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ABSTRACT of value produced by the set of coalitions). This problem,
which is called coalition structure generation (CSG), has
been widely investigated in the literature (e.g. [30, 33, 24],
see [10] and rahwan15 for a survey on that topic). The CSG
problem is highly combinatorial due to the high number! of
possible coalition structures. However, for some subclasses

The coalition structure generation (CSG) problem consists
in partitioning a group of agents into coalitions to maxi-
mize the sum of their values. We consider here the case of
coalitional games whose characteristic function is compactly

represented by a set of weighted conjunctive formulae (an o ;
MC-net). In this context the CSG problem is known to be of games (e.g., super-additive games) the CSG problem is
easy to solve since the grand coalition is known to be opti-

mal. The CSG problem for games represented by MC-nets
has been investigated (e.g. [33, 21, 32]) and proven to be
NP-hard in [25]. Various polynomial-time solvable classes of
games have also been studied for it [3, 34, 6, 4]. It is worth
continuing the study of easy and hard cases for other classes
of MC-nets to further specify the frontier of tractability for
this problem. One contribution of this paper is to study
games represented by a specific class of MC-nets and iden-
tify both hard and easy cases for the CSG problem.

computationally hard in general.

In this paper, we first study some key parameters of MC-
nets that complicate solving make the CSG problem. Then
we consider a specific class of MC-nets, called bipolar MC-
nets, and prove that the CSG problem is polynomial for
this class. Finally, we show that the CS-core of a game
represented by a bipolar MC-net is never empty, and that
an imputation belonging to the CS-core can be computed in
polynomial time.

Once coalitions are formed we need to define how the wel-
1. INTRODUCTION fare (or value) obtained by each one is shared among par-
Cooperative game theory develops a set of mathematic ticipants. In an environment with money, a frequent as-
tools for modeling various situations involving rational agents sumption consists of considering transferable utilities which
and analyzing how groups of agents may adopt cooperative supposes that the overall gain or welfare obtained by a coali-
behaviors. These tools provide important foundations for tion can be freely divided among agents (for example using
the design and analysis of multiagent systems. One im- money transfers). In that case, we need to define how im-
portant issue in cooperative games is to analyze coalition portant each agent is to the overall cooperation, and what
structures, i.e. partitions of the set of agents into subsets of payoff she can reasonably expect. Knowing that agents may
agents who perform coordinate actions. collude to obtain more money, we have to impose some sta-
Formally a cooperative game is characterized by a set bility properties to reach an equilibrium. One simple way
function that provides the value of every possible coalition of defining this stability is to consider the core concept [17].
of agents. Nevertheless the explicit representation of this Informally, a solution belongs to the core if no subset of
set function becomes exponentially large as the number of agents has an incentive to deviate. The concept of the core
agents increases. An important issue is therefore to describe has been generalized [2], under the name of CS-core, to cases
the game as succinctly as possible. Several schemes have where agents are not constrained to form the grand coali-
been proposed for the compact representation of games see tion. Unfortunately there are situations where this stability
e.g. [14, 12, 1]. Among them, MC-nets describing games cannot be attained because the game’s CS-core is empty. On
using a set of weighted logic formulae [22] are presented as the other hand, many families of games have a non-empty
a simple and intuitive language. They have received much CS-core, e.g. balanced games [29, 20], and looking for a so-
attention in the last few years [25, 16, 23]. lution in the CS-core makes sense to ensure stability. The
For a given game, an important concern is to find the op- complexity of computing solutions belonging to the core has
timal organization of cooperations among agents. One way been widely studied in Al (e.g. [12, 15, 1, 18, 23]) and poly-
of addressing this problem is to look for a coalition struc- nomial cases have been identified (e.g. [7, 8, 9, 5]). However,
ture that maximizes the social welfare (i.e., the total amount most of these works focused on the classical notion of core
and very few considered the more general definition of CS-
Appears in: Proceedings of the 16th International Confer- core. Testing the emptiness of the CS-core is AL-complete
ence on Autonomous Agents and Multiagent Systems (AA- [19]. In the second part of this paper, we define a new class of
MAS 2017), S. Das, E. Durfee, K. Larson, M. Winikoff
(eds.), May 8-12, 2017, Sio Paulo, Brazil. 1 . . . n
Copyright (©) 2017, International Foundation for Autonomous Agents and The number' of possible coalition structures is in (n2)
Multiagent Systems (www.ifaamas.org). All rights reserved. [27], where n is the number of agents
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MC-nets and prove that the games representable in it have a
non-empty CS-core, and computing a solution that belongs
to the CS-core can be performed in polynomial time. Some
polynomial cases for CS-cores have been recently identified
[11], under some restrictions about possible coalition struc-
tures. The polynomial cases presented in this paper do not
require such restrictions.

2. PRELIMINARIES

For any i € N, we denote by [i] set {1,...,7} and consider
a set of n agents N/ = [n] who are willing to cooperate to
improve their incomes. The income for any subset of agents
is defined by a set function v : 2 — R, such that v()) = 0,
which is called a game. For any S C N value v(S) represents
the total amount of money that agents of S can share if they
cooperate. In the following, let us call coalition any subset
of cooperating agents.

A coalition structure m = {S1,..., Sk} is a partition of A/
into coalitions. Let IIns be the set of all possible coalition
structures on /. We assume that agents are free to form
any possible coalition structure. The value of a coalition
structure is defined additively as follows.

Definition 1. The value of a coalition structure 7 is de-
fined by v(m) =3 . v(S).

A coalition structure 7* € Il is said to be optimal whenever
v(r*) = max{v(w) : 7 € lLx}. The CSG problem consists
in finding such an optimal coalition structure 7*.

Describing a game by its characteristic form, i.e. the set
of values v(A) for all A in N, may become unfeasible as n
growths, since 2" values are needed. In this paper we assume
that games are represented by basic MC-nets [22]. A basic
MC-net is a finite set of rules {¢; : (P;, N;) — vi}ieK, where
P,CN,N,CN,PNN; =0, v ER\{O}, and K is the set
of indices for these rules. A rule ¢; is said to be applicable to
coalition S if P; C S and N;NS = (), i.e. where S contains all
the agents in P; and no agent in N;. By extension, ¢; is said
to be applicable to a coalition structure = if it is applicable
to a coalition S belonging to m. The set of indices of rules
applicable to S is denoted as A(S). Hence, the value of any
coalition S is given by the sum of the weights of all rules
applicable to S. Formally, v(S) = ZieA(S) Vj.

Example 1. Consider MC-net {¢1 : ({1,3},0) — 3,¢2:
({1,21,0) — 3,05 - ({11.{2}) > 2}. Let § = {1,2,3}.
We have A(S) = {1,2}, corresponding to rules ¢1 and ¢2.
Hence v(S) = 3+ 3 =6. It can easily be checked that {S}
is the optimal coalition structure.

One can interpret any pair (P;, IV;) as a conjunctive for-
mula including the positive literals of P; and the negative
literals of N;. Hence, basic MC-nets form a subclass of more
general MC-nets that may include other forms of weighted
formulae [22]. Yet, they are still fully expressive for repre-
senting games.

3. COMPUTATIONAL ISSUES IN CSG

Given an MC net, we distinguish two types of rules. Let
P={ieK:P #0},andlet P={i € K: P, =0} be
its complement. By definition, the rules in P are applicable
at most to one coalition within a given coalition structure,
whereas the rules in P may be applicable to several coali-
tions. In this section, we assume that P is empty, i.e. where
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no rule containing only negative literals is used. Further-
more, analogously to previous work [25], we focus here on
basic MC-nets with positive weights, i.e. any weight v; in a
rule of P must be strictly positive. Such a restriction on the
representation does not harm the expressivity because it is
well known that any game with positive values can be rep-
resented by a basic MC-net with positive weights (e.g. [31]).
Even under such restrictions on MC-nets, the following re-
sult (Theorem 2 of [25]) shows that CSG is computationally
hard to solve.

Theorem 1. Finding an optimal coalition structure is
strongly® NP-hard. Moreover, unless P = NP, there exists
no polynomial-time O(|P|'™°)-approzimation algorithm for
any € > 0.

In the following subsections, we describe a graphical rep-
resentation of the CSG problem for basic MC-nets with posi-
tive weights and study the impact of some parameters of this
representation on the problem’s complexity.

3.1 CSG-graph of an MC-net

Each rule ¢; in P supports cooperation between agents in
the sense that the agents in P; have to belong to the same
coalition to obtain reward v;. A set of rules R C P is said
to be feasible if there exists a coalition structure m where
each rule in R is applicable to w. As highlighted by [25], the
CSG problem can be reformulated to find a feasible subset
of rules in P that maximizes the sum of their weights.

As an illustration, let us return to Example 1. The fea-
sible sets of rules are {¢1,¢p2}, {¢1,#3} and any subset of
them, including the empty set. For example, both ¢1 and ¢3
are applicable to coalition structure = = {{1, 3}, {2}} which
makes {¢1, #3} a feasible set. Here the optimal feasible set is
{¢1, P2} with a value 6 corresponding to the grand coalition.

The feasibility of a set of rules results from the interactions
between its rules. These interactions are complex but can
be modeled by a colored multigraph G = (V, E), called a
CSG-graph®, defined as follows:

e set of vertices V is P (vertex i represents rule ¢;);

e green edge {i,j} in F is associated to any pair of rules
(i,4) € P? such that P, N P; # (;

e red edge {i,j} in E is associated to any pair of rules
(i,§) € P? such that P; N N; # 0.

An instance of a CSG-graph is given in Fig. 1 in the case of
Example 1 (red edges are represented as dotted lines).

Figure 1: CSG-graph of Example 1

Let G4 denote the subgraph of G that is restricted to the
green edges, and let G, be the subgraph of G that is re-
stricted to the red edges. Furthermore, let G4[R] denote the

2The strong NP-hardness was not previously stated but this
result is implied by the proof of Theorem 2 in [25].

3Note that a CSG-graph is a simplified version of the graph-
ical representation described in [25].



vertex-induced subgraph of G4 restricted to the vertices of
R C P. For given coalition structure m, if two rules ¢; and
¢; are connected by a green edge {7,j}, then they are ap-
plicable to the same coalition S € 7 such that P, U P; C S.
On the other hand, if ¢ and j are connected by a red edge
then rules ¢; and ¢; are not applicable to the same coalition
of 7 due to condition P; N N; # (. This implies that for
any coalition structure 7 and any pair of rules {4,j} that
are connected by a red edge, if ¢ and j are also connected by
a path containing only green edges, at least one rule visited
by this path is not applicable to 7. Hence, as shown? in [25]
(Theorem 1), set of rules R is feasible if and only if no con-
nected component of G4[R] contains a pair {3, j} connected
by a red edge in G. Identifying a feasible set of rule with
maximum weight (i.e. for solving the CSG problem) can be
achieved by solving the weighted vertex multicut problem:

WEIGHTED VERTEX MurricuT (WVMC)

Input: Undirected graph G = (V, £), collection H C V? of
pairs of vertices, and weights w(z) € R>, for z € V.
Question: Find A C V whose removal separates each pair
in H and such that w(4) =3, w(z) is minimum.

To solve the CSG problem, we just have to solve the above
WVMC problem on graph Gy with H defined as the set
of red edges and w(i) = v; for any vertex i of G4. The
optimal set of rules R we are looking for is given by the
complement of A in V. By minimizing the weight of A we
indeed maximize the weight of its complement.

Let us illustrate this point on the graph of Example 1 (Fig.
1). Pair {2, 3} is connected with a red edge but also by two
green paths (one direct and one including vertex 1). Hence
to cancel both paths, we need to remove either vertex 2 or
3. Here the optimal cut is A = {3} because w(2) > w(3)
and the optimal feasible set is R = {1, 2}.

3.2 Complexity issues and CSG-graph

First, note that the WVMC problem can be solved inde-
pendently in the different connected components of G. This
implies that the CSG-problem can also be solved indepen-
dently in the different connected components of Gy. In the
following, we assume that a CSG-graph is such that Gy is
composed by a unique connected component.

Even though the WVMC problem is known to be NP-
hard [13] for |H| > 3, it is polynomial for |[H| < 1 (e.g.,
for |H| =1 it boils down to a mincut problem). The latter
property suggests a polynomial algorithm to solve instances
when the CSG-graph includes at most one red edge. It is
indeed sufficient to find a vertex mincut that separates the
two vertices linked by a red edge in G (vertex mincut is a
variant of min cut where cuts are made of vertices instead
of edges). On the other hand we have:

Proposition 1. The CSG problem is NP-hard even if the
CSG-graph includes at most three red edges.

PrOOF. The proof is based on a reduction from WVMC
with parameters G = (V, £) and H. We introduce one agent
a; per vertex i € V and one agent a;; per pair {i,j} €
H. Then, we define an MC-net with exactly one rule ¢; by
vertex 1 € V, with P; = {a;}U{a; : j € V,{3,5} € E}U{ay; :

“Note that the statement of Theorem 1 in [25] is slightly
different due to the difference between the two graphical
representations. However, the implication of this theorem
on CSG-graph representation is straightforward.
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i eV {ig} € Hyi <j}, Ni={ay :i €V {i,j} € H,i>
j} and v; = w(i). By construction, optimal solution A of
WVMC has value w(V) — v(n*), where ©* is the optimal
coalition structure of the game defined by the MC-net. []

This proposition provides evidence that, for games repre-
sented by basic MC-nets with positive weights, the complex-
ity of the CSG problem is related to the number of red edges
in CSG-graphs. Unfortunately, even if the number of red
edges of a CSG-graph is a fixed parameter, there is no hope
to find a polynomial algorithm. In other words, the CSG
problem does not belong to the parameterized complexity
class XP, when the fixed parameter under consideration is
the number of red edges in the CSG-graph.

Another complexity issue is the approximability of the
CSG problem for games represented by basic MC-nets with
positive weights. Actually, a |P|-approximation can easily
be obtained by choosing the rule ¢; of P with the highest
weight v;, and by constructing a coalition structure where
the agents of P; form a coalition and the other agents form
singleton coalitions. Theorem 1 shows that this is essentially
the best approximation ratio achievable, up to a multiplica-
tive constant factor. Now the question is whether we can
achieve a better approximation ratio by fixing some param-
eters of the problem. The following proposition shows that
a small number of red edges in the CSG-graph enables a
better approximation ratio than O(|P]).

Proposition 2. Whenever the CSG-graph contains no
more than k red edges, it is possible to compute in polynomial
time a k-approximation of the optimal coalition structure.

ProOOF. Let C1,Cy,...,C: be the connected components
of G, that contain at least two vertices. Any vertex of these
connected components has a degree greater than or equal to
one. For any ¢ € {1,...,t}, and j € {1,...,k}, we define CY
as follows. If C; contains at least j vertices of degree greater
than or equal to 2 then Cf is a singleton containing the jth
vertex of a degree greater than or equal to 2 in C;, where
the order is taken arbitrarily. Note that at most k vertices
can have a degree greater than or equal to 2 in a graph
containing no more than k edges. If C; contains exactly 2
vertices then C} is a singleton that contains one of these
vertices taken arbitrarily. For other values of ¢ and j, C7 is
an empty set.

Consider the following k sets of rules:

° Rjzuzlef,forjzl,...,kfl
. RkZP\U?;le

For any j € [k — 1], R; contains at most one rule per con-
nected component of G,. Therefore, these sets are feasible
since they cannot contain a pair of rules connected by a red
edge. Furthermore, if R, does not contain a vertex of de-
gree higher than 1 in G, then it cannot contain two rules
connected by a red edge, except if those two rules are the
two members of a connected component of GG, that contains
exactly two vertices. But in the later case, we know that one
rule is part of R; and the other is part of Ri. On the other
hand, if Ry contains a vertex of degree more than two then
there is only one connected component containing at least
two vertices in G, i.e., t = 1. This connected component
(' is a cycle containing exactly k vertices, and Ry contains
only one of them. Therefore Ry is also feasible.



Among such k feasible sets, let Rj= be a set that maxi-
mizes ZiERJ_ v;. It is easy to verify that the value of Rj« is

at least equal to Y, v;/k. Hence, the coalition structure
associated with R;+ has a value greater than or equal to 1/k
times the value of the optimal coalition structure. [J

Note that the proof of Proposition 2 remains valid if k is
the size of the largest connected component of G,.. Therefore
the following result also holds:

Corollary 1. Whenever the size of the largest connected
component of the red edges in the CS-graph equals k, it is
possible to compute in polynomial time a k-approximation of
the optimal coalition structure.

To summarize this section, we provided evidence that the
number of red edges in the CSG-graph contributes to the
complexity of the CSG problem.

4. TOWARDS MORE GENERAL RULES

In this section we consider a more general case where P
is nonempty and propose an algorithm to solve the CSG
problem for that specific case. In P all rules are assumed
to have positive weights, as in P. Note that, by definition,
all the rules of P apply to the empty set. However, since
the value of the empty coalition equals 0, we assume that
no rule of P applies to the empty set. This assumption can
be made without loss of generality since the empty set does
not play a role in the CSG problem. We denote by v the
restriction of v to the rules of P, i.e. where for any coalition
S, 9(S) = X ,cp.snn,—p Vi and for any coalition structure

7, 0(m) = Y gep 0(S).

Example 2. Modify Example 1 by adding rule ¢4 : (0, {1}) —

2. With this new set of rules, the value of the grand coali-
tion N' remains unchanged because ¢4 does not apply to this
coalition. On the other hand, the value of coalition structure
m={{1,3},{2}} becomes 3+ 2+ 2. It is easy to check that
7 is now the optimal coalition structure for this new set of
rules.

As highlighted in [25], a rule of P can be simulated by
a polynomial number of rules from P. For example, rule
(0, N\ [k]) = v can be simulated using k rules ¢1 : ({1}, N\
(1) = v, 62 : {2LNN[2]) = v, ...y b2 (RN [K]) —
v. However, these rules introduce multiple red edges in the
CSG-graph, and we know from Section 3.2 that they are a
source of complexity. In this example, there is a red edge
between any pair of new rules {¢;, ¢;}, and G, contains a
clique of size k. Moreover, ¢; contains almost all of the
agents in V1. Such a rule will be connected in G, to almost
all the rules and create a large connected component in G,.
This section propose another way of dealing with the rules
of P.

Let us extend our discussion about the expressivity of the
rules belonging to P. For a given set of agents S, rule
(0, N\ S) — v assigns weight v to any subset of S. The
particularity of this rule, compared to the rules of P, is
that it can be applied to several coalitions of a coalition
structure. For example, rule ¢4 of Example 2 can be ap-
plied to coalitions {1} and {3}. Hence ¢4 can be applied
twice to coalition structure {{1}, {2}, {3}}. Actually, a rule
(0,N'\ S) — v can be applied as many times as there are
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subsets of S in a coalition structure. Therefore whenever
v is positive, it is always beneficial to split a coalition into
subcoalitions to collect several times the value v (once for
each subset of S).

4.1 New approach to solve CSG problem

Similar to the case where P is empty, we solve the CSG
problem by computing the feasible subset of rules in P with
the highest weight. But now, the weight of feasible set of
rules R not only depends on the rules that are part of R,
but also on the rules of P. To compute the weight provided
by those rules to a feasible subset of rules R, we need first
to define coalition structure m where all rules of R are ap-
plicable. Then we can compute 9(7), i.e. the weight of 7
provided by the rules of P.

For each feasible subset of rules R, there exists a whole
set II(R) of coalition structures for which all the rules of R
are applicable. For example, for feasible subset of rules {¢2}
of Example 2, both m = {{1,2},{3}} and m = {{1,2,3}}
belong to II({¢2}). Among them, 7, seems most promising
since ¥(m1) = 2 > O(mw2) = 0. Within II(R), let 7(R) de-
note the most refined coalition structure where the notion
of refinement is defined as follows. Coalition structure 7’
is a refinement of m when any coalition of 7 is the union
of the coalitions of n’. By construction, m(R) is a coalition
structure maximizing ¢ over II(R). Therefore w(R) is a good
candidate to represent a feasible set of rules R. Based on
this observation, we define the weight of a subset of rules R
as follows:

Y ier Vi +0(m(R)) if R feasible

w(R) = { 0 otherwise 1)

Note that for a given feasible set of rules R, w(R) may differ
from v applied to w(R). Indeed, some rules of P\ R may
apply to m(R). However, the following proposition shows
that the CSG problem can be solved by finding the feasible
subset of rules that maximizes w:

Proposition 3. If R* C P mazimizes w, then w(R") is
an optimal coalition structure of game v.

ProoOF. Note that m(() is a coalition structure that in-
cludes one coalition per agent. Furthermore, P includes at
least one rule ¢ with strictly positive weight v;. This rule
applies to at least one singleton in (@) and implies that
(m(0)) > v; > 0. Therefore w(n(R*)) > 0 and R* is neces-
sarily feasible.

For any feasible set of rules R C P there exists at least
one feasible set of rules " C P such that R’ D R, n(R) =
m(R') and w(R') = v(mw(R')). Set R’ contains all of the
formulae of P that are true for at least one coalition of w(R).
Since VR, R’ C P such that R C R’ and n(R) = n(R’) we
have w(R) < w(R'), and then 7(R") is the best coalition
structure in {n(R)|R C P, R feasible}.

Let us prove now that the optimal coalition structure
necessarily belongs to {w(R)|R C P, R feasible}. Let 7 €
Iy \{7(R)|R C P, R feasible}. Let R C P be the maximal
subset of rules in P that apply to . Note that R is feasible.
For any coalition S € m, by definition of 7(R), there exists a
subset of coalitions 7' C m(R) such that n’ forms a partition
of S. If we divide S according to 7/, then the rules in R re-
main applicable to 7(R). Let C be the subset of rules of P
that apply to S. For any S’ € 7/, we have S’ C S and there-
fore all the formulae in C' are also applicable to S’ (since for



any i € P,SNN;, =0 = S'NN; = ). Since the weights
are strictly positive, then applying this subdivision to any
coalition of 7 implies v(7w) < v(w(R)). So an optimal coali-
tion structure necessarily belongs to {w(R)|R C P}, which
concludes the proof. []

4.2 Computing optimal coalition structure

To compute the value of w for a given subset of rules
R C P, we need first to define whether R is feasible and
then compute w(R). Deciding whether R is feasible can be
performed in polynomial time. We only have to inspect all of
the connected components of G4[R] and check that none in-
cludes two vertices connected by a red edge in G. Moreover,
m(R) can be computed by regrouping agents by the rules of
R as described by the following polynomial algorithm.

Algorithm 1: Algorithm to compute 7(R)
Data: Feasible set of rules R and CSG-graph G
Result: Coalition structure m € Ilx
e {1k
A+ N;
foreach connected component C' of G4[R] do

S+ UieC Pi;
T mU{S}
A+ A\ S;
end
foreach i € A do
T mU{i};
end
return T;

The correctness of Algorithm 1 is established as follows.

Proposition 4. For any feasible set of rules R, the coali-
tion structure returned by Algorithm 1 corresponds to m(R).

PrOOF. To establish the result we prove that all of the
rules of R are applicable to coalition structure 7 returned
by Algorithm 1, and no coalition of 7 can be split without
loosing this property. Let us first show that all rules of R
are applicable to w. By contradiction, we assume that there
exists a rule in R that is not applicable to w. Without loss
of generality, let ¢1 be this rule. By construction of 7, there
exists a coalition S in 7 such that P, C S. If ¢; does not
apply to S then N1NS # (. This implies by the construction
of 7 that there is a sequence of rules ¢1, ¢, ... ¢r belonging
to R such that P,N P11 # 0 for any i < k, and Ny NPy, # ().
But this sequence implies that there is a path of green edges
from ¢ to ¢r in Gy4[R], and ¢ and ¢ are linked by a
red edge in . This leads to a contradiction with R being
feasible.

Let us show now that no coalition of 7 can be split while
preserving the applicability of all the rules in R. Assume, by
contradiction, that there exists refinement 7’ of 7 in II(R),
resulting from 7 by splitting at least one of its coalitions S.
Note that S cannot be a singleton. This implies that there
exists a subset of rules Ry C R connected in G4[R] and such
that S = UieRs P;. Let ¢ and j be two agents belonging to
S who are not in the same coalition in 7’. Let ¢; and ¢, be
two rules of Rg such that ¢ € P, and j € Pj. Since ¢1 and ¢y,
are part of the same connected component of G4[R]| which
contains the rules of Rg, there must be a sequence of rules
@1, P2, ... ¢ belonging to Rg such that P, N Py # O for
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any ¢ < k. Because i and j are not part of the same coalition
in 7/, there must be at least one rule of this sequence that
does not apply to 7’. This leads to a contradiction. [J

To summarize, the computation of w(R) for any R C P
can be performed in polynomial time. One possible way of
solving the CSG problem i.e., finding the feasible subset of
rules that maximizes w (see Proposition 3), is to use a brute-
force algorithm to test every subsets of rules of P. This is
an FPT algorithm when the fixed parameter is the size of
P. However, if | P| is large then such a brute-force algorithm
will be inefficient. In that case, it would be interesting to
investigate the properties of set function w. Once the set of
rules R* maximizing w is computed, the optimal coalition
structure can be derived in polynomial time from R* by
determining 7(R").

Before discussing polynomial cases, note that the proofs of
Propositions 3 and 4 can be extended to any set function ©
where splitting coalitions is always beneficial i.e., to any set
function such that 9(S) < o(n) for all S C N and 7 € IIs.
Hence the algorithm remains valid even if we enrich the class
of basic MC-nets with positive weights by allowing extra
rules of the following types®:

e conjunction of positive literals with negative weight

i.e., rules of type {A;cp, ¥} — vi, with v; <0;

e disjunction of positive literals with positive weight i.e.,
rules of type {\/;cp, z;} — vi, with v; > 0;

e disjunction of conjunction of negative literals with pos-
itive weight i.e. rules of type

Vuen,ony Nien, —z;j} — v, with v; > 0.

Therefore this algorithm can be applied to a broad class of
MC-nets. However, since the polynomial case of Section 4.3
does not include these rules, they have been deliberately
omitted for simplicity and clarity.

4.3 Polynomial cases for CSG problem

In general, it is impossible to compute the maximum value
of a set function without checking all of its values. However,
the problem is known to be solvable in polynomial time for
supermodular set functions, which are defined as follows:

Definition 2. Set function w over 2F is supermodular
whenever for every, A,B C P such that B C A, and for
every j € P\ A, w(AU{j}) —w(A) > w(BU{j}) —w(B).

If we were to identify a restriction on basic MC-nets, and
more precisely on the set of rules P, such that the set func-
tion described by (1) is supermodular, then the CSG prob-
lem would be solvable in polynomial time for this restricted
language. We know that using rules of P does not simplify
solving the CSG problem. Therefore according to Proposi-
tion 1, there is no hope of finding a polynomial case without
restricting the number of red edges of the CSG-graph to a
value lower than 3. The following proposition shows that
when the CSG-graph does not contain any red edges, set
function w is supermodular.

5The rules are described by logic formulae over the set of
boolean variables {z1,...,zn}. For each agent ¢, x; is true
if ¢ is part of the coalition, and false otherwise. The weight
of a rule is attributed to a coalition if the logic formula is
true. This description is consistent with MC-nets [22]



Proposition 5. If P is feasible then set function w de-
fined by (1) on 2 is supermodular.

PROOF. Let A,B C P such that B C A and j € P\
{A}. Since P is feasible, any subset R C P is also feasible.
Therefore w(R) = >, . vi+0(7(R)) by (1). Now, observing
that 3 ic sy Vi = 2iea Vi = 2iepugyy Vi —
, we just need to show the following:

d(r(AU{j})) — 0(m(A)) = d(x(B U{j})) — 9(x(B))
This property is proved in Lemma 1 of Section Appendix.

ieBp Vi = Uj

(2)
O

The following corollary summarizes the main implication
of Proposition 5 for the CSG problem:

Corollary 2. If the CSG-graph does not contain any red
edges, then the CSG problem can be solved in polynomial
time.

PrOOF. By definition, we know that if the CSG-graph
does not contain any red edges, then P is feasible. Fur-
thermore, by Proposition 5, w is supermodular because P
is feasible. We can resort to a polynomial time algorithm
(e.g. [26]) to find R* C P that maximizes w. By Propo-
sition 3, m(R") is an optimal coalition structure that can
be computed in polynomial time from R* (see Proposition
4). O

Thus we have identified a polynomial subcase for the CSG
problem characterized by basic MC-nets with positive weights.
Since the NP-hardness of the CSG problem starts at the 3
red edges, the cases with 1 and 2 edges remain open. Note
that without the rules of P, the resolution is trivial for the
case without red edges since feasible set P would always be
optimal. However, this is not the case whenever P is not
empty.

5. BIPOLAR MC-NETS

We introduce now a new subclass of basic MC-nets with
positive weights, called bipolar MC-nets, defined as follows.

Definition 3. A bipolar MC-net is a basic MC-net char-
acterized by a set of rules {¢; : (P, N;) — vi}ieK such that
Po=0orN;=0, BbLUN; #0 and v; >0, for alli € K.

The rules of bipolar MC-net are therefore partitioned into
sets P and P, where P contains all the preconditions of type
(P;, 1), and P contains all the preconditions of type (0, N;).
Note that the CSG-graph contains by definition no red edge
since N; = @ for all j € P. This implies by Corollary 2
that the CSG problem on a game represented by a bipolar
MC-net is solvable in polynomial time.

5.1 Expressivity of bipolar MC-nets

In a bipolar MC-net, the descriptive powers of the rules of
P and P are antagonist. On one hand, a rule ¢; : (P;,0) —
v; assigns a positive weight v; to any superset of P;. This
descriptive power is well known in the literature of decision
theory under the name of belief functions [28]. On the other
hand, a rule ¢; : (0, N;) — v; assigns a positive weight v;
to any subset of A\ N;. This language is obviously not
fully expressive, but the following example illustrates the
expressivity of bipolar MC-nets.

Example 3. Consider a group of agents which must be
partitioned into teams, to collectively complete a project. To
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define the team’s value or efficiency, we may add the indi-
vidual values resulting from rules of type ¢; = ({i},0) — v;
where v; is the intrinsic value of agent i. However, some sub-
sets of agents have an inclination to work efficiently together
which will provide to their coalition an additional value. For
such subset of agents S, this can be modeled by inserting a
rule ¢s : (S,0) — vs, where vs corresponds to the added
value due to positive synerqgy.

On the other hand, every agent i works at a different mazx-
imal speed s;, depending on her skill, and it may happen that
the group’s working speed is constrained by the speed of its
slowest member. Considering just this aspect, the value of
coalition S can be defined as min;es s;. Such negative syn-
ergies can be represented by a linear number of rules of P.
Consider indeed n agents such that s1 > s2 > ... > $sp.
Fori=1,...,n, we insert in P rule ¢; : (0,{1,...,i}) —
Si — Si+1, assuming sSn+1 = 0. With such rules, it is easy to
check that the value of any coalition S induced by the rules
of P is (S) = minjes ;.

Finally, positive and negative synergies among agents can
be considered together by merging in the same bipolar MC-
net the two sets of rules introduced above, to define the game
as the combination of the two phenomena.

More generally, analogously to the fact that rules of P
describe belief functions, the descriptive power of the rules
of P can be analyzed through sum-min games® defined as
follows. Game 0 is a sum-min game if there exists integer
m € N and m X n matrix s of non-negative values, such that
9(S) = Y% minjes si;, where s;; denotes the value of s
at row ¢ and column j. The illustrative example provided
in this section uses matrix s of size 1 x n. The following
proposition shows that the set of games representable by
bipolar MC-nets is essentially equivalent to the set of games
which are additive combinations of belief functions and sum-
min games.

Proposition 6. Game v is sum-min if and only if it can
be described by a bipolar MC-net with no rule in P.

ProoOF. The description provided in Example 3 shows
how value minjes s;; can be expressed through a set of rules
of P. Tt remains for us to show that any rule ¢; : (@, N;) = v;
defines a sum-min game. Let s = (s1,...,5,) be a vector
such that s; = v; for any j € N'\ N;, and s; = 0 otherwise.
It is easy to check that minjes s; equals v; if SN N; = 0,
and 0 otherwise. Therefore the game described by ¢; is a
sum-min game. []

The proof of Proposition 6 also shows that the transforma-
tion from one representation to another cannot increase the
size of the description by a factor higher than n.

5.2 Computation of CS-core

Once coalitions are formed we need to share the payoff
among the participants of any coalition. This is formalized
by the notion of imputation:

Definition 4. An imputation is a pair (w,x) with m €
Iy and = (z1,...,2n) € R, and a vector of payoffs
such that for all i € N,z; > v({i}) and for all S € m,
z(S) = v(S), where z(S) =

ies Li-

5The sum-min games introduced in this paper are defined
in a similar fashion as the max-game [9].



There are many possible imputations that can be chosen
and we focus on some of them that have a good stability

property:

Definition 5. [2] CS-core is the set of imputations (m, )
such that for any S C N, z(S) > v(S).

For any imputation in the CS-core, no subset of agents S can
outperform z(S). Therefore no subset of agents S has an
incentive to abandon its respective coalitions in 7 to create
a new coalition. Indeed, even if the agent of a coalition
share their new outcomes, then at least one of them will not
benefit from this situation.

It is well known that imputation (m, z) belongs to the CS-
core only if 7 is the optimal coalition structure. For bipolar
MC-nets, optimal coalition structure 7* can be computed in
polynomial time. However it remains for us to compute x to
find imputation (7, z) that belongs to the core. The follow-
ing proposition shows that we can focus on the computation
of the core for each coalition of 7*.

Proposition 7. For game v representable by bipolar MC-
net, if 7 = {S1,...,Sk} is the optimal coalition struc-
ture then (7*,x) belongs to the CS-core for any x such that
z(T3) > v(T;) holds for any i € [k] and any T; C S;.

ProOF. We need to show that for any T' C N, z(T) >
v(T) holds. For any ¢ € [k], let T; be the subset of agents in T'
belonging to S; i.e., T; = T'NS;. We know by Lemma 2 (see
Appendix) that v(UJ;_, S; U U?:H—l T;) +v(T:) > v(S:) +
U(U;;ll S; U U;C:Z T;) holds, for any ¢ € [k]. By summing
up those inequalities, we obtain v(Uf:1 S;)+ Z?:l o(T;) >

S v(S)) + oy, T)-
7 implies that Zle v(S;) > U(L_J?:1 S;). By summing up
these two inequalities, we obtain Zle u(Tj) > v(UfZ1 T;) =

o(T). Finally, this last inequality implies z(T) = Z;?:l z(Ty)
Y o(Ty) > o(T). D

According to Proposition 7, we can assume without loss
of generality that 7 = {N}, because otherwise the CS-
core can be computed as the concatenation of imputations
belonging to the cores of each coalition of 7*. The following
proposition provides a formula to compute one particular
imputation belonging to the CS-core:

Furthermore, the optimality of

Proposition 8. For any game v representable by a bipo-
lar MC-net, if zi = maxpci—n{v(T U{i}) — > ;crz;} for
any i € N, then (r*,x) belongs to the CS-core.

PRrROOF. Let S be a subset of A, and let ¢ be the highest
index in S. By construction, we know that z; > v(S) —
> jes\(iy i This implies that z(S) > v(S) holds for any
S C N. It remains for us to check that (7*,z) is an impu-
tation, i.e. z(N) = v(N) holds. We show that there exists
partition m, of N such that z(N) < v(my). Then the opti-
mality of coalition structure {N} implies z(N) < v(m,) <
v(N) < z(N), and the result follows.

We prove the existence of m, by induction on the num-
ber of agents. For one agent this statement holds triv-
ially. Assume now that the statement is true for n — 1
agents, and let us show that it is also true for n agents.
By definition of x, we know that there exists T' C [n — 1]

such that zn, = v(T'U{n}) — > . x;, which implies that
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Yoz = v(TU{n}) + 3w i- We denote by s
the highest index in [n — 1] \ 7. By induction hypothesis,
we know that there exists partition w5 = {S1,...,Sk} of
the agents in [s] such that > °_, x; < v(7,). This implies

that > cpu 1z 5 < 25—y V(i) = 3 jerniy @5 holds. We
denote by B = {b1,...,b:} the subset of indices in [k] such
that Sp, NT" # 0. We know that 3. rng, 2; > v(T'NSy,)

holds for any r € [t]. This implies that >, % =
S, Yjerns, Ti 2 S v(T'NSy,). Altogether, we have

S <o(TU{n}) + 35 0(S)) = X, o(T N Sh,).
On the other hand, we know by Lemma 2 that v(Ss,) +
o(ULZ) Se, UTU{n}) < o(T'NSy,) +v(Uis, Sb, UTU{n})
holds for any ¢ € [t] (see Appendix). We obtain v(T'U{n})+
Sty v(Sh,) < oUry i, UTU{R}) + 3, o1 Sh,) by
summing all these inequalities over i. Finally, by combining
this inequality with the inequality shown in the previous
paragraph, we obtain } ", x; < o(Ul, Sb, UT U {n}) +
> jemnp 0(Si). Therefore, for m, defined as the coalition
structure containing coalitions {{J._, Sy, U T U {n}} and
{S;}, for all j € [k] \ B, the requirement is fulfilled. [

Proposition 8 also implies that the CS-core is non empty
for any game represented by a bipolar MC-net. We must
show how vector z can be computed in polynomial time.
The values of x are computed iteratively, starting from x;
and ending with z,. To compute z;, given the values of
Z1,...,Ti—1, we define set function g; : 21 — R such that
qi(T) = v(T'U{i}) — z(T), for any T' C [¢ — 1]. z; should
clearly equal maxycp;—1]¢i(T). The following proposition
shows that these set functions are supermodular, which jus-
tifies resorting to a polynomial time algorithm (e.g., [26]) to
compute vector x.

Proposition 9. For any i € N, q; is supermodular.

PROOF. For any A, B C [¢ — 1], such that B C A, and
for any j € [i — 1] \ A, we have ¢;(A) + ¢:(B U {j}) =
o(AULIY) —2(A)+v(BUL}U{iH) —a(BUL}) < o(BU{i})—
z(B) +v(AU{j} U{i}) —2(AU{j}) = ¢:(B) + ¢:(AU{3}),
where the inequality is due to Lemma 2 (see Appendix). []
6. CONCLUSION

This paper provides a partial mapping of the hard and
easy cases for the CSG problem for games represented by
basic MC-nets with positive weights. Some parameters of
MC-net representation, such as the number of red edges in
the CSG-graph, may be a source of complexity in the CSG
problem. The paper also provides an algorithm that solves
the CSG problem for a broader class of MC-nets than pre-
vious work [25], and studies the polynomial time cases that
arise from this new type of optimization. Finally it intro-
duces a subclass of MC-nets, called bipolar MC-nets, which
represent games with a non-empty CS-core. The CSG prob-
lem as well as the determination of an imputation of the
CS-core are problems solvable in polynomial time.

This paper raises several open questions. The CSG prob-
lem’s complexity remains open for basic MC-nets with posi-
tive weights when the number of red edges in the CSG-graph
is restricted to one” or two. Another question which de-

"Whenever the basic MC-net does not contain any rule with-
out positive literals, this case is solvable in polynomial time.



Figure 2: Example of 7(A) and «(B)

serves investigation is the possibility of designing an o(\/E)—
approximation algorithm, where k is the number of red edges
in the CSG-graph. Finally, we know that characteristic func-
tions are fully expressive and that the CSG problem can be
solved in polynomial time in the size of this representation.
However this representation is not compact. It would be
interesting to design a fully expressive language that is as
compact as possible and where the CSG problem can be
solved in polynomial time. Bipolar MC-nets may be a good
starting point to explore this direction.

Appendix

Lemma 1. Let j € P and A, B C P\{j} such that B C
A. Then the following inequality holds:

d(r(AU{j})) —o(r(A)) 2 o(x(BU{j})) — 9(x(B)) (3)

PROOF. Let D C m(A) be the set of coalitions such that
VS € D,SNP; #0 and VS’ € n(A)\D,S'NP; = (). For any
S’ € n(A)\D we have S’ € m(AU {j}), therefore:

o(r(AU{j}) - y=2o(lJ 9D as)

SeD

Figures 2 and 3 can help to figure out where come from
the r.h.s. of (4). The coalition belonging to 7(A)\D does
not change by adding rule j to the set of rules that has to
hold (left part of Figs. 2 and 3). The only coalition left for
m(AU{j}) is the one containing P; which is (Jg.p S (right
part of Fig. 3). Let D' C w(B) be the set of coalitions such
that VS € D', SN P; # 0 and VS’ € n(B)\D', S’ N P; = (.
For any S’ € w(B)\D’' we have S’ € m(B U {j}), therefore:

o(r(BU{j})) - o(m(B)) = o( - ()

SeD’

(4)

o(5)

The reasoning that justifies the r.h.s. of (5) is the same as
for (4) (in that case we need to isolate in Figs. 2 and 3
the elements of D’ instead of D). Select now D" C D’ such
that VS € D, |{S”|S"” € D",S8"” C S}| = 1 (there are various
possible sets D" and the proof holds for any of them). Fig.
2 illustrates one possible way of choosing D" within D’.
We have D" C D', Jgepn S # 0 and VS € D', 0(S) > 0,

therefore:
ol s = <o lJ )= > as) (6
SeD’ SeD’ SeD! SeD"
Consider now the difference between the r.h.s. of (4) and
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Figure 3: example after adding j to A and B

(6) (the latter exceeding (5)):

(s =-> o) -o | 9+

SeD seD SeD’

For any S € D" let a(S) € D be the coalition of D such
that S C «(S). By the definition of D" for any S € D"
exists a unique «(S) € D (this fact is illustrated in Fig. 2)
so by the definition of 9, Eq. (7) reads:

& >

<US€D” S)NN;=0
(Usep S)NN;#0

s (7

SeD!

v; — Vi (8)
SnNifﬂ)
a(S)NN; #0

This quantity is non-negative because for any i € P such
that (Ugepr S)NN; =0 and (Ugep S)NN: # @ there exists
at least one S € D" such that SNN; = @) and a(S)NN; # 0.
Let us prove this by contradiction. Assume that AS € D"
such that SNN; = @ and a(S)NN; # 0. (Ugepr S)NN: =0
implies that SN N; = @ holds VS € D”. So a(S)NN; =0
necessarily holds for any S € D", but this yields a contradic-
tion since (Jge prr @(S) = Ugep S implies Ugep, SNN; # 0.
Thus, by combining (7) and (8) we obtain:
> a(s)

(s ->d oS =o( | 8-
seD seD sep” sep”
Finally, combining this inequality with (6), and using (4)
and (5), we obtain (3) that concludes the proof. [
Lemma 2. For any bipolar game VA, B C N, AN B #
0= v(A)+v(B) <v(ANB)+v(AUDB)
PRrROOF. VA, B C N such that AN B # () we have:

Z v + Z v; < Z v + Z v;

ieP icP ieP ieP

P;CA P;CB P;CANB P;CAUB
Vie P,(P; C AAN(P,C B)= P, C ANB and (P; C
A)V (P; C B) = P; C AU B. Furthermore we have 9(A4) +
(B) < 9(ANB)+9(AUB). Vi € P,(P,NA=0)A(P,NB =
0) = N,Nn(AUB) = 0 and (Nimsz(ZJ)v(NimB =
0) = N;nN (AN B) = 0 (no negative v; is involved since
ANB ¢). By adding these two inequalities we obtain
v(A) + v(B) < v(AU B) + v(A N B) which concludes the
proof. []
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