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ABSTRACT
Max-min fair allocations and proportionally fair allocations are de-
sirable outcomes in a fair division of indivisible goods. Unfortu-
nately, such allocations do not always exist, not even in very sim-
ple settings with few agents. A natural question is to ask about the
largest value c for which there is an allocation such that every agent
has utility of at least c times her fair share. Our goal is to approx-
imate this value c. For additive utilities, we show that when the
number of agents is fixed, one can approximate c by a polynomial-
time approximation scheme. We show that the case when utility
functions are defined based on scoring vectors (binary, Borda, and
lexicographic vectors) is tractable. For 2-additive functions, we
show that a bounded constant for max-min fair allocations does not
exist, not even when there are only two agents. We explore a class
of symmetric submodular functions for which a tight 1

2
-max-min

fair allocation exists and show how it can be approximated within
a factor of 1

4
.
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1. INTRODUCTION
Fair division of indivisible goods is an important field (see, e.g.,

the book chapters by Bouveret et al. [12] and Lang and Rothe [31])
that deals with the allocation of indivisible goods (or items or ob-
jects) to some agents. The goal is to find an assignment of items
amongst agents that meets a certain notion of fairness. Among oth-
ers, the notion of max-min (fair) share proposed by Budish [16] and
the notion of proportional share originally introduced by Steinhaus
[36] have gained increasing interest in the AI and theoretical com-
puter science literature [15, 35, 1, 32, 19, 26, 30, 18, 4]. The max-
min share of an agent is defined as the bundle that the agent can
guarantee for herself when partitioning the items into bundles but
choosing last. In a proportionally fair allocation between n agents,
each agent receives a bundle of value at least 1

n
of the whole. These

two fairness criteria have attractive theoretical and practical prop-
erties (see the references cited above). Unfortunately, as argued in
the literature (see, for example, [32, 35, 30]), an allocation satis-
fying any of the these fairness notions is not guaranteed to exist in
general. Hence, in this paper we aim at answering the following
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question: Given a problem instance I , what is the largest possible
number c for which there is a c-max-min (c-proportionally) fair al-
location, which means that every agent receives a subset of items
worth at least c times her max-min (proportional) share? Our ques-
tion above is similar but slightly different from the one addressed
by Procaccia and Wang [35] who ask whether c is lower-bounded
by some constant for every problem instance. It is obvious that,
given a problem instance and a number k, checking if c ≥ k is at
least as hard as the problem of checking the existence of a max-
min (proportionally) fair allocation (for k = 1). In fact, the former
problem was known to be NP-hard for proportionally fair alloca-
tions [32, 15]. This means that computing c exactly is as hard as
solving an NP-hard problem. In this paper, we are therefore in-
terested in approximating c via polynomial-time algorithms. We
focus on both additive and nonadditive utility functions, and ex-
plore utility functions with additional structure for which c can be
solved exactly or approximately within a small constant.

Contribution.
Our first contribution is a general technique that gives a poly-

nomial-time approximation scheme (PTAS) for approximating the
value c under the assumption that we have a fixed number of agents
with additive utilities. This technique works as long as there is an
exact polynomial-time algorithm or a PTAS for the fair share of
an individual agent. Since the max-min share and the proportional
share criterion satisfy this condition, this result subsumes a result
by Aziz et al. [6, 5]. Their method essentially relies on a reduction
to the machine scheduling problem which is already known to have
a PTAS. In contrast, our method solves the problem in a direct way,
by formulating it as a binary multi-criteria optimization problem
and extending an idea used by Erlebach et al. [22]. The key ingre-
dient is a novel technical lemma, which for every ε > 0 guarantees
the existence of a polynomial-size set that contains for every allo-
cation another approximate allocation such that every agent loses at
most an ε-fraction of utility. In fact, our technique can potentially
be applied to other variants of fair allocation problems such as the
min-max fair allocation problem [15] (using a PTAS by Hochbaum
and Shmoys [29]), or more general, the rank-weighted utilitarian-
ism problem studied by Heinen et al. [26].

We investigate special cases of additive utilities functions where
the value of c can be computed exactly or lower-bounded by some
constant. When the utilities of items are restricted to the domain
{0, 1}, we prove that, given a number k, one can check if c ≥ k
in polynomial time. When the number of agents is fixed, we show
that the value of c can be computed in polynomial time for both
Borda and lexicographic scoring vectors.

Finally, we consider the problem of computing max-min fair al-
locations when utility functions are represented in 2-additive form.
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We first show that in general c cannot be lower-bounded by any
constant for every problem instance (even with two agents only).
Furthermore, we prove that c ≥ 1/2 for every problem instance
with two agents having symmetric submodular functions, and this
bound is tight in the sense that there exists an instance for which
there is no (1/2 + ε)-max-min fair allocation, for any ε > 0. Also,
we provide an algorithm that outputs 1/4-max-min fair allocations
in polynomial time.

Related Work.
Most work so far has been devoted to finding the lower bounds

of c for additive utilities. For max-min fair allocations, Procaccia
and Wang [35] show that c ≥ 2/3 is guaranteed for every prob-
lem instance. By redesigning parts of the algorithm of Procaccia
and Wang [35], Amanatidis et al. [1] showed that a 2/3-max-min
fair allocation can be found in polynomial time. For a small num-
ber of agents, the problem is understood better. For instance, a
cut-and-choose protocol will result in a max-min fair allocation for
two agents and gives a lower bound of 1 for c in this case. For three
agents, it was shown by Amanatidis et al. [1] that c ≥ 7/8. It still
remains open whether the lower bound of 7/8 can be further im-
proved for a higher constant number of agents. Very recently, Aziz
et al. [6] have given a polynomial-time approximation scheme for
computing an optimal c-max-min fair allocation, assuming that the
number of agents is fixed. This result is closely related to some
of our results, as we consider this problem with respect to propor-
tional fairness. For the special case when the utility of every single
item is restricted to the domain {0, 1, 2}, a max-min fair alloca-
tion (if it exists) is computationally easy to find [1]. This extends
an earlier result of Bouveret and Lemaître [15] for binary utility
functions. When the utility functions are defined by a scoring vec-
tor, Bouveret and Lemaître [15] showed that there always exists a
max-min fair allocation.

For proportionally fair allocations, the problem of checking if
c ≥ 1 is NP-complete, even with two identical agents (Bouveret
and Lemaître [15]). A first lower bound for c, which is essen-
tially a function depending both on the number of agents and on
the maximum value of any agent for a single good, is provided
by Hill [28]. Markakis and Psomas [32] presented a polynomial-
time algorithm for constructing an allocation with respect to this
lower bound. An improvement of this bound was then proposed
by Gourvès et al. [24, 25]. Darmann and Klamler [19] considered
Borda-scoring-based utility functions and studied the special case
when the number of items is a multiple of the number of agents.
They characterized under which conditions proportional fair allo-
cations exist and can be found easily.

2. MODEL
Let A = {1, . . . , n} be a set of agents, O = {o1, . . . , om} a set

of indivisible and nonshareable goods (or items or objects), and let
ui : 2O → Q+ be the nonnegative utility function of agent i ∈ A.
We assume that every utility function ui is represented in the k-
additive form for some constant k ≥ 1 ([17]). In a formal way,
such a function ui is associated with a weight mapping δi from 2O

to Q+, which assigns zero weight to every subset S of cardinality
> k (i.e., δi(S) = 0). Then, for each subset S ⊆ O, ui(S) is
defined as

∑
T⊆S δi(T ). We focus on the cases when k = 1 (note

that 1-additive functions are the additive functions, i.e., ui(S) =∑
o∈S ui(o) for any S ⊆ O) or k = 2. Let U = {u1, . . . , un}.

We call (A,O,U) an allocation setting. An allocation is a partition
π = (π1, . . . , πn) of O, where πi is agent i’s share. We denote by
Π the set of all allocations.

We consider two fairness criteria, max-min share and propor-
tional share, which are defined formally below. Proportional share
is defined only for additive utility functions, though.

DEFINITION 1. Given an allocation setting (A,O,U), define
agent i’s max-min share as

MMSi = max
π∈Π

min
j∈A

ui(πj).

An allocation π is a max-min fair allocation if ui(πi) ≥ MMSi for
all i ∈ A.

DEFINITION 2. Given an allocation setting (A,O,U) where
all the utility function are additive, define agent i’s proportional
share as

PSi =
1

n
ui(O).

An allocation π is proportionally fair if ui(πi) ≥ PSi for all i ∈ A.

Let I be an instance with additive utility functions. We assume,
w.l.o.g., that the max-min share (proportional share) of every agent
is positive and that there is at least one allocation in which the util-
ity of every agent is positive. This ensures that the value of c is
nonzero and bounded. Concretely, denote by cM (I) (cP (I)) the
largest value such that there exists an allocation in which the utility
of every agent is at least cM (I) (cP (I)) of her max-min share (pro-
portional share). For an allocation π = (π1, . . . , πn), we define

α(π) = min
i∈A

ui(πi)

MMSi
and β(π) = min

i∈A

ui(πi)

PSi

Now we can define cM (I) and cP (I) as follows:

cM (I) = max
π∈Π

α(π) and cP (I) = max
π∈Π

β(π).

We will simply write cM and cP when the instance I is clear from
the context. If cM ≥ 1 (cP ≥ 1) then a max-min fair allocation (a
proportionally fair allocation) for I exists.

For nonadditive utility functions, the assumption above is strong
and, in fact, hard to verify in general. Hence, in this paper (see
Section 5) we are only concerned with the problem of checking
whether there is a c-max-min fair allocation for every instance with
nonadditive utility functions, for some small constant c.

We will also consider the egalitarian welfare of an allocation π,
which is the utility of the worst-off agents in that allocation, or
more formally, is defined as mini∈A ui(πi).

3. ADDITIVE PREFERENCES
In this section we exemplify our technique for the max-min share

and for the proportional share. Assume that every agent has an
additive utility function over the bundles of items with ui(o) ≥ 1
for every o ∈ O (by appropriate scaling). Given an instance I =
(A,O,U), where ‖A‖ is fixed, we show that both cM and cP can
be approximated in polynomial time to within a factor of 1− ε, for
any fixed ε > 0. That is, we present a PTAS for this problem.

In order to find a proportionally (max-min) fair allocation of a
given problem instance I , one idea is to try to allocate items to
agents in such a way that all agents’ utilities are maximized simul-
taneously. Mathematically, this can be modeled by a multi-criteria
binary linear program (MBLP) as follows:

maximize
{∑m

j=1
u1jx1j , . . . ,

∑m

j=1
unjxnj

}
subject to

∑n

i=1
xij ≤ 1, j ∈ [m],

xij ∈ {0, 1}, i ∈ [n], j ∈ [m],
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where [m] is a shorthand for {1, . . . ,m}, uij denotes the value of
item oj to agent i, and the variable xij = 1 if and only if item oj is
assigned to agent i, for all i, j.

Due to possible conflicts between agents, there does not exist an
allocation that simultaneously optimizes each agent’s utility. One
instead constructs in time polynomial in the size of the instance a
small subset of allocations, denoted byPε, which has the following
property: For any allocation π ∈ Π, there exists an allocation π′ ∈
Pε such that ui(π′i) ≥ (1 − ε)ui(πi) for all i ∈ A, for any fixed
ε > 0. Lemma 1 below will show how to obtain such a set Pε.

LEMMA 1. For any fixed ε > 0, Pε can be found in time poly-
nomial in the size of the input.

PROOF. The construction of Pε is done by Algorithm 1 below.
For a high-level description, note that the implementation is divided
into two phases. In the first phase, the algorithm guesses the lower
bounds on the values of the bundles assigned to each of the first
n − 1 agents. This should be done carefully so as to guarantee
that the numbers of lower bounds is bounded by the size of the
instance. Having these lower bounds, in the second phase the algo-
rithm tries to allocate items to agents in such a way that the utility
of the last agent is maximized. This can be formulated as a binary
linear program (BLP), which is then solved approximately. All the
(approximate) solutions will be collected in a set Pε.

In the guessing phase, we consider all possibilities of choosing
n − 1 lower bounds, one for each of the first n − 1 agents. For
each i ∈ A, we assume, w.l.o.g., that ui(O) > 1, and we let

Bi =
⌈
log1+ε/2 ui(O)

⌉
and define the lower bounds with respect

to i as:

LBi(z) =
(

1 +
ε

2

)z−1

, for z ∈ Z ∩ [1, Bi + 1]. (1)

A lower bound of zero is also possible for an agent. Since we can
ignore such an agent, we are not going to consider this case from
now on.

For each agent i, we consider in total Bi + 1 lower bounds, and
thus the number of possibilities of choosing n − 1 lower bounds,
one for each of the first n−1 agents, is bounded byO(B1 · · ·Bn−1).

In the second phase, assume that the lower bounds of the first n−
1 agents are described by LB1(z1), . . . , LBn−1(zn−1), for some
z1, . . . , zn−1. We consider the following binary linear program:

maximize
∑m

j=1
unjxnj

subject to
∑m

j=1
uijxij ≥ LBi(zi), i ∈ [n− 1],∑n

i=1
xij ≤ 1, j ∈ [m],

xij ∈ {0, 1} i ∈ [n], j ∈ [m].

In order to find approximate solutions to this BLP, we rely on the
polynomial solvability of the convex relaxation of a BLP, called LP,
which is obtained by replacing the constraints xij ∈ {0, 1} by the
weaker constraints xij ∈ [0, 1]:

maximize
∑m

j=1
unjxnj

subject to
∑m

j=1
uijxij ≥ LBi(zi), i ∈ [n− 1], (2)∑n

i=1
xij ≤ 1, j ∈ [m], (3)

xij ≥ 0 i ∈ [n], j ∈ [m]. (4)

Let p = d4(n−1)/εe. The algorithm guesses, for each of the
agents, the p highest-utility items assigned to her. We denote by

Gi the set of the p highest-utility items received by agent i. If
G1, . . . , Gn are mutually disjoint sets, we define the values of xij
accordingly:

xij =

{
1 if j ∈ Gi,
0 if j 6∈ Gi and uij > min{uik | k ∈ Gi}.

(5)

Let G = {G1, . . . , Gn} and denote by LP(G) the resulting linear
program according to setting (5).

Algorithm 1
1: p← d4(n−1)/εe
2: for each (LB1(z1), . . . , LBn−1(zn−1)) do
3: for each G = (G1, . . . , Gn), ‖Gi‖ ≤ p do
4: if Gi ∩Gk = ∅ for all i 6= k then
5: Compute an optimal basic solution xG of LP(G)
6: x̄Gij ←

⌊
xGij
⌋

for all i ∈ A, j ∈ [m]
7: for i ∈ A do
8: πi ← {j| x̄Gij = 1, for j ∈ [m]}
9: Pε ← Pε ∪ {(π1, . . . , πn)}

10: return Pε

Now let Pε be the output of Algorithm 1. Let π be an arbitrary
allocation to the instance I . We will prove that there always exists
a solution π′ ∈ Pε such that

ui(π
′
i) ≥ (1− ε)ui(πi), (6)

for every i ∈ [n]. Let us define

ẑi = max{zi ∈ Z ∩ [1, Bi + 1]| LBi(zi) ≤ ui(πi)}, (7)

for all i = 1, . . . , n − 1. By the definition of ẑi and of LBi(zi),
we must have that

LBi(ẑi) ≤ ui(πi) < LBi(ẑi + 1) = (1 + ε/2)LBi(ẑi), (8)

for all i = 1, . . . , n− 1.
For each i ∈ A, let Gi by the set that contains min{p, ‖πi‖}

highest-utility items in πi. Let G = (G1, . . . , Gn). Consider
the linear program LP(G) with the lower bounds LB1(ẑ1), . . . ,
LBn−1(ẑn−1) defined as above. Note that LP(G) is feasible, since
π constitutes a feasible solution by the choice of LBi(ẑi), 1 ≤
i ≤ n − 1. Let xG be a basic optimal solution of LP(G) and let
x̄G be the integral solution obtained by rounding down xG. Let
π′ = (π′1, . . . , π

′
n) be an allocation, where π′i = {oj | x̄Gij =

1, for j ∈ [m]}. We now prove that the inequalities (6) hold. We
need the following facts in our analysis (see the appendix for the
detailed proofs).

FACT 1. xG has at most 2(n− 1) fractional components.

FACT 2. For every agent i ∈ A, it holds that∑
j∈[m]

uijx
G
ij ≥

1

1 + ε/2
ui(πi).

If ‖πi‖ ≤ p for some i ∈ [n] (i.e., πi has at most p items),
the rounded solution π′i will contain πi. Let T be a subset of agents
such that each of them is assigned more than p items in π. It suffices
to prove that (6) holds for these agents. For i ∈ T , let ui` = ui(o`)
be the smallest utility among the p items of highest utility in πi, for
some o`. Then

∑
j∈[m] uijx

G
ij ≥ pui`. On the other hand, since

x̄G is obtained by rounding down xG, and from Fact 1, which says
that xG has at most 2(n− 1) fractional components, it follows that

ui(π
′
i) ≥

∑
j∈[m]

uijx
G
ij −

2(n− 1)

p
pui` ≥

(
1− ε

2

) ∑
j∈[m]

uijx
G
ij .
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By Fact 2, we have

ui(π
′
i) ≥

1− ε/2

1 + ε/2
ui(πi) ≥ (1− ε)ui(πi),

for all i ∈ A.
To complete the proof of Lemma 1, we show that the running

time of Algorithm 1 is polynomial in the size of I . It is not hard
to see that the running time of Algorithm 1 is dominated by the
following steps:

• guessing the lower bounds LBi(zi), 1 ≤ i ≤ n− 1;

• guessing the sets Gi, 1 ≤ i ≤ n, each has at most p items;
and

• solving the linear program in line 5 of Algorithm 1.

As argued earlier, the number of possible lower bounds is bounded
by O(B1 · · ·Bn−1) and thus is polynomial in the size of the input
since n is constant andBi ∈ O(|I|) for all i ∈ [n−1]. The number
of possible sets Gi for n agents is O(mnp) and is polynomial, as
p and n are constants. Finally, solving a linear program is well
known to be feasible in polynomial time ([33]). The proof of the
lemma is complete. q

THEOREM 1. If the number of agents is fixed, there is a poly-
nomial-time algorithm that produces an allocation such that each
agent i is assigned a bundle of value at least (1 − ε)cM ·MMSi,
for any constant ε > 0.

PROOF. Consider Algorithm 2 below:

Algorithm 2
1: Compute Pε using Algorithm 1
2: Compute ki ← d(1− ε)MMSie for all i

3: π∗ ← argmaxπ∈Pε
mini∈A

ui(πi)

ki
4: return π∗

Note that for any agent i, MMSi can be approximated within a
factor of 1 − ε, for any ε > 0 (see the work of Woeginger [37]).
Now assume that π∗ is output by Algorithm 2, and let π be an
allocation such that ui(πi) ≥ cM ·MMSi, for all i ∈ A. There
must be an allocation π′ = (π′1, . . . , π

′
n) ∈ Pε such that

ui(π
′
i) ≥ (1− ε) · ui(πi) ≥ cM (1− ε) ·MMSi

for all i ∈ A. On the other hand, we have

min
i∈A

{
ui(π

∗
i )

ki

}
≥ min

i∈A

{
ui(π

′
i)

ki

}
≥ cM .

It follows that ui(π∗i ) ≥ ki · cM ≥ (1 − ε)cM · MMSi, for all
i ∈ A. This completes the proof of Theorem 1. q

THEOREM 2. If the number of agents is fixed, there is a poly-
nomial-time algorithm that produces an allocation such that each
agent i is assigned a bundle of value at least (1 − ε)cP · PSi, for
any constant ε > 0.

PROOF. The proof is similar to the one of Theorem 1, except
that ki is set to PSi for all i ∈ A in Algorithm 2. q

4. RESTRICTIONS ON ADDITIVITY
We study restrictions to binary and to scoring-based utilities.

4.1 Binary Utilities
We consider the case when utilities are either 0 or 1 for every

item. Bouveret and Lemaître [15] showed that a max-min fair allo-
cation can be found via a simple picking-sequence protocol. How-
ever, this is not the case with proportionally fair allocations.1

THEOREM 3. Given a number k, checking if cP ≥ k can be
done in polynomial time if the value of each item belongs to the
domain {0, 1}.

PROOF. We follow a linear-programming-based approach. Let
I be a problem instance with n agents and m items, each having
a utility of 0 or 1 for every agent. For each agent i, let si be the
number of items that have utility 1 for agent i. Now, checking
cP ≥ k is equivalent to checking whether integer solutions of value
at least k · sn/n exist to the following binary linear program:

maximize
∑m

j=1
anjxnj

subject to
∑m

j=1
aijxij ≥ k · si/n, i ∈ [n− 1],∑n

i=1
xij ≤ 1, j ∈ [m],

xij ∈ {0, 1}, for i ∈ [n], j ∈ [m],

where variable xij = 1 if and only if item oj is assigned to agent i,
and aij ∈ {0, 1} is the value of item oj to agent i. The first n− 1
constraints ensure that every agent i ∈ [n] gets a bundle of value
at least her proportional share, while the next m constraints ensure
that each item is assigned to at most one agent.

One can check that the constraint coefficients form a totally uni-
modular matrix, for which every square submatrix has determinant
0, 1, or −1 (see, e.g., [27]). The relaxation of the binary linear
program above, which is obtained by replacing the constraint that
variables can take values 0 and 1 by the weaker constraint that they
belong to the domain [0, 1], is convex and thus can be solved in
polynomial time (see, e.g., [33]). On the other hand, since the con-
straint matrix is totally unimodular, all the fractional solutions to
the relaxation problem are integers. q

Consequently, by considering k = 1 in the binary linear pro-
gramming above, one can compute a proportionally fair allocation
(if there exists one) in polynomial time. However, it remains open
how the exact value of cP can be determined in this case.

4.2 Scoring-Based Utilities
We consider a setting in which utility functions are defined via

(strict) rankings over items along with a (nonnegative) decreas-
ing vector s = (s1, . . . , sm) ∈ Qm+ . By decreasing vector we
mean that all the entries of s are in decreasing order from left to
right, i.e., s1 > · · · > sm, where m is the number of items.
Given a ranking � over items, a utility function associated with
� will assign a utility of sj to an item ranked at position j, for all
j = 1, . . . ,m. In this section we restrict our attention to Borda
and lexicographic scoring vectors. A scoring vector s is lexico-
graphic if sj >

∑
k>j sk for all j = 1, . . . ,m − 1, and is Borda

if sj = m − j + 1 for all j = 1, . . . ,m. An example of a lexi-
cographic scoring vector is s∗ = (2m−1, . . . , 2, 1). We call utility
functions induced by Borda (lexicographic) scoring vectors Borda
(lexicographic) utility functions.
1By using a picking sequence, we can only guarantee that each
agent iwill receive a bundle whose value is at least bsi/nc, where si
is the number of items that have utility 1 for agent i. Interestingly,
for the proportional share we need a guarantee of dsi/ne. So the
picking protocol is too weak by only a very small margin.
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Fair allocation of indivisible goods with Borda and lexicographic
utility functions has been considered by several authors (see, e.g.,
[14, 9, 15, 20, 19, 3, 23]). Bouveret and Lemaître [15] argued that
there always exists a max-min fair allocation for any problem in-
stance when the utility functions are induced by a scoring vector.
However, this is not the case with the proportional share. In partic-
ular, we will show that if all agents’ utility functions are identical
and based on the lexicographic vector s∗, then there is no propor-
tionally fair allocation. We start with the following easy-to-get ob-
servation.

OBSERVATION 1. If all the utility functions are induced by a
decreasing scoring vector s ∈ Qm+ , all agents have the same pro-
portional share. Therefore, there is a proportionally fair allocation
iff the value of a maximum egalitarian welfare allocation is at least
the proportional share.

It is NP-hard to determine whether a given allocation has max-
imum egalitarian welfare, even with utility functions based on the
Borda (or lexicographic) scoring vector [9]. Several approximation
algorithms have been developed for general additive utility func-
tions (see, e.g., [7, 2], the survey [34], and the references therein).

PROPOSITION 1. There is no proportionally fair allocation if
all agents have the same utility functions induced by the lexico-
graphic scoring vector s∗.

PROOF. The proportional share of every agent is computed as
PS = 1/n

∑m−1
i=0 2i = (2m − 1)/n. By the observation above, it

suffices to prove that the worst-off agents in an optimal egalitarian
welfare allocation have utility less than PS. Indeed, it is not hard
to see that such an agent will receive the last m − (n − 1) items
in her ranking (each of n − 1 remaining agents gets only one item
from her most-preferred n − 1 items). Hence, her utility is equal
to
∑m−n
i=0 2i = 2m−n+1 − 1 = 2m/2n−1 − 1, which is less than

2m/n− 1/n, for all m,n ≥ 2. q

In the following we characterize the existence of proportionally
fair allocations for the case when n = 2. The proof is not hard and
we omit it here due to the lack of space.

PROPOSITION 2. Assume that all agents’ utility functions are
induced by the lexicographic scoring vector s∗. If n = 2, then
there is a proportionally fair allocation if and only if the agents
rank different items at the top.

For more than two agents, it seems that achieving a succinct
characterization on the existence of proportionally fair allocations
seems to be unreasonable. A natural question is whether there are
efficient algorithms for examining the existence of proportionally
fair allocations for both Borda and lexicographic utility functions.
For a fixed number of agents, we will answer this question pos-
itively by showing that there is a polynomial-time algorithm that
can return, for very problem instance, the exact value of cP . The
starting point is Corollary 1 below, which is a consequence of Ob-
servation 1:

COROLLARY 1. If we can compute an allocation of optimal
egalitarian welfare in polynomial time, then one can determine ex-
actly the value of cP in polynomial time.

For Borda utility functions, the problem of maximizing the egal-
itarian welfare can be done in polynomial time by using dynamic
programming, if the number of agents is bounded, (see [10, 8]).
Thus, following from Corollary 1, we have:

PROPOSITION 3. For Borda utility functions, one can compute
cP in polynomial time when the number of agents is fixed.

For lexicographic utility functions (based on the vector s∗), Bau-
meister et al. [10] gave very basic ideas for computing an alloca-
tion of optimal egalitarian welfare, for two agents. Their argument
can be generalized to achieve a similar result for any lexicographic
function and for any constant number of agents. In the following
we will give the proof in detail.

LEMMA 2. For lexicographic utility functions, the problem of
maximizing egalitarian welfare with two agents is solvable in linear
time in the number of items.

PROOF. In the following, we denote by oij the jth preferred ob-
ject over O of agent i, for every i ∈ {1, 2} and j ∈ {1, . . . ,m}.
The ranking of the agents can then be described as follows:

preference of agent 1 : �1 : o1
1 o

1
2 o

1
3 . . . o1

m,

preference of agent 2 : �2 : o2
1 o

2
2 o

2
3 . . . o2

m.

The utilities of items are defined based on a decreasing lexico-
graphic vector (s1, s2, . . . , sm): u1(o1

j ) = u2(o2
j ) = sj for all

j = 1, . . . ,m. We write o1
j = o2

k when o1
j and o2

k are identical,
and o1

j 6= o2
k otherwise. Our algorithm involves a sequence of rules

when the agents’ preferences are examined from the most preferred
to the least preferred items, and it relies on the fact that every agent
i will be happier with an item of rank j than with a bundle of all
objects ranked below position j, i.e., ui(oij) >

∑
k>j ui(o

i
k), due

to the lexicographic scoring vector. Our algorithm starts with the
first position j = 1, and applies the following rules:

(A) If the agents rank different items at the current position j and
none of the objects is assigned yet, both agents get the item
from the current position. Proceed with the next position
j = j + 1.

(B) If both objects are already assigned, proceed with the next
position j = j + 1.

Let j be the first position where neither rule A nor rule B can be
applied. This means that at this position, either (I) two agents rank
the same object that has not been assigned yet; or (II) only one of
the two items ranked at this position has been already allocated in
previous steps. We denote by (π1, π2) the incomplete allocation
obtained by applying the rules A and B, and let S be the set of
remaining items. Note that u1(π1) = u2(π2). One can prove that
(π1, π2) is a partial allocation of any optimal (complete) allocation.

LEMMA 3. If (π∗1 , π
∗
2) is an optimal (complete) allocation, then

it must hold that π1 ⊆ π∗1 and π2 ⊆ π∗2 .

LEMMA 4. If (π1, π2) is an optimal allocation of items that be-
long to the first k objects in the ranking of agent 1 or agent 2 and
‖π1‖ = ‖π2‖, then (π1, π2) must be a partial allocation of an
optimal (complete) allocation.

The proof of Lemma 3 can be found in the appendix; the proof
of Lemma 4 is quite similar and thus omitted due to lack of space.

Lemma 3 indicates that it is sufficient to find an optimal assign-
ment π′ = (π′1, π

′
2) of items in S to agents, and then an optimal

allocation (π∗1 , π
∗
2) will be computed by setting π∗1 = π1 ∪ π′1 and

π∗2 = π2 ∪ π′2. Now, imagine that we are at position j where there
are two possible scenarios: (I) and (II) as noted above.

Case (I): In this case, both agents rank the same object o that
has not been assigned yet on the current position. It is not hard to
see that the optimal allocation π′ is either ({o}, S {o}) or (S
{o}, {o}). If they have different egalitarian welfare, pick the one
of largest welfare.
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Object Description
j First position where rules cannot be applied
S Set of remaining items
o1
k Most preferred item in S by agent 1
Ŝ Set of available items between j and k for agent 2

Type 1 Agent 2 gets one item from Ŝ {o2
k},

agent 1 gets the remaining items
Type 2 Agent 2 does not get any item from Ŝ {o2

k}
o1
k′ Least preferred item in Ŝ {o2

k} by agent 1
S1 Set of available items between k and k′ for agent 1

S2
Set of available items without S1 between k and k′

for agent 2

Table 1: Notation in Lemma 2

Case (II): Only one among two objects at this position has al-
ready been assigned in the previous steps, and one can assume,
w.l.o.g., that it is o1

j . Let o1
k be the most preferred item of agent 1

among the ones in S. Recall that S is the set of available items at
this position j, including o2

j . Also, we denote by Ŝ ⊆ S the set
containing all available objects ranked by agent 2 from position j
to position k. Making the decision on how to proceed at this posi-
tion j will depend on the availability of object o2

k. This task turns
out to be more complicated than that of Case (I). In fact, it should
be further divided into subcases such that an optimal allocation can
be found easily in each case.

Case (II-1): o2
k 6∈ S. If o1

k 6= o2
j , the egalitarian welfare of π′

is at least sk. This can only be guaranteed by giving o1
k to 1, and

some item o in Ŝ to 2. Note that 2 cannot receive more than one
item from Ŝ, as one can obtain a better allocation by reallocating
one of these items to 1. Hence, o must be the only item 2 can get
in π′. Finally, by checking totally ‖Ŝ‖ possible allocations from
which we can find an allocation of maximum egalitarian welfare
(see Figure 1-A).

Consider the case when o1
k = o2

j = o. If o2
j is the only available

item in Ŝ, then anyone who is not assigned o will get the remaining
items of total value less than sk. Therefore, π′ is one of the follow-
ing allocations: ({o}, {S {o}}) or ({S {o}}, {o}), whichever has
better egalitarian welfare (see Figure 1-B). If there are more than
two available items in Ŝ, then π′ can be found as in the previous
case with o1

k 6= o2
j (see Figure 1-C).

Case (II-2): o2
k ∈ S. If o1

k = o2
k = o, an optimal allocation will

assign one item from Ŝ {o} to 2 and the remaining items to 1.
The way to find it is exactly the same as the one in case o2

k 6∈ S and
o1
k 6= o2

j (see Figure 1-D). Now, for the remainder of this proof,
consider the other case: o1

k 6= o2
k.

If o1
k = o2

j and there is no available object ranked (by agent 2)
between positions k and j, then it is easily seen that (π1∪{o1

k}, π2∪
{o2
k}) will be an optimal allocation of items that belong to the first

k objects in the ranking of agent 1 or agent 2. By Lemma 4, to
find the optimal allocation (π∗1 , π

∗
2), we just allocate o1

k and o2
k

to 1 and 2, respectively, move to the next position j = k + 1, set
S ← S {o1

k, o
2
k}, and repeat all the steps as we have done from the

beginning, starting with applying the rules A and B (see Figure 1-
E). If there is at least one available object o2

t for some t, j < t < k,
the optimal allocation π∗ is that 2 gets π2 and o2

t , where t ∈ (j, k)
such that o2

t is an available item of lowest rank according to agent
1’s ranking, and agent 1 gets π1 and the rest (see Figure 1-F).

If o1
k 6= o2

j , then three objects o1
k, o

2
j , o

2
k are pairwise differ-

ent. The optimal allocation π′ could be one of the following types:
(type 1) agent 2 gets one item from Ŝ {o2

k} and 1 gets the remain-
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Figure 1: The objects are ordered from the top (most preferred)
to the bottom (least preferred) according to their rank. The
objects that are circled show an optimal allocation.

ing ones; (type 2) agent 2 does not get any item from Ŝ {o2
k}. To

find π′, we first compute the best allocations of type 1 and of type 2,
and then pick the one of maximum welfare. As argued above, the
best allocation of type 1 is µ = (S {o}, {o}), where o is the ob-
ject of lowest rank (according to �1) among the ones in Ŝ {o2

k}.
In addition, the egalitarian welfare of this allocation is u1(S {o})
(because o is at a better position than k for agent 2 and agent 1 gets
items that are at position k or worse). We now determine the best
allocation of type 2. Let k′ be the position such that o = o1

k′ . Let
S1 be the set of all available objects ranked by agent 1 from posi-
tion k to position k′, and S2 ⊆ S S1 be the set of the remaining
available objects ranked by agent 2 from position k to position k′.
Note that o1

k′ has lowest rank among the ones in S1. We consider
two cases.

If o2
k ∈ S1: It follows o2

k �1 o. The best allocation of type 2 will
assign o1

k and o2
k to 1 and 2, respectively. Hence, the best possible

bundle agent 1 can get is S {o2
k}, which has value less than the

value of S {o}, since o2
k �1 o. Therefore, the optimal allocation

π′ in this case is of type 1, i.e., π′ = µ (see Figure 2-A).
If o2

k 6∈ S1: We consider the following three subcases.
- u1(S1 {o}) > u2(S2): Because S1 {o} ⊆ S {o} and o �2

o′ for every o′ ∈ S2, the egalitarian welfare of every allocation of
type 2 is always less than that of the best allocation of type 1, thus
π′ = µ (see Figure 2-B).

- u1(S1 {o}) = u2(S2): It is clear that u1(S1) > u2(S2).
Note that Ŝ o2

k ⊆ S1 by definition of position k′. Therefore a best
allocation of type 2 is (S1, S S1). Because S1 contains the same
items as S up to item o, u1(S1) > u1(S {o}). Thus we need
only compare u2(S S1) and u1(S {o}) to see if the allocation
(S1, S S1) has better welfare than µ. The optimal allocation π′ is
(S1, S S1) if u2(S S1) > u1(S {o}), and is µ otherwise (see
Figure 2-C-D).

- u1(S1 {o}) < u2(S2): It follows that u1(S1) = u2(S2) or
u1(S1) < u2(S2). One can see that the optimal allocation π′ will
be of type 2 in both cases. If u1(S1) = u2(S2) then (π1∪S1, π2∪
S2) is a partial allocation of π∗. Hence, we simply assign S1 and
S2 to 1 and 2, respectively, and then optimize the allocation of the
remaining items in S {S1∪S2} to agents. To this end, we move to
the next position j = k′+ 1, set S ← S {S1∪S2}, and repeat all
the steps as we have done so far from the beginning (see Figure 2-
E). In the case when u1(S1) < u2(S2), π′ will be of the form
(S S′, S′) for some S′ ⊆ S2. Hence, we just need to compute a
subset S′ that maximizes the utility of agent 1 to the bundle (S S′),
while keeping u2(S′) not less than u1(S1). This can be done as
follows. We first rank the items in S2 in order of decreasing utilities
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according to agent 1’s ranking. We then try to pass through each
item, from the most to the least preferred ones, to agent 2, under
the condition that the utility of 2 for the set of remaining items is
not less than u1(S1). When we have finished with the last item, we
will obtain exactly an optimal subset S′ which, in fact, includes all
items that have been passed (see Figure 2-F).
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Figure 2: The objects are ordered from the top (most preferred)
to the bottom (least preferred) according to their rank. The
objects that are circled show an optimal allocation.

Since there are totally m positions of items that need to be con-
sidered, the running time of our algorithm will be bounded by
O(m), and this completes the proof. q

One can extend the result above to the case with any constant
number of agents.

THEOREM 4. For lexicographic utility functions, the problem
of maximizing egalitarian welfare with a fixed number of agents is
solvable in polynomial time in the number of items.

Proof Sketch. The statement is proven by induction on the (con-
stant) number n of agents. Indeed, the induction base n = 2 has
been already shown. Suppose that the statement holds for the case
of n − 1 agents. We need to prove that every problem instance
with n agents can be solved in polynomial time as well. Let I be
a problem instance with n agents. We develop an algorithm that
enumerates in polynomial time all possible optimal allocations.

Algorithm 3.

Step 1. T ← A; j ← 1;Rj ← O; πi ← ∅ for all i.

Step 2. If ‖Rj‖ < n then assign items to agents in an arbitrary
way, update the allocation π and go to Step 4. Otherwise, compute
a set Wj of all possible allocations such that in each such alloca-
tion every agent in T gets only one item from Rj , and the utility
of the worst-off agent is maximized. Note that ‖Wj‖ is bounded
by O(mn). Furthermore, there is at most one allocation in Wj ,
denoted by ω∗, such that every agent has the same utility.

Step 3. For each allocation ω ∈ Wj , let T (ω) ⊆ T be the
set containing all the worst-off agents (w.r.t. this ω), and Rj(ω)
be the subset of items which is obtained from Rj by deleting all
items that have been allocated in ω. If ω 6= ω∗, then T T (ω) 6=
∅, and thus ‖T (ω)‖ < n. Hence, one can solve the new in-
stance (T (ω), Rj(ω)) in polynomial time (by the induction hy-
pothesis). It is enough to consider the worst-off agents because
of lexicographic utility. The obtained optimal allocation is then
combined with ω to yield a possible allocation A(ω) for I . We set
Vj =

⋃
ω∈Wj {ω∗}{A(ω)}. For allocation ω∗, we first combine

the allocation ω∗ = (ω∗1 , . . . , ω
∗
n) with π = (π1, . . . , πn), i.e., set

πi ← πi ∪ ω∗i , for all i ∈ T ; set j ← j + 1; and set Rj to be
the subset of items obtained from Rj−1 by deleting all items those
have been allocated in ω∗ and go back to Step 2.

Step 4. Return an allocation in {π} ∪
⋃
j Vj of maximum egali-

tarian welfare.
Our algorithm runs in at most O(m) steps. In each step, we

need to solve at most O(mn) sub-instances (each with less than n
agents), each requires O(mO(n)) time. Overall, the running time
of the algorithm is bounded by O(mO(n)) and thus is polynomial
in m since n is constant. q

From Corollary 1 and Theorem 4 we have the following result:

THEOREM 5. For lexicographic utility function, one can com-
pute cp, and thus a cP -proportional fair allocation, in polynomial
time, if the number of agents is fixed.

For the case when the number of agents is part of the input, it was
shown by Baumeister et al. [8] that there is an 1/2-approximation
algorithm for the problem of maximizing egalitarian welfare with
lexicographic utility functions. This algorithm immediately results
in a 1/2-proportional fair allocation.

5. 2-ADDITIVE PREFERENCES
In this section we consider the max-min fair allocation problem

with 2-additive utility functions. We restrict our attention to the
case with two agents only. Bouveret and Lemaître [15] made the
first steps towards studying this problem. Among other results, they
proved that there is an instance for which there is no max-min fair
allocation, even with only two agents. Therefore, it is of great inter-
est to know whether there always exists a c-max-min fair allocation
for every problem instance, for some constant c < 1. We will an-
swer this question negatively.

PROPOSITION 4. For any constant c > 0, there is an instance
with two agents such that there is no c-max-min fair allocation.

PROOF. One can assume, without loss of generality, that c ∈
(0, 1). We consider an instance involving two agents and three
goods {o1, o2, o3}; the agents’ 2-additive utility functions are de-
fined as follows:

u1(π1) = ko1 + 1o2 + 1o3 − 1o1o2 + (k − 2)o2o3 − ko1o3,

u2(π2) = 1o1 + ko2 + 1o3 − 1o1o2 − ko2o3 + (k − 2)o1o3,

where π1 and π2 denote the agents’ respective shares, k > 2 is a
positive number, and o1, o2, and o3 are binary variables that indi-
cate whether oi is in the bundle.
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One can see that the max-min share of agent 1 is equal to k (an
allocation giving this share is π = ({o1}, {o2, o3})). Similarly,
the max-min share of agent 2 is also k. However, in any feasible
allocation it holds that there is at least one agent getting a bundle
of value exactly 1. This means there is no allocation in which the
utility of every agent is better than 1/k of her max-min share. By
choosing k = 2/c, the proof is completed. q

A natural direction is to explore special classes of utility func-
tions for which c can be bounded by a constant. We study the case
where utility functions are symmetric and submodular, and show
that c can be bounded by a constant when there are only two agents.
A utility function u is submodular if for every subsets S, T ⊆ O,
u(S) + u(T ) ≥ u(S ∪ T ) + u(S ∩ T ), and u is symmetric if
u(S) = u(O S) for any S ⊆ O.

PROPOSITION 5. If n = 2 and the utility functions are sym-
metric and submodular then c = 1/2 and this is tight in the sense
that a (1/2 + ε)-max-min fair allocation for any ε > 0 is impos-
sible. Furthermore, a 1/4-max-min fair allocation can be found in
polynomial time.

Due to space constraints, the proof of Proposition 5 is omitted
here but will be contained in the full version of the paper.

6. CONCLUSIONS AND FUTURE WORK
We have addressed the question of computing the best value c

for which there is an allocation such that all agents have utility of at
least c times either their max-min share or their proportional share.
For a fixed number of agents having additive utilities, while Aziz
et al. [6] provided a PTAS for approximating c for the max-min
share, we have proposed an alternative way for doing so. Arguably,
the most interesting aspect of this contribution does not lie in the
specific result but in our technique, which we feel is, conceptually,
more broadly applicable than the technique that Aziz et al. [6] used
to prove their PTAS. In fact, our technique can potentially be ap-
plied more easily to other variants of fair allocation problems, such
as min-max fair allocation and rank-weighted utilitarianism. We
defer a detailed discussion about the application range to the full
version of this paper.

On the other hand, we have discovered special cases in which
cP (the above-mentioned value c for the proportional share) can
be efficiently solved or approximated. For binary utility functions,
one can check in polynomial time if cP is at least as large as a
given number k, but we do not know yet if cP can be computed in
the same amount of time. When the utility functions are induced
by Borda or lexicographic scoring vectors, we have obtained exact
algorithms for determining cP .

For 2-additive utility functions, the problem of computing cM
(the above-mentioned value c for the max-min share) as well as
finding lower bounds for it becomes harder. We have shown that
cM cannot be bounded by a universal constant, not even for two
agents. We have explored a class of symmetric submodular func-
tions which allows us to bound cM by a (tight) constant of 1/2. Fur-
thermore, we have developed an approximation algorithm which
gives to every agent a share of at least 1/4 of her max-min share.

There are several interesting directions for future work. First, the
most important task is to study the approximability of the problem
of computing the value of c with an unbounded number of agents.
Second, exploring the special cases of 2-additive utility functions
in which c can be bounded easily could provide new insights into
the problem. Finally, it would be interesting to know whether there
exist max-min fair or proportionally fair allocations that are also
Pareto-efficient. A similar question has been studied for envy-free
and Pareto-efficient allocations [13, 21, 11].

APPENDIX
Proof of Fact 1. We prove that xG has at most 2(n−1) fractional
components. Indeed, by adding slack variables, the constraints (2)
and (3) in LP(G) can be rewritten as∑m

j=1
uijxij + ri = LBi(ẑi), i ∈ [n− 1],∑n

i=1
xij + si = 1, j ∈ [n′].

Note that some variables xij were set to 1 (or 0) according to set-
ting (5). Hence, the number of constraints (3) here is n′ < m.
Denote by k the number of variables xij . The total number of vari-
ables of LP(G) is k + n + n′ − 1. Since we have n + n′ − 1
nontrivial constraints, the basic optimal solution xG of LP(G) has
at most n+n′− 1 positive components (not including the ones set
by (5)). On the other hand, by the inequalities (3), there is at least
one positive component xGij for every j. We divide n′ inequalities
(3) into two types, I and II as follows. For each inequality j of
Type-I, xGij = 1 for some i; and for each inequality j of Type-II,
there is at least one xGij ∈ (0, 1). Let r be the number of Type-I
inequalities, then the number of inequalities of Type-II is n′ − r .
Since the number of non-integral components xGij in each Type-II
inequality is at least 2, the total number of positive components
of xG is at least r + 2(n′ − r) = 2n′ − r. We have an up-
per bound of n′ + n − 1 on the number of positive components
of xG. Therefore, we must have that 2n′ − r ≤ n′ + n − 1 or
r ≥ n′ − n+ 1. So the number of non-integral components of xG

is at most (n′ + n− 1)− (n′ − n+ 1) = 2(n− 1). q Fact 1

Proof of Fact 2. For i ∈ [n− 1], we have∑
j∈[m]

uijx
G
ij ≥ LBi(ẑi) ≥

1

1 + ε/2
ui(πi),

where the first inequality is due to the feasibility of G to LP(G)
and the last inequality follows from (8).

For i = n, we have
∑
j∈[m]unjx

G
nj ≥ un(πn), since xG is an

optimal solution of LP(G). q Fact 2

Proof of Lemma 3. We first assume that π1 and π2 are nonempty,
otherwise, the claim is trivial. For every k ∈ [j − 1], we denote
S1
k = {o1

1, . . . , o
1
k} and S2

k = {o2
1, . . . , o

2
k}. Intuitively, S1

k, S
2
k

are the sets of the first k objects in the ranking of agent 1 and agent
2, respectively. We can assume that u1(π∗1) ≥ u2(π∗2) (the case
when u1(π∗1) ≤ u2(π∗2) can be treated similarly). Because the
utility functions are lexicographic, it follows that u1(π∗1 ∩ S1

k) ≥
u2(π∗2 ∩ S2

k) ≥ u1(π1 ∩ S1
k) = u2(π2 ∩ S2

k) for any k ∈ [j − 1].
We now give the proof by contradiction. Suppose, w.l.o.g., that

π1 π∗1 6= ∅ and let o1
k, (1 < k ≤ j−1), be the highest-ranked item

in π∗1 but not in π1 (such an item o1
k exists as π∗1 6⊆ π1). It must

hold that u2(π2 ∩ S2
k−1) = u1(π1 ∩ S1

k−1) = u1(π∗1 ∩ S1
k−1) ≥

u2(π∗2 ∩ S2
k−1). If u2(π2 ∩ S2

k−1) = u2(π∗2 ∩ S2
k−1), this means

π2 and π∗2 are the same if restricted on S2
k−1. Note that π1 and π∗1

are also the same if restricted on S1
k−1. Now since o1

k ∈ π∗1 , this
means this item is available at the position k, and thus must be also
allocated in π1 by the rule A. This is a contradiction. Therefore,
u2(π2 ∩ S2

k−1) > u2(π∗2 ∩ S2
k−1). By the lexicographic property,

it follows that u2(π2) > u2(π∗2) and this, again, is a contradiction
as π∗ is the optimum. Hence π1 ⊆ π∗1 . It is not hard to see that
π2 ⊆ π∗2 . q Lemma 3
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