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ABSTRACT
We study a type of generalized two-sided markets where a
set of sellers, each with multiple units of the same divisible
good, trade with a set of buyers. Possible trade of each unit
between a buyer and a seller generates a given welfare (to be
split among them), indicated by the weight of the edge be-
tween them. What makes the markets interesting is a special
type of constraints, called transaction threshold constraints,
which essentially mean that the amount of goods traded be-
tween a pair of agents can either be zero or above a certain
edge-specific threshold. This constraints has originally been
motivated from the water-right market domain by Liu et.
al. where minimum thresholds must be imposed to mitigate
administrative and other costs. The same constraints have
been witnessed in several other market domains.

Without the threshold constraints, it is known that the
seminal result by Shapley and Shubick holds: the social wel-
fare maximizing assignments between buyers and sellers are
in the core. In other words, by algorithmically optimizing
the market, one can obtain desirable incentive properties for
free. This is no longer the case for markets with threshold
constraints: the model considered in this paper.

We first demonstrate a counterexample where no optimal
assignment (with respect to any way to split the trade wel-
fare) is in the core. Motivated by this observation, we study
the stability of the optimal assignments from the following
two perspectives: 1) by relaxing the definition of core; 2) by
restricting the graph structure. For the first line, we show
that the optimal assignments are pairwise stable, and no
coalition can benefit twice as large when they deviate. For
the second line, we exactly characterize the graph structure
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for the nonemptyness of core: the core is nonempty if and
only if the market graph is a tree. Last but not least, we
compliment our previous results by quantitatively measur-
ing the welfare loss caused by the threshold constraints: the
optimal welfare without transaction thresholds is no greater
than constant times of that with transaction thresholds. We
evaluate and confirm our theoretical results using real data
from a water-right market.

Keywords
Assignment games; Core; Computational sustainability; Wa-
ter right market

1. INTRODUCTION
One of the main research themes at the interface of com-

puter science and game theory, called algorithmic mecha-
nism design, is to design algorithms that solve optimization
problems and satisfy incentive constraints at the same time
[16]. For certain problems, incentive properties are obtained
for free. For example, in order to allocate valuable resources
to a set of agents that maximizes the social welfare, it turns
out that one only needs to have an optimal algorithm and
a truthful welfare-maximizing mechanism (aka. the VCG
mechanism) is resulted, by complimenting the optimal algo-
rithm with the VCG payment [23, 5, 8].

This is also the case in some domain without money, where
a designer wants to locate a facility that minimizes the sum
of all agents’ distances to the facility on a line [17, 22, 13, 4].
It turns out again that, the designer only needs to follow the
optimal algorithm, which in this case is to trivially locate the
median agent, and each agent will find it in his best interest
to report the truthful location.

Similar analogue extends to the realm of cooperative game
theory, where a principal wants to match a set of sellers,
each of who provides one unit of indivisible item, to a set
of buyers, who have unit demand for the items provided
by the set of sellers. Visualized as a bipartite graph be-
tween sellers and buyers, the edges in between denote which
transactions are feasible and the weight of each edge denotes
the welfare improvement (to be split) from conducting the
transaction between the corresponding seller and buyer. For
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such a simple market model, also known as the assignment
games, Shapley and Shubik proved in their seminal paper
[21] that by algorithmically maximizing (via LP) social wel-
fare among all agents, i.e., to find the maximum matching
in the weighted bipartite graph, one also obtains for free (as
the solution of the LP dual) a split of the welfare improve-
ment of each edge to the ending agents so that the resulting
utility vector is in the core, a very desirable incentive prop-
erty [19, Chapter 7 and 8] that says no subset of agents can
profitably deviate by trading among themselves.

Following the agenda set by Shapley and Shubik, there is
a literature that aims to extend this elegant result to more
general market models. Shapley and Scarf presented an al-
gorithmic approach to find a utility vector in the core of an
indivisible good exchange market [20]. Blume et. al. [2]
showed that, in models with intermediate traders who set
prices strategically, the game always has a subgame perfect
Nash equilibrium, and that all equilibria lead to an efficient
allocation of goods. It is also well known that, in models
without threshold as mentioned in the abstract of the paper,
a Shapley-Shubik style claim still holds: a maximum match-
ing induces a utility vector that is in the core. When the
market reveals a varying welfare profile depending on the
choices of trading, modeled from labor markets [6, 9], ad-
justing processes are proposed which guarantee to converge
into stable allocations. For multi-sided generalizations of
Shapley-Shubik markets, stability results were also settled
[18, 12, 10].

In this paper, we aim to study a type of generalized two-
sided markets where a set of sellers, each with multiple units
of the same divisible good, trade with a set of buyers. Possi-
ble trade of each unit between a buyer and a seller generates
a given welfare (to be split among them), indicated by the
weight of the edge between them. What makes the markets
interesting is a special type of constraints, called transac-
tion threshold constraints, which essentially mean that the
amount of goods traded between a pair of agents can either
be zero or above a certain edge-specific threshold. This con-
straints has originally been motivated from the water-right
market domain by Liu et. al. where minimum thresholds
must be imposed to mitigate administrative and other costs.
In the water right market domain, it is considered not worth
the effort to set up a trade if the transaction amount doesn’t
meet the threshold, since for an actual trade to take place,
one must set up pipes and pumps for water to transmit.
The same constraints have been witnessed in several other
market domains.

Our model is a natural generalization of the Shapley-
Shubik assignment game and the aforementioned model where
each agent has a maximum supply or demand. Our model
also generalizes the water-right market model proposed by
[11] by allowing different unit profit for transaction between
different pair of agents, instead of setting a selling(buying)
price for each. In that paper, they consider the computa-
tional aspect of finding the optimal assignment in such a
threshold model, however, it is unclear whether such an as-
signment induces a utility vector that is in the core. 1

As the first contribution of this paper, we answer the
above question negatively by showing that this is not al-
ways the case: there are market instances where the core is
empty. Thus, the elegance of Shapley and Shubik Theorem

1To the best of our knowledge, there is no other related work
on the threshold model besides [11].

fails to prevail to this setting. Motivated by this observa-
tion, we propose to study the following important question:

How stable are the optimal assignments in generalized mar-
kets?

We investigate the question from two perspectives: 1) Re-
laxation of the definition of core. 2) Restriction on the struc-
ture of the market graph.

In particular, our contribution can be summarized as fol-
lows:

• We borrow the notion of α-core from [3] which states
that no subset of agents can benefit more than α times.
We show that the core can be empty for some market
instances, however, the 2-core of any market instance
is non-empty. Moreover, we prove that any general
market always has a pairwise stable optimal trading
assignment.

• We show that the damaging on social welfare by im-
posing threshold constraints is limited. In particular,
the optimal social welfare with threshold constraints is
at least 1/4 of the optimal welfare without threshold
constraints. This lower bound can be improved to 1/2
when each transaction has the same weight, and 1/2
is tight.

• We give a complete characterization on the graph struc-
ture of the market with respect to the non-emptiness
of core. For any fixed bipartite graph, the core is non-
empty for any quantity,threshold and weights vectors,
if and only if each component of the graph is either an
even cycle or a tree.

• By experiments on water right market instances in
China, we show that the gap between optimal social
welfare and the core is very close to 1, giving evidences
that our generalized market model is stable in real-
world circumstances.

2. PRELIMINARIES

2.1 The generalized two-sided market model
We model a generalized market by a bipartite graph G =

(N,E), where N = U ∪ V and U, V denote the set of sellers
and buyers respectively. An agent i has a maximum amount
of goods qi that it demands/supplies. Each directed arc
ij ∈ E indicates that the seller i can sell goods to j, and αij

be the social welfare created by unit transaction from agent
i to j. Agents i and j will then split the unit profit αij .

For each arc ij, we require that the amount of the good
traded to be either 0 or no less than some threshold thij .
This transaction threshold ensures that each transaction
covers its cost that is not explicitly reflected in the current
model. Here we assume thij is no larger than min(qi, qj),
otherwise we can safely delete this edge without loss of gen-
erality.

A trading assignment of the market can be described by
a flow from sellers to buyers. Let fij denote the trading
amount between seller i and buyer j. The optimal social
welfare with threshold constraints, TS, is defined as the ob-
jective value of the following linear program:
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maximize
∑
ij∈E

αijfij ,

subject to
∑
i∈U

fij ≤ qj , j ∈ V∑
j∈V

fij ≤ qi, i ∈ U

fij = 0 or fij ≥ thij , ij ∈ E
fij = 0, ij /∈ E

We also define the optimal social welfare when only a
subset of agents C ⊆ U ∪ V are involved in the trade as
TS(C). For instance, TS(∅) = 0,TS({i}) = 0,TS({i, j}) =
min(qi, qj)αij for ij ∈ E and TS(N) = TS. In this way,
we can view a water right market 〈N,TS〉 as a cooperative
game where TS is the characteristc function. Similarly, we
define FS as the optimal social welfare without threshold
constraints, and FS(C) for C ⊆ N . Clearly, TS ≤ FS.

2.2 The core
We use x ∈ RN to denote the utility vector of game
〈N,TS〉, where xi is the utility of agent i gained from the
trading. Among all the utility vectors, those in the Core are
of special interest, which characterize the stable outcomes
of the game.

Definition 2.1. The core C(N,TS) of the cooperative game
〈N,TS〉 is the set of utility vectors,

C(N,TS) ={x ∈ RN |∑
i∈N

xi = TS(N),
∑
i∈C

xi ≥ TS(C), ∀C ⊆ N}

Intuitively, the core is the set of feasible utility vectors in
which no subset of agents want to deviate and trade among
themselves. Clearly, the core of cooperative game 〈N,TS〉 is
non-empty iff P1, the value of LP1, is equal to TS(N).

LP1: minimize
∑
i∈N

xi

subject to
∑
i∈C

xi ≥ TS(C), ∀C ⊆ N.

(1)
The above definition of core lies in the realm of coopera-

tive game with transferable utility(TU). For non-transferable
utility(NTU) games (see, e.g. [1] for more detailed discus-
sions), the above core definition doesn’t extend well because
given trading assignment fij , not all efficient utility vectors
x are realizable without side payments. Given trading as-
signment fij , we say a utility vector x is realizable without
TU, iff there exists gij ∈ R+, s.t.∑

j:ij∈E

gij = xi, ∀i ∈ N

and

gij + gji = αijfij , ∀ij ∈ E.
In the lemma below, we show that in the market games,

all the utility vectors in the core are realizable without TU,
thus in the remainder part of this paper we only care about
the existence of core solution.

Lemma 2.2. Given optimal trading assignment fij, if a
utility vector x ∈ RN is in the core C(N,TS), then x is
realizable without TU.

Define CS to be the value of the following LP, which is
the dual LP to (1). By strong duality, CS = P1. Thus,CS =
P1 ≥ TS(N) = TS.

LP2 maximize
∑
C⊆N

TS(C)λC

subject to
∑
C3i

λC = 1, ∀i ∈ N

λC ≥ 0, ∀C ⊆ N

We call a group of non-negative coefficients {λC} balanced
coefficients iff

∑
C3i λC = 1, ∀C ⊆ N and denote the col-

lection {C|λC > 0} by supp(λ).
According to [21], the cooperative game 〈N,FS〉 has a non-

empty core. By definition, TS ≤ FS. Thus for optimal
balanced coefficients λS in (2.2), we have

CS =
∑
C⊆N

λCTS(C) ≤
∑
C⊆N

λSFS(C) ≤ FS(N) = FS.

Lemma 2.3. The following inequality holds:

TS ≤ CS ≤ FS (2)

3. STABILITY ON GENERAL MARKETS
Now that the core can sometimes be empty, it is natu-

ral to consider solutions where the core constraint in (1)
are relaxed. Given α > 1, [3] proposes the constraints
α
∑

i∈S xi ≥ TS(S), ∀S ⊆ N . These constraints imply that
a coalition S will not deviate from the current trading as-
signment unless it can unilaterally improve its total wealth
by more than an α factor. We denote the set of feasible
solutions by α-core. The minimum α for which α-core is
non-empty arises when α∗ = CS

TS
. We also call α∗-core the

least core.

Theorem 3.1 (Shapley-Shubik 71’). The 1-core is non-
empty for any market instance without thresholds G = 〈G,α, q, th =
0〉. That is ,

TS ≥ CS.

However, it is not the case when threshold exists. We have
the following unweighted counter example, where CS

TS
= 7

6
.

This counter example shows that Theorem 1 fails to extend
to the general threshold model.

A1 A2

B1 B2

C1 C2

D1 D2

1

1

1

2

1

1

1

2

thAiBj = thAiCj = 1
thDiBj = thDiCj = 1
thD1D2 = 2

Figure 1: An unweighted market where CS
TS = 7

6
. The

numbers near the nodes are the quantities of sup-
plies/demands.
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Let fij be any trading assignment and pi =
∑

j∈N fij be
the total trading volume of agent i, ∀i ∈ N . We show the
maximal social welfare TS is at most 4, in both following
cases.

• fD1D2 = 2. In this case, fB2D1 = fC2D1 = 0, thus
pB2 + pC2 ≤ 1. As a result, the total social welfare,
which is exactly the total trading volume in this in-
stance, is at most pA2 +pD2 +pB2 +pC2 ≤ 1+2+1 = 4.

• fD1D2 = 0. In this case, we abandon edge D1D2, and
therefore pA2 +pD2 = fC1D2 +fC1A2 +fB1D2 +fB1A2 ≤
qB1 +qC1 = 2. Thus TS(N) ≤ pA2 +pD2 +pB2 +pC2 ≤
2 + 1 + 1 = 4.

On other hand, consider balanced coefficients λ, λA∪D =
λA∪B = λA∪C = 1

3
, λB∪C∪D = 2

3
. With simple calcula-

tion, we have TS(A ∪D) = 2,TS(A ∪ B) = 2,TS(A ∪ C) =
2,TS(B ∪ C ∪D) = 4, which indicates CS ≥ 1

3
(2 + 2 + 2) +

2
3
× 4 = 14

3
.

Therefore, CS
TS
≥ 7

6
.

3.1 Threshold Gaps
It is of natural interest to inspect the gap between the

optimal threshold solution TS and the optimal fractional
solution CS. On one hand, we hope the threshold constraint
imposed by transaction cost doesn’t harm social welfare too
much. On the other hand, the threshold gap FS

TS
is an upper

bound for α∗ = CS
TS

.
We will first study the unweighted case where αij = 1,
∀ij ∈ E. In this case, the optimal social welfare becomes
the maximum trading volume.

Proposition 3.2. The threshold gap FS
TS

for any unweighted
water market instance G = 〈G,α, q, th〉 is at most 2, which
is almost tight. Namely for any ε > 0,

2− ε ≤∃
FS

TS
≤∀ 2

The instance of gap 2− ε simply contains 3 agents, seller
1 and buyer 2,3, with q1 = 2− ε, q2 = q3 = th12 = th13 = 1,
and α12 = α13 = 1. Then FS = 2−ε, while TS = 1, because
seller 1 can only trade with at most 1 buyer.

Corollary 3.3. For the unweighted case where αij = 1,
∀ij ∈ E, the 2-core of the threshold trading assignment prob-
lem is non-empty.

For general case where arbitrary αij are allowed, we show
that the gap is upper bounded by 4.

Proposition 3.4. The threshold gap FS
TS

for any water mar-
ket instance G = 〈G,α, q, th〉 is at most 4.

FS

TS
≤∀ 4

3.2 Non-emptiness of 2-core
As a by-product of the upper bounds of threshold gap, we

can derive that the 4-core is non-empty for general weighted
water market without threshold constraints. In other words,
there always exists an efficient, almost-stable solution, such
that no coalition can gain more than 4 times by deviating
and trading among thenselves. Below we show for weighted
case, the bound can also be improved to 2, which is the
same as the unweighted case. We prove α∗ ≤ 2 by direct
construction of allocation.

Theorem 3.5. The 2-core is non-empty for any water mar-
ket instance G = 〈G,α, q, th〉. That is ,

TS ≥ 1

2
CS.

Proof. Given an optimal threshold solution f , let xi =
1
2

∑
j∈V fijαij for i ∈ U , and xj = 1

2

∑
i∈U fijαij for j ∈ V .

Notice that∑
i∈C

xi =
∑

i∈C∩U

xi +
∑

i∈C∩V

xj

=2
∑

i∈C,j∈C

fijαij +
∑

i∈C,j /∈C

fijαij +
∑

i/∈C,j∈C

fijαij

≥
∑

i∈C,j∈C

fijαij +
∑

i∈C,j /∈C

fijαij +
∑

i/∈C,j∈C

fijαij

=
∑

i∈C or j∈C

fijαij ,

(3)

for consider any coalition C, if 2
∑

i∈C xi < TS(C) then∑
i∈C or j∈C

fijαij ≤ 2
∑
i∈C

xi < TS(C),

and we can replace all the transactions fij with i ∈ C or j ∈
C by the optimal threshold solution on C, which increases
the social welfare and thus contradicts to the optimality of
f .

Therefore, 2
∑

i∈C xi ≥ TS(C) for every C ⊆ U ∪ V , and
{2xi} is a feasible solution to LP (1), whose minimum is CS.
Thus 2TS ≥

∑
i xi ≥ CS.

3.3 Pairwise Stability
Pairwise stability is another natural relaxation of the def-

inition of core, in the sense that we only allow subsets of size
2 to deviate. We show that there always exists a pairwise
stable assignment (which may not optimize social welfare).
Furthermore, the optimal solution is always pairwise stable
in the markets with transferable utility.

Let’s first consider a more restricted market, where each
agent can trade with at most one buyer/seller. Now that
the trading assignment is a matching in the bipartite graph
G = (U ∪V,E), and we can ignore the threshold constraints
without loss of generality. This is because in this case a pair
of seller/buyer will always trade in their smaller quantity,
the threshold constraints are satisfied trivially.

The optimal trading assignment is thus the maximal match-
ing of the bipartite graph, with weight on edge ij being
TS({i, j}) = min(qi, qj)αij . The following LP relaxation
gives the maximal matching.

LP3 maximize
∑

i∈U,j∈V

TS({i, j})λij

subject to
∑

j:ij∈E

λ{i,j} ≤ 1, ∀j ∈ V∑
i:ij∈E

λ{i,j} ≤ 1, ∀i ∈ U

λ{i,j} ≥ 0, ∀{i, j} ∈ U × V

Let λ∗ be an integral maximal matching, and x∗ ∈ RN

be any optimal solution of the dual LP of LP 3.

LP4 minimize
∑
i∈U

xi +
∑
j∈V

xj

subject to xi + xj ≥ TS({i, j}), ∀i ∈ U, j ∈ V
xi ≥ 0, ∀i ∈ U ∪ V

293



By slackness, λ∗{i,j} = 1 implies x∗i + x∗j = TS({i, j}),
and x∗i > 0 implies that

∑
j:ij∈E

λ{i,j} = 1, which indicates

i is in the matching. Therefore we can conclude that x∗

is a realizable utility vector without TU, by splitting the
profit gained from each pair of transaction in the maximal
matching to both sides. Moreover, x∗ is pairwise stable by
the constraints in LP 4.

Let fij = λ∗{i,j}min(qi, qj), we have the following theorem.

Theorem 3.6. For any market instance with non-transferable
utility G = 〈G,α, q, th〉, there exists a trading assignment
fij and a corresponding realizable pairwise stable utility vec-
tor x, namely

xi + xj ≥ TS({ij}) ∀ij ∈ E.

Theorem 3.7. For any market instance with transferable
utility G = 〈G,α, q, th〉, there exists an optimal pairwise
stable utility vector x, namely

xi + xj ≥ TS({ij}) ∀ij ∈ E,

and ∑
i

xi = TS(N)

Proof. Since λ∗ represents a matching, supp(λ∗) is a
collection of disjoint 2-people coalitions. Thus,

∑
C∈supp(λ∗)

TS(C) ≤ TS

 ⋃
C∈supp(λ∗)

C

 ≤ TS(N)

Therefore, optimized social welfare TS(N) is enough to
keep each pair stable.

Definition 3.8. A market instance is k-way stable iff there
exists utility vector x such that

∑
i∈S xi ≥ TS(S),∀S ⊆

N, |S| ≤ k, and
∑

i∈N xi = TS(N).
Specifically, we also call 2-way stable as pairwise stable.

Proposition 3.9. There exists market instances that are
not 4-way stable.

It is easy to verify the social welfare is at most 2.5 in Fig-
ure 2. However, consider the balanced coefficients λ with
3 supports: λ{A,B,C,D} = λ{A,B,C,E} = λ{D,E} = 0.5, with
TS({A,B,C,D}) = 2.5,TS({A,B,C,E}) = 2,TS({D,E}) =
1. Clearly TS(N) ≤

∑
S λSTS(S) = 2.75.

Yet we still don’t know whether transferable utility is nec-
essary to guarantee the pairwise stability of the optimal so-
lution. It is formulated as a linear program in the following
conjecture, and we will resume further discussion on this
topic in the experiment section.

Conjecture 3.10. For any market instance G = 〈G,α, q, th〉
with any optimal trading assignment fij, the value of the fol-
lowing LP is at least 1:

LP5 maximize β

subject to
∑
j′

gij′ +
∑
i′

gji′ ≥ βTS({ij}),

gij + gji ≤ αijfij ,
gij ≥ 0, gji ≥ 0, ∀ij ∈ E

A

B C

D E

1.5

1

11

1

qA = 1.5
qB = 2
qC = qD = qE = 1

Figure 2: The counter example for 4-way stability.
The numbers on the edges are the thresholds, and
αij = 1,∀ij.

4. GRAPH RESTRICTED MARKETS
In the previous section we showed that for every instance

of water right markets, the 2-core is nonempty. In this sec-
tion, we study the impact of the underlying graph structure
on the stability of the market. This graph restricted model
was studied in the seminal work of Myerson [15].We prove
that when the underlying graph G is a tree or a cycle, the
game has nonempty core, so that no coalition will deviate
from the optimal social welfare solution. We begin with the
concept of connected balanced coefficients.

Definition 4.1. A group of balanced coefficients λ is con-
nected, if for every C ∈ supp(λ), the induced subgraph of G
on C (denoted as GC) is connected.

It is clear that there always exists a group of connected
optimal balanced coefficients, since TS(A ∪ B) = TS(A) +
TS(B) when there is no edge between A and B in G. There-
fore, for the rest of this section we only consider connected
balanced coefficients.

Define the 2-norm of a group of balanced coefficients ‖λ‖2 =

(
∑

C λC |C|2)1/2. The following lemma turns out to be ex-
tremely useful in the proofs later on.

Lemma 4.2. Consider all groups of connected optimal bal-
anced coefficients, amongst which λ is the one maximiz-
ing ‖λ‖2. Then for any A ∈ supp(λ) and ij ∈ E such
that i ∈ A, j /∈ A, there exists B ∈ supp(λ) such that
i /∈ B′, j ∈ B and A ∩B 6= ∅.

Proof. Since
∑

C3i λC =
∑

C3j λC = 1, there must

exist B ∈ supp(λ) that i /∈ B and j ∈ B. Notice that
A ∪ B also induces a connected subgraph of G because of
the edge ij. Suppose A ∩ B = ∅, then we can design
another group of connected balanced coefficients λ′ with
δ = min(λA, λB) > 0:

λ′C =

 λC + δ if C = A ∪B,
λC − δ if C = A or C = B,
λC otherwise.

Since TS(A∪B) ≥ TS(A) +TS(B), balanced coefficients λ′

must also be optimal. On the other hand, ‖λ′‖22 − ‖λ‖22 =
δ(|A ∪ B|2 − |A|2 − |B|2) > 0, which contradicts to our
assumption on λ. So it must be the case that A ∩B 6= ∅.

Proposition 4.3. If G is a tree (a connected acyclic graph),
then TS = CS.
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Proof. Let λ be the group of connected optimal bal-
anced coefficients which maximizes ‖λ‖2. Suppose there ex-
ists A ∈ supp(λ)−{N}, then there must be an edge ij ∈ E
such that i ∈ A, j /∈ A. However, as ij is a cut edge in G, ev-
ery connected subgraph of G containing j and not containing
i must be disjoint from A, which contradicts to Lemma 4.2.
So supp(λ) = {N} and TS = CS.

We note that the result of Proposition 4.3 was already
known since [7] , and was also implied from the more general
treewidth results in [14, 3].

Proposition 4.4. If G is an even cycle, then TS = CS.

Proof. Let λ be the group of connected optimal bal-
anced coefficients which maximizes ‖λ‖2. Every coalition
C in supp(λ) consists of the vertices in a consecutive chain
in G. We first prove a conditional convexity: if GA and
GB are two chains, such that every component in GA∩B
consists of even number of vertices, then TS(A) + TS(B) ≤
TS(A ∪B) + TS(A ∩B). Here we only prove this convexity
in the case where GA∩B has only one component, and other
cases can be dealt in the exact same way.

Let the vertices in A∩B being v1, v2, . . . , v2k in order, and
suppose x0 ∈ A\B, v2k+1 ∈ B\A such that v0v1, v2kv2k+1 ∈
G. Let f and f ′ be the optimal threshold solution of TS(A)
and TS(B) respectively. We propose 2k designs for the
threshold solutions on A ∪ B and A ∩ B: the i-th design
is that

fA∪B
vjvj+1

=

{
fvjvj+1 0 ≤ j < i
f ′vjvj+1

i ≤ j ≤ 2k

fA∩B
vjvj+1

=

{
f ′vjvj+1

1 ≤ j < i
fvjvj+1 i ≤ j < 2k

Notice that for each design, the summation of social welfare
on fA∪B and fA∩B is the same as TS(A) +TS(B). The i-th
design is not feasible, only when the transaction quantity on
vi is out of limit. When 1 < i < 2k, that means

fvi−1vi + f ′vivi+1
> qi or f ′vi−1vi + fvivi+1 > qi,

and since qi ≥ fvi−1vi + fvivi+1 , qi ≥ f ′vi−1vi + f ′vivi+1
, we

know that

(f ′vivi+1
> fvivi+1 and fvi−1vi > f ′vi−1vi),

or (fvivi+1 > f ′vivi+1
and f ′vi−1vi > fvi−1vi).

This indicates that the sign of (f − f ′) must be alterna-
tive along the edges from v1 to v2k. However, for the 1st
and 2k-th design to fail, it is necessary that fv1v2 < f ′v1v2
and fv2k−1v2k > f ′v2k−1v2k , leading to a direct contradiction,
which means there must be at least one feasible design.

The conditional convexity implies that no two mutually
exclusive A and B in supp(λ) can have an intersection con-
sisting of only even consecutive parts: otherwise since

|A|2 + |B|2 < |A ∪B|2 + |A ∩B|2,

replacing a fraction of A and B by A∪B and A∩B always
give rise to larger ‖λ‖2.

Now suppose C1 ∈ supp(λ) and C1 6= N . We label the
vertices in the even cycle as 1, 2, . . . , 2n, and assume C1 =
[1,m] with m < 2n. According to Lemma 4.2, there must be
another C2 = [r, 2n] ∈ supp(λ) with 1 < r ≤ m. Further-
more, according to the arguments above, |C1∩C2| = m−r+1
is odd.

By symmetry we assume that both m and r are odd. Ap-
plying Lemma 4.2 on vertices r and r − 1, there must be
another C3 = [1, r − 1] ∪ [l, 2n] ∈ supp(λ), and |C2 ∩ C3| =
2n− l + 1 is odd. However, whether C1 ∩ C3 = [1, r − 1] (if
m < l) or [1, r − 1] ∪ [l,m] (if m ≥ l), it always contradicts
to the conditional convexity. That means at the very begin-
ning, C1 6= N does not exists, so the balanced coefficients λ
is simply λN = 1. Thus TS = CS.

A directed corollary of Proposition 4.3 and 4.4 is that
when every connected component of G is a tree or an even
cycle, the trading assignment game on G has nonempty core.
On the other hand, Figure 2 already presented a market
instance with empty core, whose underlying bipartite graph
is a minor of every connected graph which is neither a tree
nor an cycle. That leads to the following characterization of
bipartite graphs ensuring nonempty core:

Theorem 4.5. Given a bipartite graph G, every possible
market instance G = 〈G,α, q, th〉 has nonempty core if and
only if every connected component of G is a tree or an even
cycle.

We define the set of thresholded edges F ⊂ E consists of
edges ij with thij > 0. The result of Shapley and Shubik
essentially says that the market is stable when F is empty.
We make a further observation that a larger class of under-
lying graphs could ensure stability given constraints on F .
That is concluded in the following proposition:

Proposition 4.6. If G is a unicyclic graph with the even
cycle H, and all thresholded edges are in H, then the game
is stable.

5. EXPERIMENTS VIA WATER-RIGHT MAR-
KET DATA

Our first experiment studies the gap of TS and CS in real
water market in Gansu Province, China. Intuitively, CS is
the least amount of profit to keep any coalition stable, which
is at least TS, the optimal social welfare. In other words,
no coalition can earn α∗ = CS

TS
times what they earn by

deviating. We show a theoretic upper bound of 2 for α∗ for
any market, and construct a market instance with α∗ = 7

6
.

However, the construction for market instance with empty
core is not easy, which needs careful design for the graph
structure, weights, quantity and thresholds. In the following
experiment, we show markets with empty core do exist in
the real world, but they typically have α∗ with close to 1,
that is, α∗ = 1 + ε for some ε ∼ 10−3, which is small enough
to be ignored. We calculate α∗ by first solving the MIP for
TS(the same MIP in [11]) and LP2 for CS.

Based on the real trading data in the water right mar-
ket in Xiying Irrigation, Gansu Province, China, we gener-
ate data to evaluate the relationship between core solutions
and the optimal assignment. The original data consists two
parts. The first part is the connectivity data between vil-
lages in the market. The second part is the trade records
from 2008 to 2015. Each record consists of its price, vol-
ume and date. When sampling an instance with n agents.
We run the following process n times as the n agents: sam-
ple a unit bid/ask (0.2-0.4 yuan) according to the historical
prices; sample a volume from historical records; sample a
village as its location. The connectivity between villages is
based on our data. For simplification, the threshold on an
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arc is 1/3 of the smaller one between seller’s volume and
buyer’s volume.

In the second experiment, we study the validity of the
conjecture proposed in the end of Section 3. We run LP 5
on the same water right market instances in Gansu Province,
China and find that all the objective values β of those LP
are at least 1, which means the optimal solution has an
efficient utility vector without TU. We vary the size of the
market from 8 to 50, and for each size, we solve the LP on
500 randomly generated instances. The result is presented
below in Table 2.

APPENDIX
A. PROOF FOR LEMMA 1

Theorem A.1 (Generalized Hall’s Theorem). Given a bi-
partite graph (A ∪B, E), and vectors a ∈ RA, b ∈ RB, there
exists uij , ij ∈ E, such that∑

j

uij ≥ ai and
∑
i

uij ≤ bj ,

if and only if

∀C ⊆ A,
∑

j∈N (C)

bj ≥
∑
i∈C

ai,

where N (C) is the neighbour of C in B.2

Proof Lemma 1.
Let A = N,B = E,E = {(i, e)|i is a node of e}, where

G = (N,E) is the bipartite graph for buyers and sellers and
ai = xi, be = αijfij , where e = ij.

Note that by the definition of core, for any coalition C ⊆
N , ∑

i∈N/C

xi ≥ TS(N/C) ≥
∑
i,j /∈C

αijfij ,

in other words,∑
i∈C

ai =
∑
i∈C

xi = TS(N)−
∑

i∈N/C

xi

=
∑
ij∈E

αijfij −
∑

i∈N/C

xi

≤
∑
ij∈E

αijfij −
∑
i,j /∈C

αijfij

=
∑

i∈C∨j∈C

αijfij =
∑

e∈N (C)

be.

By Generalized Hall Theorem , there exists gij and gji, i ∈
U, j ∈ V , such that∑

e∈E

gie ≥ xi , ∀i ∈ N and
∑

e=ij∈E

gie + gje ≤ αijfij .

B. PROOFS FOR THRESHOLD GAPS
The proof of upper bound part of Proposition 3.2 is based

on the following observation that there’s always a tree-structured
optimal fractional solution and classical result in 0-1 knap-
sack.

2The proof is left to the full version

Lemma B.1. There exists a fractional solution f with max-
imum social welfare, along with a rooted forest T on U ∪ V ,
such that:

- An edge ij ∈ T if and only if fij > 0;

- For any non-root vertex i in T , qi =
∑

j fij.

Lemma B.2. An 0-1 knapsack problem always have a fea-
sible solution with total value which is at least half of the
optimal value of its linear relaxation.

Proof of Proposition 3.2. Let f and T be the frac-
tional solution and rooted forest given in Lemma B.1. Within
T , let T (i) be the vertices in the subtree rooted at vertex
i ∈ U ∪V , S(i) be the children of i and par(i) be the parent
vertex of i (if exists). We call a vertex i introverted, if

fpar(i)i ≥
∑

j∈S(i)

fij .

For instance, a leaf vertex i in T must be introverted, since
fpar(i)i =

∑
j fij in this case. Oppositely, a root vertex i

with at least one child cannot be introverted (in this case,
we assume fpar(i)i = 0). Consider any introverted vertex i,
we have

qi ≥
∑
j

fij ≥ 2
∑

j∈S(i)

fij ≥
∑

j∈S(i)

∑
k

fjk =
∑

j∈S(i)

qj .

The last equality holds since every j in the summation is a
non-root vertex. Therefore, even in a threshold solution f ′

it is feasible to have f ′ij = qj for all j ∈ S(i).
We prove TS(N) ≥ 1

2
FS(N) by induction on the number

of edges. The base case, when there is no edge and every
vertex is isolated, is trivial. When |E| > 0, there must be a
vertex i which is not introverted, but every other vertex in
T (i) is introverted. By the above arguments on leaves and
roots, |T (i)| must be larger than 1, and therefore induction
hypothesis holds on N − T (i).

Consider an 0-1 knapsack problem with capacity W =∑
j fij . For each j ∈ S(i), there is an item of weight wj = qj

and value vj = fij . If
∑
wj ≥ W , in the linear relaxation

the optimal value is at least W −
∑

(wj − vj) and we apply
Lemma B.2. Otherwise when

∑
wj < W , we can select all

items and since i is not introverted we know 2
∑
vj ≥ W .

So in either case, there is a solution S ⊆ S(i) such that

∑
j∈S

fij ≥
1

2

∑
j

fij −
1

2

∑
j∈S(i)

(qj − fij).

We can then design a feasible threshold solution f ′: the
transactions outside T (i) is the same as the optimal solu-
tion TS(N −T (i)), which by induction hypothesis is at least
1
2
FS(N − T (i)); and assuming i ∈ U by symmetry, we set

f ′par(k)k = qk for all k in

(⋃
j∈S

V ∩ T (j)

)
∪

 ⋃
j∈S(i)−S

U ∩ T (j)

 .
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Table 1: The gap between the maximal social welfare and core in water markets in Gansu Province, China.
Number of agents 8 16 24 32 40 48

Percentage of empty core 0% 2% 6% 3% 21% 23%
Maximum ε = α∗ − 1 0 3.373× 10−3 1.118× 10−3 1.270× 10−3 1.731× 10−3 5.694× 10−4

Average ε 0 3.466× 10−5 2.543× 10−3 2.035× 10−5 5.281× 10−5 1.992× 10−5

Median ε 0 0 0 0 0 0

Table 2: The objective value β on instances of water markets in Gansu Province, China.
Number of agents 8 12 16 20 24 28 32 36 40 44 48

Minimum 1 1 1.0072 1 1 1 1 1 1.0023 1 1
Median 1.0936 1.1015 1.0917 1.1126 1.0923 1.0757 1.0698 1.0605 1.0662 1.0551 1.0606

Maximum 2.1731 1.9549 1.4496 1.4350 1.3729 1.3367 1.3585 1.2310 1.3172 1.2305 1.1994

Then it holds

TS(N)

≥1

2
FS(N − T (i)) +

∑
j∈S

∑
k∈V ∩T (j)

qk +
∑

j∈S(i)−S

∑
k∈U∩T (j)

qk

=
1

2
FS(N − T (i)) +

∑
j∈S

fij +
∑

j∈S(i)

∑
k,l∈T (j)

fkl

≥1

2

∑
k,l/∈T (i)

fkl +
∑
j∈S

fij +
∑

j∈S(i)

∑
k,l∈T (j)

fkl

≥1

2

∑
k,l

fkl −
1

2

∑
j

fij +
1

2

∑
j∈S(i)

(qj − fij) +
∑
j∈S

fij

≥1

2
FS(N).

The proof for Proposition 3.4 also relies on the Lemma B.2,
but in a simpler manner.

Proof of Proposition 3.4. Let f and T be the frac-
tional solution and rooted forest given in Lemma B.1. For
each vertex i, let S(i) be the children of i, and we propose
a 0-1 knapsack problem KS(i): the capacity W = qi, item
weights are wj = min(qi, qj) and item unit values are αij for
every j ∈ S(i). It is clear that fij/wj is a feasible solution
of the relaxed problem of KS(i), so there exists a solution
SKS(i) ⊆ S(i) such that∑

j∈SKS(i)

wjαij ≥
1

2

∑
j∈S(i)

fijαij .

Now we design two threshold solutions f ′ and f ′′:

f ′ij = min(qi, qj),∀i ∈ U, j ∈ SKS(i),

f ′′ij = min(qi, qj),∀i ∈ V, j ∈ SKS(i).

And therefore,

TS(N) ≥ 1

2

∑
i,j

f ′ijαij +
1

2

∑
i,j

f ′′ijαij

≥1

4

∑
i∈U

∑
j∈S(i)

fijαij +
1

4

∑
i∈V

∑
j∈S(i)

fijαij =
1

4
FS(N).

C. PROOF FOR PROPOSITION 4.6
Proof. It suffices to show stability when G is connected.

Let λ be the group of connected optimal balanced coeffi-
cients which maximizes ‖λ‖2, and we are going to combine

the arguments used in the two proofs of Proposition 4.3 and
4.4.

For every vertex v in the cycle H, let T (v) denote the
tree outside H rooted at v. With the same argument for
trees, we know that every C ∈ supp(λ) either T (v) ⊂ C
or T (v) ∩ C = ∅. Therefore, the coalition C could still be
represented by a consecutive chain in H. What is left is
to prove a similar convexity: if A,B ∈ supp(λ), and even
connected component in GA∩B ∩H consists of even number
of vertices, then TS(A) +TS(B) ≤ TS(A∪B) +TS(A∩B).

We inherit the same scheme and notations from the proof
of Proposition 4.4. The difference is that, the i-design is
now parameterized. We abuse the notations for a solution
f , using fT (v) to denote transaction amounts on any edge
in T (v), and fvT (v) to denote the summation of all transac-
tions between v and its children in T (v). The i-design with
parameter t ∈ [0, 1] is:

fA∪B
vjvj+1

=

{
fvjvj+1 0 ≤ j < i
f ′vjvj+1

i ≤ j ≤ 2k
,

fA∪B
T (vj) = tfT (vj) + (1− t)f ′T (vj), 1 ≤ j ≤ 2k.

fA∩B
vjvj+1

=

{
f ′vjvj+1

1 ≤ j < i
fvjvj+1 i ≤ j < 2k

,

fA∩B
T (vj) = (1− t)fT (vj) + tf ′T (vj), 1 ≤ j ≤ 2k.

We can construct such solutions because there is no thresh-
olded edge in T (v), and thus we can do convex combinations.
The i-th design is not feasible for any t ∈ [0, 1], only when
for every t,

max(fvi−1vi + f ′vivi+1
+ tfviT (vi) + (1− t)f ′viT (vi),

f ′vi−1vi + fvivi+1 + (1− t)fviT (vi) + tf ′viT (vi)) > qi.

Notice that the two terms adds up to

fvi−1vi +f ′vivi+1
+f ′vi−1vi +fvivi+1 +fviT (vi)+f ′viT (vi) ≤ 2qi,

so it must be the case when one of them is always dominating
and larger then qi throughout every t ∈ [0, 1]. Computing
the two cases for t = 0, 1, we could get the same alternating
pattern of f − f ′:

(f ′vivi+1
> fvivi+1 and fvi−1vi > f ′vi−1vi),

or (fvivi+1 > f ′vivi+1
and f ′vi−1vi > fvi−1vi).

And everything remaining follows the proof of Proposition 4.4.
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