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ABSTRACT
Cooperative games offer an elegant framework to model cooperation
among self-interested agents. A central question of these games is
how to distribute the payoff to each player when all players cooper-
ate and derive some benefits. In this work, we consider cooperative
transferable utility games where a subset of players can form a
coalition if and only if they are connected in the underlying commu-
nication structure. We propose a relaxed notion of supermodularity,
called quasi-supermodularity, for such games, and identify a class
of networks where many of these problems are polynomial-time
solvable for relaxed-supermodular games. We complement these
results by showing that without supermodularity, these problems
become hard even if the underlying graph is a tree.
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1. INTRODUCTION
Cooperation forms an essential part of our society. Consider a

group of companies that mine various resources from mountains.
Different combinations of companies yield different quantities of
resources, and consequently lead to different profits. For the co-
operation to be successful, one needs to consider how the benefits
should be divided among them. This scenario can be modeled as a
cooperative transferable game. Specifically, we are given a finite set
N of players and a characteristic function v : 2N → R where v(S)
corresponds to a value of a coalition S. The aim of the model is to
divide the whole value v(N) among the participants of the game.
Over the past decades the cooperative game theory has succeeded
in achieving this goal by proposing a number of important solution
concepts including the core and the nucleolus.

In particular, the class of supermodular (convex) games has at-
tracted a great deal of attention in the literature. Supermodularity of
a characteristic function captures an important economic notion of
"increasing marginal return," meaning that entering a larger coali-
tion results in a higher marginal profit as compared to when joining
a smaller coalition. Formally, a characteristic function v : 2N → R
is supermodular if for each S, T ⊆ N ,

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ). (1.1)

It is well known that for supermodular cooperative games, the core
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is always non-empty, and an element of the core can be computed
efficiently [11, 34].

The standard framework of cooperative games assumes that all
coalitions are allowed to form. In many real-life settings, however,
people often encounter restrictions on cooperation: for instance, a
group of companies may not be able to cooperate due to the lack of
geographical connection. To model such situations, a cooperative
game restricted by an undirected graph, or simply a graph game,
was proposed by Myerson [30] where a subset of players can form
a coalition if and only if they are connected in the graph.

Now, one of the issues that arise when considering graph-restricted
games is that the standard definition of supermodular games is no
longer applicable, as the set of connected coalitions is not neces-
sarily closed under union and intersection. Intuitively speaking,
supermodularity under graph-restricted settings should occur only
when players join their neighbouring coalitions.

In this paper, we hence introduce a relaxed notion of supermodu-
larity, called quasi-supermodularity, by imposing supermodularity
only on subsets of the family that are closed under union and inter-
section. We consider computational complexity of such games with
tree-like restrictions; specifically, we focus on undirected graphs in
which the maximal cliques of the graph form a tree. Such graphs
are called cycle-complete1 graphs.

In the existing literature on combinatorial optimization, it is
known that if a characteristic function satisfies a relaxed form of su-
permodularity and the graph is cycle-complete, the so-called Myer-
son game also has supermodularity [15, 12]. Utilizing this property,
we derive polynomial-time solvability of computational problems
for several solution concepts in quasi-supermodular games on cycle-
complete graphs. We then prove that the hereditary property of su-
permodularity is unlikely to hold unless the graph is cycle-complete.

It turns out that quasi-supermodularity is necessary for games on
cycle-complete graphs; we prove that without quasi-supermodularity,
many complexity questions become intractable even if the under-
lying graph is a tree. Indeed, a similar result concerning the core
was obtained by Chalkiadakis et al. [5], who showed that many
core-related questions are hard for games on trees or graphs hav-
ing bounded tree-width. We show that the computational problems
related to the least core, the kernel, and the Myerson value are
co-NP-hard even if the characteristic function is cohesive, and the
underlying graph is a star. We also prove that the problems regarding
the least core, the nucleolus, and the kernel become ∆p

2-hard for
games on trees if we allow arbitrary values for characteristic func-
tions (∆p

2 is the class of decision problems solvable in polynomial
time by using an NP oracle). This strengthens the hardness results
by Greco et al. [17, 18], who showed that membership problems

1The term “cycle-complete” is used in [36]; such graphs are also
called block graphs [24].
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for the nucleolus and the kernel are ∆p
2-hard for games on complete

graphs. We summarize our computational complexity results in
Table 1.
Related work Several notions of relaxed-supermodularity have
been considered in economics and operations research literatures.
In fact, quasi-supermodularity in this paper is an extension of quasi-
convexity introduced by Bilbao et al. [2], who showed that for games
on convex geometries, the convex hull of marginal contribution
vectors is contained in the core if and only if the characteristic
function is quasi-convex. For graph-restricted games, different
types of relaxed-supermodularity were also introduced by Herings
et al. [20] and Khmelnitskaya et al. [25]. They showed that such
restrictions are sufficient in order for their proposed solutions to lie
in the core. We note, however, that few attempts have been made
to explore algorithmic implications of relaxed supermodular games
with limited communication structure.

There is a rich body of the literature on the computational aspects
of cooperative games; see [4] for an overview. Although the liter-
ature focuses more on settings where all coalitions are allowed to
form [8, 10, 13, 14, 17, 18, 28], several attempts have been made
to study the complexity of solutions under graph-restricted settings
[5, 9, 23, 35]. Some authors [5, 9, 35] have observed that many
solutions for graph games can be computed efficiently if the number
of connected coalitions in the underlying graph is bounded by a
polynomial in the number of players, as is the case for paths and
cycles. Elkind [9] unified these approaches, by giving a charac-
terization of graph families with polynomially bounded number of
connected coalitions as well as by showing that various solutions
can be computed in time polynomial in the number of connected
coalitions. The most closely related to ours is perhaps the work by
Chalkiadakis et al [5]. However, there are a number of differences
between their work and ours: first, in their work, the membership
and search questions for other solution concepts such as the Myer-
son value are not addressed; second, they explore games constrained
by graphs with bounded tree-width, whereas we focus on a different
class of tree-like graphs; and finally, they do not explore the input
of supermodularity.

2. PRELIMINARIES
We start by introducing basic notation and definitions of set sys-

tems.
Subfamilies and set functions Let N be a finite set and F be a
family of subsets of N . We write F(a) = {S ∈ F | a ∈ S } for
a ∈ N , and F(a \ b) = F(a) \ F(b) for a, b ∈ N . We say that
F is an intersecting family if for all S, T ∈ F with S ∩ T 6= ∅,
S ∪ T ∈ F and S ∩ T ∈ F . A family F is called a distribu-
tive lattice if it is closed under union and intersection, i.e., for all
S, T ∈ F , S ∪ T ∈ F and S ∩ T ∈ F . Throughout this paper, we
only consider set functions f : F → R where f(∅) = 0 whenever
∅ ∈ F . We say that f : F → R is superadditive if for all S, T ∈ F
such that S ∩ T = ∅ and S ∪ T ∈ F , f(S) + f(T ) ≤ f(S ∪ T ).
For a nonempty subset S ⊆ N , a partition {Xi}i∈I of S is said
to be an F-partition if Xi ∈ F for all i ∈ I . We define F̂ as the
collection of disjoint unions of sets in F , namely,

F̂ = {S ⊆ N | S 6= ∅, there exists an F-partition of S } ∪ {∅}.

Notice that F̂ = 2N whenever F includes all the singletons. Also,
it is not difficult to show that if F is an intersecting family, then
F̂ is a distributive lattice [12]. For a set function f : F → R,
the Dilworth truncation [33], or simply the truncation of f is the

function f̂ : F̂ → R such that for any nonempty S ∈ F̂ ,

f̂(S) := max

{∑
i∈I

f(Xi)

∣∣∣∣∣{Xi}i∈I is an F-partition of S

}
,

and f̂(∅) = 0. For a rational-valued set function f on a family
F ⊆ 2N , we define 〈f〉 as an upper bound on the encoding lengths
of outputs of f .

3. GRAPH GAMES
Now, we define a cooperative game constrained by graphs. Given

an undirected graph (N,E), let FE be the set of connected subsets
of N ; we assume ∅ ∈ FE for convention.

DEFINITION 3.1. A cooperative transferable utility game with a
graph structure, or simply a graph game, is a triple (N, v,E) where
N is a finite set of players, v : FE → R is a characteristic function,
and E ⊆ {{a, b} | a, b ∈ N ∧ a 6= b } is the set of communication
edges between players.

In case where E = { {a, b} | a, b ∈ N ∧ a 6= b }, the game
(N, v,E) is said to have full communication structure and is simply
denoted by (N, v). The subsets S of N are referred to as coalitions.
A coalition S ⊆ N is said to be feasible if S ∈ FE . We only con-
sider allocation scenarios where the grand coalition forms. Namely,
our goal is to distribute the total value derived from the grand coali-
tion. We thus assume that the grand coalition N is connected, i.e.,
N ∈ FE . We also assume v(∅) = 0. For a vector x ∈ Rn, we use
notation x(S) =

∑
a∈S xa for any S ⊆ N . Here, x(∅) = 0 for

convention. A characteristic function v : FE → R is said to be co-
hesive if the grand coalition is optimal, namely, v(N) = v̂(N). We
call a graph game (N, v,E) superadditive (respectively, cohesive) if
the characteristic function is superadditive (respectively, cohesive).
Solution concepts An imputation for a graph game (N, v,E) is a
vector x ∈ RN satisfying efficiency : x(N) = v(N), and individual
rationality : xa ≥ v({a}), for all a ∈ N . For a graph game
(N, v,E), let I(N, v,E) denote the set of imputations of (N, v,E).
The core is one of the most important solution concepts that are
immune to any feasible coalitional deviations. The core C(N, v,E)
of a graph game (N, v,E) is the set of all imputations x such
that no feasible coalitions have an incentive to defect from x, i.e.,
x(S) ≥ v(S), for all S ∈ FE . The least core and the nucleolus are
the refined concepts of the core that take into account fairness among
coalitions. We first define the degree of unhappiness of a feasible
coalition S ∈ FE \ {N, ∅} at an imputation x ∈ I(N, v,E): the
excess e(x, S) of S at x, given by

e(x, S) := v(S)− x(S).

We denote by emax(x) the maximum excess with respect to x, i.e.,
emax(x) = maxS∈FE\{N,∅} e(x, S). The least core LC(N, v,E)
of a graph game (N, v,E) is the set of all imputations x that min-
imizes the maximum excess, i.e., emax(x) ≤ emax(y) for all
y ∈ I(N, v,E). By imposing a lexicographic order on the ex-
cess, we can even strengthen the notion of the least core. For each
imputation x ∈ I(N, v,E), we denote by θ(x) the sequence of
the components e(x, S) (S ∈ FE \ {N, ∅}) of x arranged in non-
increasing order, i.e., θ(x) = (e(x, S1), e(x, S2), · · · , e(x, Sk))
with

e(x, S1) ≥ e(x, S2) ≥ · · · ≥ e(x, Sk),

whereFE\{N, ∅} = {S1, S2, · · · , Sk}. For real k-sequences u =
(u1, u2, · · · , uk) and v = (v1, v2, · · · , vk), u is lexicographically
smaller than or equal to v (denoted by u ≤L v) if and only if u =
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Complete (unrestricted cases) Cycle-complete Stars Trees

supermodular cohesive general q-supermodular cohesive general

CORE-MEMBERSHIP P ([32]) co-NP-c ([5]) co-NP-c ([5]) P (4.5) co-NP-c ([5]) co-NP-c ([5])
CORE-NONEMPTINESS O(1) ([11]) co-NP-c ([5]) co-NP-c ([17]) O(1) ([2]) O(1) (5.8) co-NP-c (5.9)
CORE-FIND P ([11]) NP-h ([5]) NP-h ([8]) P (4.5) P (5.7) NP-h (5.10)

LEASTCORE-MEMBERSHIP P ([28, 13]+[32]) co-NP-h ([10]) ∆p
2-c ([17]) P (4.5) co-NP-h (5.1) ∆p

2-c (5.4)
LEASTCORE-FIND P ([28, 13]) NP-h ([10]) ∆p

2-h (5.6+5.11) P (4.5) NP-h (5.2) ∆p
2-h (5.6)

NUCLEOLUS-MEMBERSHIP P ([28, 13]) co-NP-h ([10]) ∆p
2-c ([18]) P (4.5) co-NP-h (5.1) ∆p

2-c (5.4)
NUCLEOLUS-FIND P ([28, 13]) NP-h([10]) ∆p

2-h ([18]) P (4.5) NP-h (5.2) ∆p
2-h (5.6)

KERNEL-MEMBERSHIP P ([32]) co-NP-h (5.1+5.11) ∆p
2-c ([17]) P (4.5) co-NP-h (5.1) ∆p

2-c (5.4)
KERNEL-FIND P ([28, 13]) NP-h (5.2+5.11) ∆p

2-h (5.6+5.11) P (4.5) NP-h (5.2) ∆p
2-h (5.6)

Table 1: Computational complexity for transferable utility games on cycle-complete graphs. The top row corresponds to restrictions
on graphs; the second row from the top indicates restrictions on characteristic functions. The hardness results for search problems
hold with respect to Turing reductions. The non-emptiness questions for the least core, the nucleolus and the kernel are trivial, since
such solutions exist if and only if the imputation set is nonempty. We note that although the core in [5] is a generalization of ours, the
reductions used in the proofs of the paper apply to our settings.

v, or u 6= v and for the minimum index j such that uj 6= vj we have
uj < vj . The nucleolusN (N, v,E) of a graph game (N, v,E) is
the set of all imputations x that minimizes the maximum excess in
a lexicographic sense, i.e., θ(x) ≤L θ(y), for all y ∈ I(N, v,E).

Another classical solution concept we consider is the kernel. Such
imputations can be regarded as the outcomes of bargaining among
players in the sense that no player is threatened by other players.
Formally, given x ∈ I(N, v,E) and a, b ∈ N (a 6= b), we define
the surplus sab(x) of player a against player b at x as sab(x) =
max{ e(x, S) | S ∈ FE(a \ b) }. We say that player a has more
bargaining power than b at x if sab(x) > sba(x). In such situations,
player a can claim some of b’s payoff, but the amount he can claim
is limited by individual rationality. The kernel K(N, v,E) of a
graph game (N, v,E) is the set of all imputations x such that for
each player b ∈ N , if there exists another player a ∈ N \ {b} who
has more bargaining power than b, then xb = v({b}).

We have the following containment relations among these classes
of outcomes: N (N, v,E) ⊆ K(N, v,E)∩LC(N, v,E), and when-
ever C(N, v,E) 6= ∅, N (N, v,E) ⊆ LC(N, v,E) ⊆ C(N, v,E).
The containment of the nucleolus in the kernel can be shown by a
simple adaptation of the proof of Theorem 3 in [31], whereas the
other relations follow from the definitions. The imputation set (re-
spectively, the core, the least core, the nucleolus, and the kernel) of a
graph game with full communication structure is denoted by I(N, v)
(respectively, C(N, v), LC(N, v),N (N, v), and K(N, v)).

Besides coalitional stability, we consider another important solu-
tion concept capturing fairness among players, the Myerson value
[30]. For a graph game (N, v,E), we define its Myerson game as a
pair (N, vE), that is, the game with full communication structure
where each vE(S) for S ⊆ N is given by the sum of values of
the connected components of S. The Myerson value ma(N, v,E)
of a graph game (N, v,E) for player a ∈ N is the average of a’s
marginal contributions at vE over all permutations of the players,
that is,

ma(N, v,E) =
∑

S⊆N\{a}

|S|!(|N | − |S| − 1)!

|N |! ∆a(S),

where ∆a(S) = vE(S ∪ {a})− vE(S) for S ⊆ N \ {a}.
Cycle-complete graphs In this paper, we will be essentially in-
terested in cooperative games where the graph is cycle-complete.

Such topology often represents networks having distinct community
structure. Specifically, a graph (N,E) is said to be cycle-complete
if every cycle of the graph forms a clique, i.e., for every cycle
{a1, a2, . . . , am} in the graph (N,E) and every pair of distinct
i, j ∈ {1, 2, . . . ,m}, we have {ai, aj} ∈ E. Since forests do not
contain any cycle, they are trivially cycle-complete. Another class of
cycle-complete graphs is the class of complete graphs. In Figure 1,
we represent an example of cycle-complete graphs. Cycle-complete
graphs are known to have useful combinatorial features. The follow-
ing lemma states that a graph is cycle-complete if and only if the
family of connected subsets of the graph is closed under union and
intersection for every pair of connected subsets whose intersection
is nonempty.

LEMMA 3.2 (JAMISON [24]). A graph G = (N,E) is cycle-
complete if and only if FE is an intersecting family.

a

b c

f g h i

k

d

e

j

Figure 1: An example of cycle-complete graphs

Computational setting Throughout the paper, we only consider a
graph game (N, v,E) whose characteristic function is computable
in time polynomial in the number of players |N |. Formally, we
assume that our game encoding ||(N, v,E)|| includes the graph
G = (N,E), and that each value v(S) for S ∈ FE can be com-
puted in time polynomial in |N |.

4. QUASI-SUPERMODULAR GAMES
It is well known that supermodularity often allows us to calculate

various solutions in polynomial time. Notable results include the
greedy algorithm to find an element of the core by Edmonds [11] and
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Shapley [34] and the polynomial-time algorithm for the nucleolus by
Kuipers [28] (see also [13]). The aim of this section is to introduce
a relaxed notion of supermodularity, called quasi-supermodularity,
and show that a variety of computational problems are tractable for
the class of quasi-supermodular games on cycle-complete graphs.

DEFINITION 4.1 (QUASI-SUPERMODULARITY). Let F be a
family of subsets of a finite set N . A set function f : F → R is
called quasi-supermodular if for each S, T ∈ F with S ∪ T ∈ F
and S ∩ T ∈ F , the supermodular inequality (1.1) holds

Notice that by definition, if a set function f : F → R such that
∅ ∈ F and f(∅) = 0 is quasi-supermodular, it is also superadditive.
A graph game (N, v,E) is said to be quasi-supermodular if the
characteristic function v : FE → R is quasi-supermodular. The
relaxed-supermodularity arises when we have to take into account
connection between players.

EXAMPLE 4.2 (TREASURE HUNTING GAME). Consider a trea-
sure hunting game on a social network. In this game, the players are
located in a 2-dimensional Euclidean space. They form a team to
search for treasure and the players who are geographically closer
are more likely to form a coalition.The probability for a team to
successfully find a treasure increases quadratically as the team be-
comes larger. We describe this scenario as a quasi-supermodular
graph game (N, v,E) on a cycle-complete graph where the (N,E)
is given by Figure 1 and the characteristic function v is given by
v(S) = |S|2 for each feasible coalition S ∈ FE .

We shall prove our tractability results in the following two steps.
First, we reduce some computational problems on quasi-supermodular
graph games on cycle-complete graphs (N, v,E), to those on super-
modular games with full communication structure (N, v̂). Notice
that F̂E = 2N since each S ⊆ N is guaranteed to have an FE-
partition that consists of the singletons in S. Second, we derive
polynomial solvability for several solution concepts, by using re-
sults previously proven for the class of supermodular games in the
unrestricted settings.

To begin with, we observe that if a a characterisitc function is su-
peradditive, the core and the nucleolus of the game (N, v̂) coincide
with those of the original game.

THEOREM 4.3. Given a graph game (N, v,E), the following
statements hold.

(i) If v is cohesive, then C(N, v,E) = C(N, v̂).

(ii) If v is superadditive and C(N, v,E) 6= ∅, thenN (N, v,E) =
N (N, v̂).

PROOF. It is well known that the statement (i) holds (see for
instance Theorem 2 in [1]). The statement (ii) was essentially
proven by Huberman [21]. For a game with full communication
structure (N, v), it was shown in [21] that removing coalitions
S ⊆ N such that v(S) ≤

∑
i∈I v(Xi) for some proper partition

{Xi}i∈I of S does not change the nucleolus. It follows that the
subsets in 2N \FE are redundant in defining the nucleolusN (N, v̂).
Moreover, if (N, v,E) is a superadditive graph game, v̂(S) = v(S)
for all S ∈ FE by superadditivity, and hence, N (N, v,E) =
N (N, v̂).

Moreover, supermodularity of a characteristic function is also pre-
served to the game (N, v̂) if the underlying graph is cycle-complete.

THEOREM 4.4. Suppose that (N, v,E) is a quasi-supermodular
graph game where the underlying graph (N,E) is cycle-complete.
Then, the following statements hold.

(i) The game (N, v̂) is supermodular.

(ii) Each v̂(S) for S ⊆ N can be computed in strongly polyno-
mial time in |N |.

PROOF. It is known that if f : F → R is intersecting super-
modular, i.e., F is an intersecting family and the supermodular
inequality (1.1) holds for every pair S, T ∈ F such that S ∩ T 6= ∅,
then its truncation function is supermodular [15, 12]. Another nice
property of an intersecting supermodular function f : F → R is that
each value f̂(S) for S ∈ F̂ can be computed in strongly polynomial
time, having a value-giving oracle for f and a compact representa-
tion for F [16]. Since if v : FE → R is quasi-supermodular and
(N,E) is cycle-complete, v is intersecting supermodular; hence, the
claims hold.

We are now ready to give polynomial-time solvability results in
the following theorem.

THEOREM 4.5. Suppose that (N, v,E) is a quasi-supermodular
graph game where (N,E) is cycle-complete. Then, the following
statements hold.

(i) An element of the core can be found in strongly polynomial
time in |N |.

(ii) One can check whether a given imputation x belongs to the
core or the kernel in strongly polynomial time in |N |.

(iii) If v is a rational-valued function, an imputation of the nucle-
olus can be found in time polynomial in |N | and 〈v〉.

(iv) If v is a rational-valued function, one can check whether a
given imputation x belongs to the nucleolus or the least core
in time polynomial in |N | and 〈v〉.

PROOF. (i): By Theorem 4.3, it suffices to find an element
x ∈ C(N, v̂) for the supermodular game (N, v̂). By Theorem
4.4, each v̂(S) for S ⊆ N can be computed in strongly polynomial
time in |N |. Edmonds [11] and Shapley [34] presented a strongly
polynomial-time algorithm to find an element of the core for super-
modular games with full communication structure. Therefore, one
can also find x ∈ C(N, v,E) in strongly polynomial time in |N |.

(ii): Checking whether x ∈ C(N, v,E) can be reduced to the
maximization of a supermodular function fa on a distributive lattice
FE(a) where a ∈ N and fa(S) = v(S) − x(S) for S ∈ FE(a):
the imputation x is in C(N, v,E) if and only if for each a ∈ N , the
maximum of fa is less than or equal to 0. This can be checked in
strongly polynomial time in |N | due to the work of [32, 22]. Notice
that checking if x ∈ K(N, v,E) is easy if one can efficiently calcu-
late each surplus sab(x) for each pair of distinct players a, b ∈ N .
Let (N, v,E) be a quasi-supermodular game on a cycle-complete
graph, and x ∈ I(N, v,E). For a, b ∈ N (a 6= b), computing
the surplus sab(x) is equivalent to the maximization of a super-
modular function fab on a distributive lattice FE(a \ b) where
fab(S) = v(S)− x(S) for S ∈ FE(a \ b), which can be done in
strongly polynomial time in |N | [32, 22].

(iii): Notice that C(N, v,E) = C(N, v̂) is nonempty since
(N, v̂) is a supermodular game [11, 34]. Since v is superadditive
and C(N, v,E) is nonempty, it suffices to find x ∈ N (N, v̂) =
N (N, v,E) by Theorem 4.3. We have seen that v̂ is supermodular,
and each v̂(S) for S ⊆ N can be computed in strongly polyno-
mial time in |N |. Faigle et al. [13] showed that the nucleolus can
be computed in time polynomial in |N | and 〈v〉 for supermodular
games (N, v) with full communication structure. Hence, one can
find x ∈ N (N, v̂) in time polynomial in |N | and 〈v〉. As noted in
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Section 3, the nucleolus always belongs to the least core and the
kernel; hence, Theorem 4.5 also implies that finding these solutions
can be done in time polynomial in |N | and 〈v〉.

(iv): By the above argument, one can compute x∗ ∈ N (N, v,E)
in time polynomial in |N | and 〈v〉. Recall that |N (N, v,E)| =
|N (N, v̂)| = 1 [31]. Hence, one can check whether a given im-
putation x belongs to the nucleolus by comparing each element of
the vectors x and x∗. Further, an imputation x ∈ LC(N, v,E) if
and only if max{ sab(x) | a, b ∈ N, a 6= b } = max{ sab(x∗) |
a, b ∈ N, a 6= b }. These values can be computed in strongly poly-
nomial time in |N |, since each surplus can be computed in strongly
polynomial time.

Necessity of cycle-completeness
We have seen that the problems with respect to quasi-supermodular
games (N, v,E) can be reduced to those for supermodular games
with full communication structure (N, v̂) since the supermodularity
is successfully transmitted to the truncated function if the underlying
communication structure forms an intersecting family. Then, it is
natural to ask whether the same technique can be applied to other
classes of families of feasible sets, i.e., whether the condition for
F ⊆ 2N to be an intersecting family is necessary to preserve
supermodulartiy of f . The next results will show that it is indeed
necessary.

LEMMA 4.6. Let N be a finite set and F be a family of subsets
of N with N, ∅ ∈ F such that F̂ is a distributive lattice. If the trun-
cation f̂ : F̂ → R is supermodular for every quasi-supermodular
function f : F → R, then F is an intersecting family.

PROOF. Let F be a subset of 2N such that N, ∅ ∈ F and F̂ is
a distributive lattice. Suppose that F is not an intersecting family.
Then, there exists a pair of nonempty subsets S, T ∈ F such that
S ∩T 6= ∅, and S ∪T 6∈ F or S ∩T 6∈ F . We will show that there
exists a quasi-supermodular set function on F whose truncation is
not supermodular. To see this, we define a set function f : F → R
by f(X) = |X| − 1 for each X ∈ F \ {∅} and f(∅) = 0. Then, it
can be easily seen that the function f is quasi-supermodular. By the
definition of f , it holds that f̂(S) = f(S) = |S| − 1 and f̂(T ) =

f(T ) = |T | − 1. Furthermore, we have S ∪ T, S ∩ T ∈ F̂ \ {∅}
since F̂ is a distributive lattice. Let {Xj}j∈J be an F-partition of
S ∪ T such that f̂(S ∪ T ) =

∑
j∈J f(Xj) and let {Yk}k∈K be an

F -partition of S ∩ T such that f̂(S ∩ T ) =
∑

k∈K f(Yk). Then, it
holds that f̂(S∪T )+f̂(S∩T ) = (|S|+|T |)−(|J |+|K|). Observe
that |J | ≥ 2 or |K| ≥ 2 since S ∪ T 6∈ F or S ∩ T 6∈ F . Hence,
f̂(S∪T )+ f̂(S∩T ) ≤ (|S|+ |T |)−3 < (|S|−1)+(|T |−1) =

f̂(S) + f̂(T ). Thus, f̂ is not supermodular.

This yields the following corollary.

COROLLARY 4.7. Let N be a finite set and F be a family of
subsets of N with N, ∅ ∈ F such that F̂ is a distributive lattice.
Then, the following two statements are equivalent.

(i) F is an intersecting family.

(ii) For every quasi-supermodular function f : F → R, its
truncation f̂ : F̂ → R is supermodular.

PROOF. The direction (i) ⇒ (ii) was proved in [15, 12]. The
direction (ii)⇒ (i) follows from Lemma 4.6.

5. HARDNESS RESULTS
So far, we discussed how supermodularity of the characteristic

function enables an efficient computation of cooperative solutions
for games on cycle-complete graphs. In this section, let us turn
our attention to the complexity questions for non-supermodular
games on trees, which are a subclass of cycle-complete graphs.
Typically, tree structure appears to be an attractive restriction that
can decrease complexity; indeed, in the seminal paper by Demange
[7], an efficient procedure to obtain a specific core element was
presented for supperadditive games on trees. However, we will see
in this section that this may not be the case in general.

Least core, nucleolus, kernel, Myerson value
We first study the computational complexity for the least core, the
nucleolus, the kernel, and the Myerson value of games on trees. The
following theorems state that even if the characteristic function is
cohesive and the graph is a star, it is hard to check whether a given
imputation is the Myerson value, or belongs to the least core, the
nucleolus, or the kernel.

THEOREM 5.1. Given a graph game (N, v,E) where v is non-
negative and (N,E) is a star, it is co-NP-hard to determine whether
an imputation x is the Myerson value or belongs to the least core,
the nucleolus, or the kernel.

PROOF. We will reduce from SAT. Given a Boolean formula
φ over the set of variables {α1, α2, . . . , αk}, we construct a star
(N,E) with the center player c and leaves ah for each variable αh

(h = 1, 2, . . . , k) and another player d. For each T ⊆ A, we write
σ(T ) |= φ if φ is satisfied by setting the variables {αh | ah ∈ T }
to true and the variables {αh | ah ∈ A\T } to false, and σ(T ) 6|= φ
otherwise. The value v(S) for S ∈ FE is given as follows.

• v(S) = 1 when S = N .

• v(S) = 0 when |S| = 1.

• v(S) = 0 when d ∈ S 6= N .

• v(S) = 1 when S = T ∪ {c} for a nonempty subset T ⊆ A
such that σ(T ) |= φ.

• v(S) = 0 when S = T ∪ {c} for a nonempty subset T ⊆ A
such that σ(T ) 6|= φ.

Observe that the characteristic function v is non-negative and co-
hesive. Further, given a subset S ∈ FE , the value v(S) can be
computed in polynomial time. Let n = |N | and x∗a = 1/n for
every a ∈ N . Clearly, x∗ ∈ I(N, v,E). We will now argue that
the following statements hold:

(i) If φ is unsatisfiable, then x∗ = m(N, v,E) and moreover
{x∗} = LC(N, v,E) = K(N, v,E).

(ii) If φ is satisfiable, then x∗ 6= m(N, v,E) and moreover
x∗ 6∈ LC(N, v,E) ∪ K(N, v,E).

(i) : Suppose that φ is unsatisfiable. Observe that v(S) = 0,
for all S ∈ FE \ {N} by definition of v. Thus, the marginal
contribution of each player a to a coalition S is 1 if S ∪ {a} = N
and a 6∈ S, and 0 otherwise, implying that ma(N, v,E) = 1/n.
Hence, we have m(N, v,E) = x∗. Now it remains to show that
any imputation different from x∗ belongs to neither the kernel
nor the least core. To see this, take any x ∈ I(N, v,E) where
x 6= x∗. Then, it can be easily seen that xa < 1/n < xb for some
a, b ∈ N . Further, x ≥ 0 by individual rationality. Hence, we have
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sab(x) = −xa > −1/n > −xb = sba(x). Combining this with
the fact that xb > 0 = v({b}) implies that x 6∈ K(N, v,E). In
addition, x 6∈ LC(N, v,E) since

max
S∈FE\{N,∅}

e(x, S) ≥ e(x, {a}) > −1/n = max
S∈FE\{N,∅}

e(x∗, S).

This also shows that x∗ is in the nucleolus of the game. Hence, the
claim follows.
(ii) : Suppose that φ is satisfiable. Then, there exists S∗ ∈ FE \
{N} such that v(S∗) = 1 and S∗ = T ∪ {c} for some T ⊆ A.
Notice that ∆c(T ) = vE(T ∪ {c}) − vE(T ) = 1. Moreover,
∆c(N \ {c}) = 1 and ∆c(S) ≥ 0 for all S ⊆ N \ {c}. Hence the
Myerson value for the center c is strictly greater than 1/n. So we
have x∗ 6= m(N, v,E). To show that x∗ is not an element of the
least core, let y be an imputation of (N, v,E) such that the central
player c receives the whole value v(N) = 1 and any other player
receives nothing, i.e., yc = 1 and ya = 0 for all a ∈ N \ {c}.
Then, it can be easily checked that maxS∈FE\{N,∅} e(y, S) ≤ 0.
However, the maximum excess with respect to x∗ is greater than 0
because

max
S∈FE\{N,∅}

e(x∗, S) ≥ v(S∗)− x(S∗) = 1− |S∗|/n > 0.

Hence, x∗ 6∈ LC(N, v,E). It remains to show that x∗ does not
belong to the kernel. Observe that c ∈ S∗ and d 6∈ S∗. Thus,
scd(x∗) ≥ e(x∗, S∗) = 1− |S∗|/n > 0. In contrast, sdc(x∗) =
v({d}) − x∗d = −1/n < 0 since {d} is the unique coalition in
FE(d \ c). Combining these with the inequality x∗d = 1/n > 0 =
v({d}) yields that x∗ 6∈ K(N, v,E).

By (i) and (ii), φ is unsatisfiable if and only if x∗ coincides with
the Myerson value or belongs to the least core, the nucleolus, or the
kernel of the game (N, v,E).

The previous reductions can be adapted to obtain hardness of the
search problems for respective solution concepts.

THEOREM 5.2. If one can find in polynomial time the Myerson
value, or an element of the least core or the kernel for cohesive
graph games (N, v,E) where v is non-negative and (N,E) is a
star, then P=NP.

PROOF. We will show that polynomial-time algorithms for our
problems can be used to decide SAT in polynomial time. Given
a Boolean formula φ, we construct the game (N, v,E) defined in
the proof of Theorem 5.1. Let n = |N | and x∗a = 1/n for every
a ∈ N . Take any x ∈ I(N, v,E) such that x = m(N, v,E) or
x ∈ LC(N, v,E)∪K(N, v,E). By the previous proof of Theorem
5.1, φ is unsatisfiable if and only if x = x∗. It follows that, by
computing an imputation x that is the Myerson value or belongs
to the least core or the kernel of the game (N, v,E), and checking
whether x = x∗, we can decide whether φ is satisfiable or not.

Now if we allow arbitrary values for characteristic functions, the
membership problems for the least core, the nucleolus, and the ker-
nel of games on trees become ∆p

2-hard. We prove this by a reduction
from the problem of deciding whether the least significant variable
is true in the lexicographically maximum satisfying assignment,
which was shown to be ∆p

2-complete [27]. The reduction behind
the theorem is inspired by an argument of Greco et al. [17, 18] who
showed that checking whether a given imputation belongs to the
kernel or the nucleolus is ∆p

2-complete even for games succinctly
represented by weighted graphs. We remark, however, that in their
paper, there is no restrictions of coalition structures among the play-
ers, namely, their result is for the case where the graph (N,E) is
complete, whereas our result holds even if (N,E) is a tree.

Given a Boolean formula φ over the variables α1, α2, . . . , αk.
Recall that, for truth assignments u = (u1, u2, · · · , uk) and v =
(v1, v2, · · · , vk) of φ where ui, vi ∈ {0, 1} for i = 1, 2, . . . , k, u
is lexicographically greater than v if and only if for the minimum
index j such that uj 6= vj we have uj = 1 and vj = 0. An instance
of the problem LEASTLEXSAT is a satisfiable Boolean formula φ
over the variables α1, α2, . . . , αk. It is a “yes”-instance if αk is
true in the lexicographically maximum satisfying assignment of φ
and “no”-instance otherwise. We note the following straightforward
observation, which will be used in the proof of the subsequent
theorem.

LEMMA 5.3. For k-sequences u = (u1, u2, · · · , uk) and v =
(v1, v2, · · · , vk) where ui, vi ∈ {0, 1} for i = 1, 2, . . . , k, u is
lexicographically greater than v if and only if

∑
ui=1 2k−i+1 ≥∑

vi=1 2k−i+1 + 2.

THEOREM 5.4. Given a graph game (N, v,E) where v is non-
negative and (N,E) is a tree, it is ∆p

2-complete to determine
whether an imputation x belongs to the least core, the nucleolus, or
the kernel.

PROOF. Membership in ∆p
2 was proved in [17, 18]. We reduce

from LEASTLEXSAT.
Let φ be a satisfiable Boolean formula over the set of variables
{α1, α2, . . . , αk}. We assume that the formula φ is not satisfied by
setting all the variables to true, or setting all the variables to false.
We construct a star with center c and leaves ah for each variable
αh (h = 1, 2, . . . , k − 1); similarly, we construct another star with
center c and leaves ah for each variable αh (h = 1, 2, . . . , k − 1).
We introduce the player ak forαk and attach her to each of the center
players. Specifically, we letN = A∪A∪{c, c} andE = { {c, a} |
a ∈ A } ∪ { {c, a} | a ∈ A }, where A = {a1, a2, . . . , ak} and
A = {a1, a2, . . . , ak−1, ak}. For a nonempty subset T ⊆ A, we
denote by T the dual of T , i.e., T = (T ∩ {ak}) ∪ { ah | ah ∈
A, h 6= k }. Now, a feasible coalition of this game is either a
singleton, a coalition including the three players c, ak, and c, a
coalition of the form T ∪ {c} where T ⊆ A, or a coalition of the
form T ∪ {c} where T ⊆ A.

For each T ⊆ A, we write σ(T ) |= φ if φ is satisfied by setting
the variables {αh | ah ∈ T } to true and the variables {αh | ah ∈
A \ T } to false, and σ(T ) 6|= φ otherwise. The value v(S) for
S ∈ FE is given as follows.

• v(S) = 1 when S = N .

• v(S) = 0 when |S| = 1.

• v(S) = 0 when {c, ak, c} ⊆ S 6= N .

• v(S) =
∑

ai∈T 2k−i+1 when S = T ∪ {c} or T ∪ {c} for
some nonempty subset T ⊆ A such that σ(T ) |= φ.

• v(S) = 0 when S = T ∪{c} or T ∪{c} for some nonempty
subset T ⊆ A such that σ(T ) 6|= φ.

Clearly, for each S ∈ FE , v(S) is non-negative, and can be com-
puted in polynomial time.

Now, let T ∗ ∈ argmax{ v(T∪{c}) | T ⊆ A } and T ∗ be the dual
coalition of T ∗ (hence, v(T ∗∪{c}) = v(T ∗∪{c})). By Lemma 5.3
and the definition of v, the truth assignment that sets the variables
corresponding to the players in T ∗ to true and the rest to false is
the lexicographically maximum satisfying assignment of φ. Thus,
αk evaluates to true in the lexicographically maximum satisfying
assignment for φ if and only if ak ∈ T ∗. Let S∗ = T ∗ ∪ {c} and
S∗ = T ∗ ∪ {c}. Before we proceed, we give the following lemma.
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LEMMA 5.5. For any x ∈ I(N, v,E) and S ∈ FE where
S 6= N, ∅, S∗, S∗,

e(x, S∗) > e(x, S) and e(x, S∗) > e(x, S). (5.1)

PROOF. Take any x ∈ I(N, v,E) and S ∈ FE\{N, ∅, S∗, S∗}.
Observe that x(S)− x(S∗) ≥ −1, since x ≥ 0 and since x(N) =
v(N) = 1. We now claim that v(S∗)−v(S) ≥ 2. This holds when
S = T ∪ {c} or S = T ∪ {c} for some T ⊆ A where T 6= T ∗

by Lemma 5.3. Consider the case when |S| = 1 or {c, ak, c} ⊆ S.
By definition of v, v(S) = 0. In addition, v(S∗) ≥ 2 since φ is a
satisfiable formula not to be satisfied by setting all the variables to
false. Hence, v(S∗)− v(S) ≥ 2. Thus, we have that

e(x, S∗)−e(x, S) = (v(S∗)−v(S))+(x(S)−x(S∗)) ≥ 2−1 > 0.

One can prove e(x, S∗) > e(x, S) similarly. Hence, the inequali-
ties (5.1) hold.

Let x∗ ∈ RN be an imputation such that player ak receives the
whole value v(N) = 1 and any other player receives nothing, that
is, x∗(ak) = 1 and x∗b = 0 for each b ∈ N \ {ak}. We will now
argue that the following statements hold:

(i) If ak ∈ T ∗, then {x∗} = LC(N, v,E) = K(N, v,E).

(ii) If ak 6∈ T ∗, then x∗ 6∈ LC(N, v,E) ∪ K(N, v,E).

(i) : Suppose that ak ∈ T ∗. We will first prove that x∗ is the
unique imputation that belongs to the kernel of the game (N, v,E).
Observe that ak is the only player that belongs to both S∗ and S∗.
It follows from Lemma 5.5 that player ak has more bargaining
power than any other player, i.e., sakb(x) > sbak (x) for any x ∈
I(N, v,E) and any b ∈ N \ {ak}, implying that an imputation x
belongs to the kernel of the game (N, v,E) if and only if x(ak) = 1
xb = 0 for any b ∈ N \ {ak}. Hence, x∗ is the unique imputation
that belongs to the kernel of the game (N, v,E).

Next, we claim that x∗ is the unique imputation that lies in
LC(N, v,E). Observe that e(x∗, S∗) = e(x∗, S∗) = v(S∗)− 1,
and hence maxS∈FE\{N,∅} e(x

∗, S) = v(S∗)− 1 by Lemma 5.5.
It suffices to show that for any imputation x 6= x∗,

max{e(x, S∗), e(x, S∗)} > v(S∗)− 1. (5.2)

Take any x ∈ I(N, v,E) such that x 6= x∗. If x(S∗) = 1 and
x(S∗) = 1, then this would mean that x(ak) = 1, a contradiction.
Hence, we have x(S∗) < 1 or x(S∗) < 1, which implies that
e(x, S∗) > v(S∗)− 1 or e(x, S∗) > v(S∗)− 1. This gives (5.2).

(ii) : Suppose that ak 6∈ T ∗. Then, player ak belongs to nei-
ther the coalition S∗ nor the coalition S∗, and hence x∗(S∗) =
x∗(S∗) = 0. It follows from Lemma 5.5 that any imputation x
such that x(S∗) = x(S∗) > 0 gives a smaller maximum excess
than that of x∗. Thus, x∗ 6∈ LC(N, v,E). By Lemma 5.5, for any
x ∈ I(N, v,E),

scak (x) ≥ e(x, S∗) > max
S∈FE(ak\c)

e(x, S) = sakc(x),

because ak belongs to neither S∗ nor S∗. Thus, if x ∈ K(N, v,E),
then we must have x(ak) = v({ak}) = 0. We conclude that
x∗ 6∈ K(N, v,E).

It follows from (i) and (ii) that the least significant player ak be-
longs to T ∗ if and only if x∗ belongs to the least core, the nucleolus,
or the kernel of the game (N, v, L).

Similarly to the proof of Corollary 5.2, one can show that it is
∆p

2-hard to find an imputation of the above three solutions for the
class of games on trees.

THEOREM 5.6. If one can find in polynomial time an element of
the least core or the kernel for graph games (N, v,E) where v is
non-negative and (N,E) is a tree, then P=∆p

2 .

PROOF. We will show that polynomial-time algorithms for our
problems can be used to decide LEASTLEXSAT. Let φ be a satis-
fiable Boolean formula over the set of variables {α1, α2, . . . , αk}.
We assume that the formula φ is not satisfied by setting all the
variables to true, or setting all the variables to false.

Introduce one player ak for αk; introduce two players ah and
ah for each of other variables αh (h = 1, 2, . . . , k − 1); finally,
introduce two other players c and c. We construct the same graph
game (N, v,E) as defined in the proof for Theorem 5.4. Again, let
T ∗ ∈ argmax{ v(T ∪ {c}) | T ⊆ {a1, a2, . . . , ak} }. Recall that
the truth assignment that sets the variables corresponding to T ∗ to
true and the rest to false is the lexicographically maximum satisfying
assignment of φ. Hence, the lexicographically least significant
variable αk is true in the lexicographically maximum satisfying
assignment of φ if and only if ak ∈ T ∗. Let x∗ ∈ RN be an
imputation such that x∗(ak) = 1 and x∗b = 0 for each b ∈ N \{ak}.
Take any x ∈ LC(N, v,E)∪K(N, v,E). By the proof for Theorem
5.4, it holds that the least significant player ak ∈ T ∗ if and only if
x = x∗.

It follows that, by finding an imputation x in the least core or the
kernel of the game (N, v,E), and checking whether x = x∗, we
can decide whether the lexicographically least significant variable
αk is true in the lexicographically maximum satisfying assignment
of φ.

Core
In contrast to the least core, the nucleolus, and the kernel, construct-
ing a core-imputation turns out to be easy for cohesive games on a
star.

THEOREM 5.7. One can find an element of the core for cohesive
graph games (N, v,E) whose underlying graph (N,E) is a star in
time polynomial in |N |.

PROOF. Let c be the center player of the star, and x ∈ RN

be a vector such that xa = v({a}) for each a ∈ N \ {c} and
xc = v(N) −

∑
a∈N\{c} v({a}). Clearly, x(N) = v(N) and

xa ≥ v({a}) for any a ∈ N \ {c}. Moreover, for any S ∈ FE

where c ∈ S,

x(S) = (v(N)−
∑

a∈N\{c}

v({a})) +
∑

a∈S\{c}

v({a})

= v(N)−
∑

a∈N\S

v({a}) ≥ v(S).

The last inequality holds since v is cohesive. Hence, x is immune
to any feasible coalitional deviations involving c, concluding that
x ∈ C(N, v,E). Clearly, the imputation x can be constructed in
time polynomial in the number of players.

However, deciding the non-emptiness of the core turns out to be
co-NP-complete for general games on trees. To this end, we provide
a necessary and sufficient condition for a game on a tree to have a
nonempty core: the core of such games is nonempty if and only if
the game is cohesive.

LEMMA 5.8. For graph games (N, v,E) whose underlying graph
(N,E) is a tree, the core is nonempty if and only if v : FE → R is
cohesive.

PROOF. Suppose that C(N, v,E) 6= ∅ but v is not cohesive. Let
x ∈ C(N, v,E) and {Xi}i∈I be a FE-partition of N such that
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v̂(N) =
∑

i∈I v(Xi). Since v is not cohesive,
∑

i∈I x(Xi) =
v(N) <

∑
i∈I v(Xi). Hence, there exists Xi such that x(Xi) <

v(Xi), contradicting the fact that x ∈ C(N, v,E).
Conversely, suppose that v is cohesive. Let v′ : FE → R be

the restriction of v̂ to FE , i.e., v′(S) = v̂(S) for each S ∈ FE .
Notice that v′(N) = v(N) by supposition. Further, it can be easily
verified that v′ is superadditive. To see this, take any S, T ∈ FE

where S∩T = ∅. Let {Xi}i∈I and {Yj}j∈J be FE-partitions of S
and T such that v′(S) =

∑
i∈I v(Xi) and v′(T ) =

∑
j∈J v(Yj),

respectively. Then, the coalitions {Xi}i∈I ∪ {Yj}j∈J form an
FE-partition of S ∪ T , and hence

v′(S) + v′(T ) =
∑
i∈I

v(Xi) +
∑
j∈J

v(Yj) ≤ v′(S ∪ T ).

Then, C(N, v′, E) 6= ∅, because (N, v′, E) is a superadditive
game on a tree [29, 6, 7]. We will now argue that C(N, v,E) =
C(N, v′, E), which implies the desired claim. By definition of v′,
it is clear that C(N, v,E) ⊇ C(N, v′, E). We now show that the
opposite also holds. Take any x ∈ C(N, v,E). Clearly, x(N) =
v(N) = v′(N). Let S ∈ FE . Now, for any FE-partition {Xi}i∈I
of S, we have x(S) =

∑
i∈I x(Xi) ≥

∑
i∈I v(Xi), where the

second inequality follows from the fact that x ∈ C(N, v,E). Thus,
x(S) ≥ v̂(S) = v′(S). We conclude that x ∈ C(N, v′, E).

In the following theorem, we will essentially prove that it is hard
to determine whether a given game is cohesive.

THEOREM 5.9. Given a graph game (N, v,E) where v is non-
negative and (N,E) is a star, it is co-NP-complete to determine
whether the core is non-empty.

PROOF. By Lemma 5.8, the core of a game on a tree is empty
if and only if its characteristic function is not cohesive. Thus, the
problem is in co-NP: we can guess a partition and calculate its sum.

Again, we will prove the hardness via a reduction from SAT.
Given a Boolean formula φ over the set of variables {α1, α2, . . . , αk},
which we assume not to be satisfied by setting all the variables to
true, we construct a star with the center and leaves ah for each
variable αh (h = 1, 2, . . . , k); specifically, we set N = {c} ∪ A
where A = {a1, a2, . . . , ak} and E = { {c, ah} | ah ∈ A }.

For each T ⊆ A, we write σ(T ) |= φ if φ is satisfied by setting
the variables {αh | ah ∈ T } to true and the variables {αh | ah ∈
A \ T } to false, and σ(T ) 6|= φ otherwise. The value v(S) for
S ∈ FE is given as follows.

• v(S) = 1 when S = N .

• v(S) = 0 when |S| = 1.

• v(S) = 2 when S = T ∪ {c} for a nonempty proper subset
T ( A such that σ(T ) |= φ.

• v(S) = 0 when S = T ∪ {c} for a nonempty proper subset
T ( A such that σ(T ) 6|= φ.

Notice that for each S ∈ FE , v(S) is non-negative, and can be
computed in polynomial time.

We will now argue that φ is unsatisfiable if and only if v is
cohesive. Indeed, if φ is unsatisfiable, it holds that v(S) = 0, for
all S ∈ FE \ {N} by construction of v, and hence v is cohesive.
Conversely, suppose that φ is satisfiable. Then, v(T ∗∪{c}) = 2 for
some nonempty proper subset T ∗ of A. This implies that v̂(N) ≥
v(T ∗ ∪ {c}) +

∑
j∈A\T∗ v({j}) = 2 > v(N), and thereby v is

not cohesive. Combining this with Lemma 5.8, φ is unsatisfiable if
and only if C(N, v,E) is nonempty.

COROLLARY 5.10. If one can find in polynomial time an ele-
ment of the core for graph games (N, v,E) where v(S) ≥ 0 for
each S ∈ FE and (N,E) is a star, then P=NP.

We remark that Chalkiadakis et al. [5] define the core as the
set of pairs of coalition structures and associated stable payoffs for
each coalition. If the underlying graph is a tree, such core is always
non-empty [7].

5.1 Games on complete graphs
Not surprisingly, most of the hardness results in the previous

subsections hold for games on complete graphs: given a graph game
where the characteristic fuction is non-negative, we can build in
polynomial time a game with full communication structure whose
associated core, least core, nucleolus, and kernel coincide with
those of the original game. For a graph game (N, v,E), we define
its Demange game [9] as the game with the full communication
structure (N, v0), where v0 : 2N → R is a characteristic function
given by v0(S) = v(S) if S ∈ FE and v0(S) = 0 otherwise.

THEOREM 5.11. Given a graph game (N, v,E) where v is non-
negative, the core, the least core, the nucleolus, and the kernel of the
Demange game (N, v0) coincide with those of the original game.
Moreover, if v is cohesive, then v0 is also cohesive.

PROOF. Elkind [9] showed the above relationships for the core,
the least core, and the nucleolus; hence, it suffices to prove that
K(N, v0) = K(N, v,E). Observe first that I(N, v0) = I(N, v,E)
since v0({i}) = v({i}) for any i ∈ N , and v0(N) = v(N). More-
over, it is clear that the surpluses associated with (N, v0) remain
the same as those of the original game for each pair of distinct play-
ers and any imputations. Thus, K(N, v0) = K(N, v,E). Clearly,
whenever v(N) = v̂(N), we have v̂0(N) = v0(N), which implies
that v0 is cohesive. Notice that the Demange game (N, v0) can be
constructed in polynomial time.

6. CONCLUSION AND FUTURE WORK
This paper has explored several computational questions for coop-

erative transferable utility games constrained by graph structure. We
defined a relaxed form of supermodularity in the graph-restricted
settings and showed that such restriction is almost necessary and
sufficient to obtain polynomial solvability results for games on
cycle-complete graphs. Although we have shown that the truncation
technique may not apply to non-cycle-comple graphs, it would be
interesting to see whether similar tractability results hold for quasi-
supermodular games on general graphs. Also, it remains unknown
whether the least core, the nucleolus and the kernel for superadditive
games on trees can be computed in polynomial time. We conjecture
that superadditivity does not help to decrease the complexity of
computing solutions even in graph-restricted settings.

There are other solution concepts we have not addressed in this
paper, such as the average tree solution [19, 20] and the average
covering tree value [25], which are relatively unexplored in the
literature. Notably, the average tree solution can be computed in
polynomial time if the graph is a tree; however, the computation
becomes hard for games on complete graphs since in such cases,
it coincides with the Shaple value. It would be interesting to see
whether the positive result extends to almost acyclic graphs; in
particular, the graphs with bounded-treewidth are promising.
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