptions,
but not for all the cases considered.

• Revisiting the comparison between BDI and procedural pro-
grams with respect to the all paths criterion, in the presence
of exceptions, finds that BDI programs remain harder to test,
even if we permit pathological procedural programs.

Overall the analysis in this paper indicates that Winikoff & Crane-
field’s conclusions do generalise to another criterion, which lends
additional strength to their conclusion that testing BDI programs is
harder than testing procedural programs.

REFERENCES
[1] B. Cabral and P. Marques. Exception Handling: A Field Study

in Java and .NET. In E. Ernst, editor, 21st European
Conference on Object-Oriented Programming (ECOOP),
volume 4609 of LNCS, pages 151–175. Springer, 2007.

[2] P. Jorgensen. Software Testing: A Craftsman’s Approach.
CRC Press, second edition, 2002.

[3] A. P. Mathur. Foundations of Software Testing. Pearson, 2008.
ISBN 978-81-317-1660-1.

[4] B. G. Ryder, D. Smith, U. Kremer, M. Gordon, and N. Shah.
A Static Study of Java Exceptions Using JESP. In D. A. Watt,
editor, 9th International Conference on Compiler
Construction (CC), volume 1781 of LNCS, pages 67–81.
Springer, 2000.

[5] M. Winikoff. How Testable Are BDI Agents? An Analysis of
Branch Coverage. In N. Osman and C. Sierra, editors,
Autonomous Agents and Multiagent Systems: AAMAS 2016
Workshops Best Papers, pages 90–106. Springer, 2016.
10.1007/978-3-319-46882-2_6.

[6] M. Winikoff. BDI agent testability revisited. Autonomous
Agents and Multi-Agent Systems, pages 1–39, 2017.
doi:10.1007/s10458-016-9356-2.

[7] M. Winikoff and S. Cranefield. On the testability of BDI agent
systems. Journal of Artificial Intelligence Research (JAIR),
51:71–131, 2014. 10.1613/jair.4458.

261

http://dx.doi.org/10.1007/978-3-319-46882-2_6
http://dx.doi.org/10.1007/s10458-016-9356-2
http://dx.doi.org/10.1613/jair.4458

	Introduction
	All-Edge Coverage Analysis
	Procedural Programs
	Conclusions

