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ABSTRACT
We investigate markets with a set of students on one side
and a set of colleges on the other. A student and college can
be linked by a weighted contract that defines the student’s
wage, while a college’s budget for hiring students is limited.
Stability is a crucial requirement for matching mechanisms
to be applied in the real world. A standard stability require-
ment is coalitional stability, i.e., no pair of a college and
group of students has incentive to deviate. We find that a
coalitionally stable matching is not guaranteed to exist, ver-
ifying the coalitional stability for a given matching is coNP-
complete, and the problem to find whether a coalitionally
stable matching exists in a given market, is NPNP-complete
(that is ΣP2 -complete). Given these computational hard-
ness results, we pursue a weaker stability requirement called
pairwise stability, i.e., no pair of a college and single student
has incentive to deviate. We then design a strategy-proof
mechanism that works in polynomial-time for computing a
pairwise stable matching in typed markets in which students
are partitioned into types that induce their possible wages.
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1. INTRODUCTION
Investigation into two-sided matchings began with Gale

and Shapley [12], who introduced the college admissions
problem. Since then, the theory of two-sided matching and
its application to real-life problems have been extensively de-
veloped in the literatures of economics, artificial intelligence
and multi-agent systems [13, 25]. The problems of match-
ing students to schools [2, 3, 4], doctors to hospitals [27, 28],
and military cadets to army branches [30, 31] are important
formal settings that have been considered. Central notions
are pairwise and coalitional stability of a matching, which
should be immune to deviations by a pair or group of agents.
Also, a mechanism must be strategy-proof: there should be
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no incentive for students1 to misreport their preferences.
The presence of maximum quotas (i.e. capacity limit of a

college) is assumed in most standard models. In real-life ex-
amples, there are different kinds of distributional constraints
other than maximum quotas [7, 18], and in recent years, var-
ious types of distributional constraints have been addressed
and a series of mechanisms have been introduced to achieve
desirable outcomes under such constraints [10, 11, 14, 21,
22]. In this paper, we revisit the standard distributional
constraint of the maximum quotas, by assuming that each
college has a fixed amount of resource, or budget, that can
be distributed among students; and by assuming that stu-
dents may receive a different amount. The amount may dif-
fer among different types of students (e.g., tuition of a state
university in the US is lower for local students), a student
may be allocated a different amount of resource, depending
on the contract she made (e.g., full scholarship or partial
scholarship), or both. In our model, we explicitly take into
account the total amount of resources of each school and pos-
sible amount a student may receive. Therefore, we model a
weighted matching market with budget constraints.

Although our model is a natural extension of the standard
maximum quotas, there have been very few literature that
have addressed this issue, possibly due to its intractability:
there are two conditions from the literature, substitutabil-
ity and the law of aggregate demand, that make an analysis
tractable [16], but neither is satisfied in our model. The
most relevant work [5] studies college admissions with bud-
get constraints, in which a student receives a college-stipend
pair, and develops a strategy-proof mechanism that satisfies
a weaker notion of stability. The major differences between
this model and ours are that we deal with general ordinal (in-
stead of quasi-linear) preferences of students, which becomes
possible since we focus on discrete sets of wages (instead of
a continuum), and we allow different types of students to be
in a market (instead of assuming all students are the same
type). Another relevant work [24] shows that the core can be
empty in a job market with budge constraints. We cannot
apply their result to our model since they assume the utility
of each school/firm is quasi-linear, while in our model, each
school is indifferent about the amount of money it spends
as long as it is below the budget limit. The environment
of grouping students into types has also been studied in the
literature of school choice problem [1, 4, 9, 20, 34].

We also address computational issues related to verify-
ing/finding a stable matching. As far as we know, we are

1For the sake of presentation, the rest of this paper is de-
scribed in the context of a college-student matching problem.
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the first to address these issues in two-sided matching with
budget constraints. We show that coalitional stability in
matchings with budget constraints involves a larger com-
plexity class than NP in the polynomial hierarchy [23]. Ac-
cording to a compendium of problems (updated in 2008),
there are not many ΣP2 -complete (that is NPNP-complete)
problems involving numbers [29]. The ∀∃SubsetSum prob-
lem that we introduce (as a mid-step in our reduction) is
new. This compendium does not reflect the more recent
progresses in algorithmic game theory. The complexity of
coalitional stability has been studied in several related mod-
els, in which checking is often coNP-complete and deciding
coalitional stability is also ΣP2 -complete. For instance, this
is the case in additively separable hedonic games [32, 33]
or for envy freeness (and Pareto efficiency) [6] and in re-
source allocation [8]. Furthermore, NP-completeness of the
problem of deciding whether there exists a stable outcome
has been proved in matching problems with couples [26] and
matching problems with minimum quotas [7, 17].

The contributions of this paper are twofold. First, we in-
vestigate the computational issues regarding the coalitional
stability of a matching. We find negative results that (1)
there may not exist a coalitionally stable outcome, (2) check-
ing whether a given matching is coalitionally stable is coNP-
complete, and (3) it is NPNP-complete to decide whether
there exists a coalitionally stable matching. Therefore, coali-
tional stability is a notion that is very difficult to obtain.
Secondly, following the above results, we focus on pairwise
stability, a weaker notion that involves only a pair of a stu-
dent and a college. For a student, finding a profitable devi-
ation as a group involving other students would be difficult.
Thus, we assume eliminating such a deviation is important
in practice. In the presence of budget constraint, substi-
tutability, a sufficient condition for the existence of a stable
matching [15], is not guaranteed to hold. However, in a
typed weighted market, in which students are grouped into
several types, we show that there always exists a pairwise
stable matching by developing a strategy-proof mechanism
that finds such a matching in polynomial-time.

2. MODELS
Here, we present our two-sided weighted matchings mod-

els, the most general being weighted markets. Simply weighted
markets and typed weighted markets will be particular cases.

Definition 1. A weighted market is formally defined by a
tuple π = (S,C,W,X, bC ,�S , %̃C), where:
• S = {s1, . . . , sn} is a set of students.
• C = {c1, . . . , cm} is a set of colleges.
• W = {w1, . . . , wp} are non-negative integer wages.
• X ⊆ {(s, c, w) | s ∈ S, c ∈ C,w ∈ W} is a set of

possible contracts where contract x = (s, c, w) means
that student s is assigned to college c with wage w.
• bC = (bc ∈ N+)c∈C is a profile of colleges’ budgets.
• �S= (�s)s∈S is a profile of student preferences�s over

college-wage couples C ×W and an additional couple
(c∅, 0) which means that she stays home with no wage2.
We assume that w > w′ implies (c, w) �s (c, w′).

• %̃C = (%̃c)c∈C is a profile of college weak preferences
over sets S′ ⊆ 2S of students. Each college weak pref-

2This definition allows for preference (c, 2) �s (c∅, 0) �s
(c, 1); the wage matters for the feasibility of the same college.

erence %̃c is based on a weak preference %c over stu-
dents and null student s∅. A weak preference % parti-
tions into asymmetric part � and symmetric part ∼.
Here, s �c s′ means college c strictly prefers s over s′

and s ∼c s′ means c is indifferent between s and s′.
We assume college preferences satisfy responsiveness;
that is, for every pair of students s, s′ ∈ S and subset
of students S′ ⊆ S \ {s, s′}, it holds that:

s %c s
′ ⇔ S′ ∪ {s} %̃c S

′ ∪ {s′}

which also implies s �c s′ ⇔ S′ ∪ {s} �̃c S′ ∪ {s′},
since �c and �̃c are asymmetric parts3. Also, for every
subset of students S′ ( S and student s ∈ S \ S′,

s %c s∅ ⇔ S′ ∪ {s}%̃c S
′

holds, which similarly implies s �c s∅ ⇔ S′∪{s}�̃c S′.

We say a market is simply weighted if, between every stu-
dent college couple, there exists at most one possible wage.
In this simpler case, the set of contracts can be represented
by a bipartite graph between students on one side and col-
leges on the other side, while each possible student-college
edge is weighted by the corresponding wage. Therefore, in
simply weighted markets, notation w can be abused in a
functional manner w : S × C → W where w(s, c) ∈ W is
the wage that student s receives for going to college c and
function w is only defined on couples (s, c) for which there
is a contract.

Furthermore, in the general setting, the market could be
represented by a bipartite multigraph between students and
colleges and possibly multiple edges between each student-
college pair, corresponding to their possible contracts. The
functional abuse for wages would be w : S × C → 2W .

Weighted markets also admit typed weighted markets as a
particular case in which students are partitioned into types.
• Θ = {θ1, . . . , θk} is a finite set of student types.
• Function τ : S → Θ maps each student to its type.

We assume for students s, s′ ∈ S such that θi = τ(s),
θj = τ(s′), i < j, if s �c s∅ and s′ �c s∅ hold, then
s �c s′ holds. In words, as long as college c thinks
both students s and s′ are strictly better than s∅, c
always prefers the student with the higher type.
• Set W is represented as W =

⋃
c∈C

⋃
θ∈Θ Wc,θ, where

Wc,θ is the set of wages that college c can give to the
students of type θ. Formally, for all s ∈ S, for all c ∈ C
such that s �c s∅, and for all w ∈ W , (s, c, w) ∈ X
holds if and only if w ∈Wc,τ(s) holds. We assume types
are ordered in the following sense. Given a college c,
for every w ∈Wc,θi and w′ ∈Wc,θi+1 , one has w > w′.

Definition 2. A typed weighted market is defined by a tuple
π = (S,C,Θ, τ, (Wc,θ)c∈C,θ∈Θ, X, bC ,�S , %̃C).

For instance, one may realistically consider the job mar-
ket of young researchers in which student types are gradu-
ate, young doctorate, experienced doctorate. Each college
c proposes a set of possible wages Wc,θ to each type of stu-
dent θ. It is easy to see that typed weighted markets are
a particular case of weighted markets, in which we require
additional constraints on possible wages and colleges’ pref-
erences. For instance, the typed weighted market in Fig-
ure 1 amounts to a weighted market with contracts X =

3The same holds with symmetric parts ∼c and ∼̃c.
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s1

s2

s3

s4

s5

θ1

θ2

c1

c2

(c2, 3) ≻s1 (c1, 3) ≻s1 (c∅, 0)

(c1, 3) ≻s2 (c1, 2) ≻s2 (c∅, 0)

(c1, 3) ≻s3 (c2, 3) ≻s3 (c∅, 0)

(c1, 1) ≻s4 (c2, 1) ≻s4 (c∅, 0)

(c1, 1) ≻s5 (c2, 1) ≻s5 (c∅, 0)

bc1 = 5

bc2 = 5

s1 ≻c1 s2 ≻c1 s3 ≻c1
s4 ≻c1 s5 ≻c1 s∅

s3 ≻c2 s1 ≻c2 s4 ≻c2
s5 ≻c2 s∅ ≻c2 s2

Wc1,θ1 = {3, 2}

Wc2,θ1 = {3}

Wc1,θ2 = {1}

Wc2,θ2 = {1}

Figure 1: Example of typed-weighted market with
two types of students.

{(s1, c1, 3), (s1, c1, 2), (s1, c2, 3), (s2, c1, 3), (s2, c1, 2), (s3, c1, 3),
(s3, c1, 2), (s3, c2, 3), (s4, c1, 1), (s4, c2, 1), (s5, c1, 1), (s5, c2, 1)}.

In our model, to choose an optimal subset of contracts,
we need to know %̃c. For example, assume s1 �c s2 �c
s3 holds and bc = 2. When choosing an optimal subset
within {(s1, c, 2), (s2, c, 1), (s3, c, 1)}, we cannot tell whether
college c prefers {(s1, c, 2)} or {(s2, c, 1), (s3, c, 1)} without

%̃c. Obtaining %̃c is difficult since it is a preference over 2n

sets, unless it can be concisely represented.
For instance, for each college c, weak preference %̃c can

be represented by an additively separable utility ; that is, a
utility function uc : S → Z that additively extends to sets
S′ ⊆ S of students by uc(S

′) =
∑
s∈S′ uc(s). Hence, given

two sets of students S′, S′′ ∈ 2S , the preference S′�̃cS′′

holds if and only if the inequality uc(S
′) > uc(S

′′) also does,
and the indifference S′∼̃cS′′ holds if and only if one has
equality uc(S

′) = uc(S
′′). This defines a weak preference

%̃c = �̃c ∪ ∼̃c. Null-student has utility uc(s∅) = 0. An
additively separable utility satisfies responsiveness. Also, it
is an instance of a simply weighted market.

2.1 Matching
Given a contract x ∈ X, let (xS , xC , xW ) respectively denote
the student, college, and wage that are linked by contract x.
Given a subset of contracts Y ⊆ X, let us denote the set of
contracts of student s ∈ S as Ys = {x ∈ Y | xS = s} and the
set of contracts of college c ∈ C as Yc = {x ∈ Y | xC = c}.

Definition 3. A matching is a subset of contracts Y ⊆ X
where each student s goes to at most one college4: |Ys| ≤ 1.

Given a matching Y ⊆ X, we abuse notation Y in a nat-
ural functional manner as follows. Let Y (s) ∈ (C ×W ) ∪
{(c∅, 0)} denote the college (or home c∅) to which student
s is assigned and the corresponding wage. Let Y (c) ⊆ S
denote the set of students assigned to college c.

Definition 4. A contract (s, c, w) is feasible if (c, w) �s
(c∅, 0) and s %c s∅. A matching Y is student-feasible for
student s if Ys is feasible. A matching Y is college-feasible
for college c if all students in Yc are feasible, and if the sum
of the wages is budget feasible:

∑
x∈Yc

xW ≤ bc. A feasible
matching Y ⊆ X is a matching which is student-feasible for
each student and college-feasible for each college.

4The students with no contract stay home.

Without loss of generality, we assume for each contract
(c, s, w) ∈ X, s %c s∅ holds.

2.2 Stability
A pairwise stable matching is immune to pairwise devia-

tions by blocking pairs.

Definition 5. For a matching Y , we say (s, c) ∈ S × C is
a blocking pair if there exists w ∈W and R ⊆ Yc such that
(s, c, w) ∈ X \ Y and the following conditions hold:

1. (c, w) �s Y (s),
2. (Y (c) \R(c)) ∪ {s} �̃c Y (c), and
3.

∑
x∈Yc\R xW + w ≤ bc.

In words, (s, c) is a blocking pair if s prefers (c, w) over
her current contract, c is willing to reject the subset of its
contracts R in order to accept s, and doing so satisfies its
budget constraint.

Definition 6. We say a feasible matching Y is pairwise
stable if it does not admit any blocking pair.

Similarly, a coalitionally stable matching is immune to
coalitional deviations, as it does not admit any.

Definition 7. For a matching Y , we say (S′, c) ∈ 2S ×C is
a blocking coalition if there exists ws ∈ W for each s ∈ S′

and R ⊆ Yc such that (s, c, ws) ∈ X \ Y and the following
conditions hold:

1. ∀s ∈ S′, (c, ws) �s Y (s),
2. (Y (c) \R(c)) ∪ S′ �̃c Y (c), and
3.

∑
x∈Yc\R xW +

∑
s∈S′ ws ≤ bc.

In words, (S′, c) is a blocking coalition if each s ∈ S′

prefers (c, ws) over her current contract, c is willing to reject
the subset of its contracts R in order to accept S′, and doing
so satisfies its budget constraint.

Definition 8. We say a feasible matching Y is coalitionally
stable if it does not admit any blocking coalition.

From the above definition, if Y is coalitionally stable, it
is also pairwise stable, but not vice versa.

3. THE COMPLEXITY OF COALITIONAL
STABILITY IN WEIGHTED MARKETS

In the field of computational complexity, a decision prob-
lem is modeled by an infinite set of instances and by a ques-
tion that maps each instance to yes or no. The answer is
the desired output. In this section, we assume additively
separable utilities for colleges, so that condition 2 in Defi-
nitions 5 and 7 are rewritten with sums. First, we observe
that a coalitionally stable matching is not guaranteed to ex-
ist in every weighted market. This fundamental observation
lets us introduce the coalitional stability in weighted mar-
ket (CSWM) problem to decide whether a given weighted
market admits (yes or no) a coalitionally stable matching.

For verifications in the CSWM problem, we then address
the CSWM|Y problem to decide whether in a given weighted
market, a given matching is coalitionally stable. We show
that the CSWM|Y problem is coNP-complete. Hence, veri-
fication for CSWM does not seem polynomial-time tractable
and CSWM is likely to fall outside of NP and coNP.

Ultimately, we show that (indeed) the CSWM problem is
NPNP-complete. Therefore, coalitional stability is a compu-
tationally very hard requirement in weighted markets.
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3.1 A coalitionally stable matching is not guar-
anteed to exist.

Theorem 1. There exists a case in which no coalitionally
stable matching exists.

Example 1. Consider this simply weighted market in which
each possible contract is represented by a weighted edge.

s1

s2

s3

(c1, 2) ≻s1 (c2, 2) ≻s1 (c∅, 0)

c1

c2

bc1 = 2

bc2 = 1

(c1, 1) ≻s2 (c2, 1) ≻s2 (c∅, 0)

(c2, 1) ≻s3 (c1, 1) ≻s3 (c∅, 0)

2

2
1

1
1

1

Possible contracts are X = {(s1, c1, 2), (s1, c2, 2), (s2, c1, 1),
(s2, c2, 1), (s3, c1, 1), (s3, c2, 1)} and the preference of each
college c is s1 �c s2 �c s3 �c s∅ and extends to:

. . . �̃c{s2, s3}�̃c{s1}�̃c{s2}�̃c{s3}�̃c ∅.

Such a college preference could be obtained by additively
separable utility uc(s1) = 4, uc(s2) = 3, uc(s3) = 2.

This example can also be modeled as a typed weighted
market, where Θ = {θ1, θ2}, τ(s1) = θ1, τ(s2) = τ(s3) = θ2,
and for every college c, one has: Wc,θ1 = {2}, Wc,θ2 = {1}.

Proof. We discuss all possible matchings Y of Example 1.
Due to budget constraint, s1 cannot be assigned to c2.
case 1 Y (c1) = ∅ : (s1, c1) or (s2, c1) blocks Y .
case 2 Y (c1) = {s2} or Y (c1) = {s3} : (s1, c1) blocks Y .
case 3 Y (c1) = {s2, s3} : (s3, c2) blocks Y .
case 4 Y (c1) = {s1}, Y (c2) 6= {s2}: (s2, c2) blocks Y .
case 5 Y (c1) = {s1},Y (c2) = {s2}: ({s2, s3}, c1) blocks Y .
Since every possible matching admits a blocking coalition,
there is no coalitionally stable matching in Example 1.

3.2 Reminders on computational complexity
Class P (polynomial-time) corresponds to the decision

problems that can be answered in polynomial-time. Tra-
ditionally, we regard these problems as easy or tractable.

Class NP (non-deterministic polynomial-time) corresponds
to the set of decision problems which ‘yes’-instances have a
certificate verifiable in polynomial-time. For instance, con-
sider the SubsetSum problem: given a target α ∈ N and a
set S = {w1, . . . , wn} of weights, the question asks whether
there exists a subset of items T ⊆ S that satisfies the con-
straint

∑
w∈T w = α (hits the target). For ‘yes’-instances,

providing such a solution is an easy-to-check yes certificate5,
hence the SubsetSum problem is in NP.

Complementation consists in transposing the yes and no
answers, e.g., the coSubsetSum problem asks whether ∀T ⊆
S,

∑
w∈T w 6= α. The ‘no’-instances are polynomial-time

verifiable. This defines the problems of class coNP.
Furthermore, the SubsetSum problem is known to be

part of the most difficult problems of class NP, for which
a polynomial-time algorithm is suspected not to exist. In-
deed, SubsetSum is NP-complete [19]:

1. it is in NP,
2. it is NP-hard in the sense that every problem in NP

can be reduced in polynomial time to SubsetSum.

5Guessing subset T is the non-deterministic part.

P

NP coNP

NPNP coNPNP

CSWM|Y

CSWM

SubsetSum

∀∃SubsetSum

Figure 2: Inclusions of decision problem classes.

Hence, the existence of a polynomial-time algorithm for Sub-
setSum would imply P=NP, which is assumed wrong and
argues for the intractability of SubsetSum. Similarly, one
can show that a problem is coNP-complete by proving that
it is in coNP and that it is the complement of an NP-hard
problem, since NP and coNP are symmetric classes.

For some decision problems, neither yes nor no certifica-
tion is polynomial-time tractable. In that case, the problem
falls outside of NP and coNP. Class NPNP corresponds6 to
the decision problems in which ‘yes’-instances have proofs
verifiable in polynomial time by using a constant-time NP-
oracle. Class coNPNP is its complement. For instance, let
us introduce the following new decision problems:

Definition 9. Given a target α ∈ N and two multi-sets of
integers S∀ and S∃, the ∀∃SubsetSum problem asks whether

∀T ∀ ⊆ S∀, ∃T ∃ ⊆ S∃, s.t.
∑
w∈T ∀

w +
∑
w∈T ∃

w = α.

Conversely, the ∃∀SubsetSum problem asks whether for-
mula ∃T ∀ ⊆ S∀, ∀T ∃ ⊆ S∃,

∑
w∈T ∀ w +

∑
w∈T ∃ w 6= α is

true. The latter is simply the complement of the former.

The ∃∀SubsetSum problem lies in class NPNP. Indeed, by
guessing the right set T ∀, one can use the NP-oracle to solve
the remaining coSubsetSum problem and verify the ‘yes’
answer. Similarly, ∀∃SubsetSum is in class coNPNP. Com-
pleteness is defined in a standard manner with polynomial-
time reductions. Showing that problem ∀∃SubsetSum is
coNPNP-complete will be a middle step in the proof below.

3.3 Complexity of verification
We now address the complexity of a classical yes verifi-

cation. The CSWM|Y problem, given a weighted market

π = (S,C,W,X, bC ,�S , %̃C) and a feasible matching Y ,
asks whether Y is (yes or no) coalitionally stable.

Theorem 2. The CSWM|Y problem is coNP-complete, even
for a simply weighted market with only one college that has
an additively separable utility.

Proof. First, the CSWM|Y problem is in coNP, since pro-
viding a blocking coalition (T, c) is a no-certificate that can
be verified in polynomial-time. Secondly, the complement of
CSWM|Y (which answers ‘yes’ if there is a blocking coali-
tion) is NP-hard, as we reduce SubsetSum to co-CSWM|Y.

Let set S = {w1, . . . , wn} and target α ∈ N be an instance
of SubsetSum. We construct in polynomial-time the follow-
ing CSWM|Y instance addressing it. In this simply weighted
market, there are students S = {s1, . . . , sn, sα} and one col-
lege c. College c has budget α. The wages and utilities
are the same w(c, si) = uc(si) = wi for 1 ≤ i ≤ n and
w(c, sα) = uc(sα) = α− 1/2 for the last student7. The pref-

6Class ΣP2 in the second level of the Polynomial Hierarchy.
7To have only integers, as in the model, one might multi-
ply all numbers by 2 and obtain a strategically equivalent
market, or allow for half integers in the model.
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s1

s2

sn

sα

(c, w) ≻s (c∅, 0)
c bc = α

w1

w2

wn

α− 1
2

Y

Figure 3: Reducing SubsetSum to co-CSWM|Y.

erences of students are to go to college c rather than going
home. The preference of the college is to maximize its util-
ity, which here precisely corresponds to maximize its budget
consumption. In the given matching Y = {(sα, c, α− 1/2)},
student sα goes to college c, and all other students go home.
This reduction is depicted in Figure 3. The college’s budget
consumption corresponds to its utility. A blocking coalition
exists if and only if a subset of items hits target α.

If there is a subset T ⊆ S which hits the target α, then
there is the corresponding blocking coalition (T, c) which
would improve the college’s interest from α − 1/2 to α. If
no subset of items hits target α, then no feasible coalition of
students is better for college c than uc(sα) = α− 1/2.

3.4 The complexity of coalitional stability
The previous subsection suggests that certification is hard,

hence that problem CSWM falls outside of NP and coNP.
Indeed, it is even harder than NP-complete.

Theorem 3. The CSWM problem is NPNP-complete.
It is even the case for a number of colleges in O(1).

Proof sketch. The CSWM problem is in NPNP since ‘yes’-
instances can be certified by this two steps meta-algorithm.

1. Guess a coalitionally stable matching Y .
2. By using the NP-oracle on the corresponding CSWM|Y

instance, prove that Y is coalitionally stable.
For completeness in NPNP, we equivalently show that

problem coCSWM is coNPNP-complete. The proof proceeds
in two steps. First, we reduce the coNPNP-complete prob-
lem ∀∃3CNF to problem ∀∃SubsetSum (Lemma 2). Sec-
ond, we reduce problem ∀∃SubsetSum to problem coCSWM
(Lemma 3), achieving the proof.

Let (B = {0, 1},∨,∧,¬) denote the usual Boolean algebra.
Given a set of variables V , an instantiation I : V → B maps
each variable v ∈ V to a Boolean value I(v) ∈ B. Given
a Boolean variable v, the literals it induces are {v,¬v}. A
3-clause is the disjunction of 3 literals. A Boolean formula is
in 3 conjunctive normal form (3CNF) if it is the conjunction
of a set of 3-clauses.

Definition 10. An instance of the ∀∃3CNF problem is de-
fined by two sets of Boolean variables V ∀, V ∃ (V ∀∩V ∃ = ∅)
and by a 3CNF formula φ defined as the conjunction of a set
of 3-clauses C on the literals induced by V ∀ ∪ V ∃. It asks if

∀I∀ : V ∀ → B, ∃I∃ : V ∃ → B,
∧
c∈C

c(I∀, I∃).

Example 2. Let V ∀ = {v1, v2}, V ∃ = {v3, v4} and φ =

(v1 ∨ ¬v2 ∨ ¬v3)︸ ︷︷ ︸
c1

∧ (¬v1 ∨ v3 ∨ ¬v4)︸ ︷︷ ︸
c2

∧ (v2 ∨ v3 ∨ v4)︸ ︷︷ ︸
c3

.

Does for every instantiation of {v1, v2}, there exists an in-
stantiation of {v3, v4}, such that formula φ is true?

Weights: v1 v2 v3 v4 c1 c2 c3 goes in:

wv1 1 0 0 0 1 0 0 S∀

V ∀ w¬v1 1 0 0 0 0 1 0 S∃

wv2 0 1 0 0 0 0 1 S∀

w¬v2 0 1 0 0 1 0 0 S∃

wv3 0 0 1 0 0 1 1 S∃

V ∃ w¬v3 0 0 1 0 1 0 0 S∃

wv4 0 0 0 1 0 0 1 S∃

w¬v4 0 0 0 1 0 1 0 S∃

wc1 0 0 0 0 1 0 0 S∃

wc′1 0 0 0 0 1 0 0 S∃

slack wc2 0 0 0 0 0 1 0 S∃

wc′2 0 0 0 0 0 1 0 S∃

wc3 0 0 0 0 0 0 1 S∃

wc′3 0 0 0 0 0 0 1 S∃

α 1 1 1 1 3 3 3 Target

Table 1: Reducing Example 2 to ∀∃SubsetSum: each
line represents a weight; last line is the target.

Lemma 1. Problem ∀∃3CNF is coNPNP-complete [23].

Problem ∀∃3CNF is prototypical for the second level of
the polynomial hierarchy, as it uses two groups of quantifiers.

Lemma 2. Problem ∀∃SubsetSum is coNPNP-complete.

Proof of Lemma 2. We will encode a given instance of prob-
lem ∀∃3CNF into the numerical weights and target of a
∀∃SubsetSum instance. It helps to represent the reduc-
tion as in Table 1 where each line represents a weight and
each column is a component of the weight in some base B.
Each variable and each 3-clause indices a column; so there
are |V ∀ ∪ V ∃| + |C| columns. To never have overflows in
any addition of weights, the numbers are represented in a
base B which is large enough, so that each column has to
precisely sum to the same column of the target to satisfy
Equation

∑
wi∈T ∀ wi +

∑
wj∈T ∃ wj = α from Definition 9.

It is sufficient to take B = 2(|V ∀ ∪ V ∃|+ |C|) + 1.
Intuitively, the quantified Boolean variables and their in-

stantiations are precisely modeled by the following 2|V ∀|+
2|V ∃| weights and their quantifications. Two weights are
associated to each variable v, one per induced literal: wv
and w¬v. Both have their variable-columns v equal to 1
and the other variable-columns equal to 0. Also, for column
v, the target is set to 1; so that exactly one literal-weight
per-variable will be in T ∀ ∪ T ∃. For universally quantified
variables v ∈ V ∀, exactly one weight (for instance wv) goes
in the universally quantified set of items S∀ and the other
(for instance w¬v) goes in the existentially quantified set of
items S∃, so that selecting a subset T ∀ ⊆ S∀ is equivalent
to choosing an instantiation of V ∀ and the same universal
quantification is modeled. For existentially quantified vari-
ables v ∈ V ∃, both weights go to the set of items S∃.

For the clause columns, each clause that literal v (or ¬v)
makes true is set to 1 and the others to 0. Then, in the
column of clause c, the target would be that the clause is
made true at least once. Note also that a clause cannot be
made true more than 3 times. Consequently, we introduce
slack-weights to reach target 3: for each clause c, we add 2
weights wc and wc′ with a 1 on clause-column c.

By construction, the ∀∃3CNF instance is a ‘yes’ one if
and only if this ∀∃SubsetSum instance is also a ‘yes’ one.
Moreover, the reduction is polynomial.
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Lemma 3. Problem ∀∃SubsetSum reduces to coCSWM.

Proof of Lemma 3. Let integer multisets S∀ = {. . . , wi, . . .}
and S∃ = {. . . , wj , . . .}, and integer target α ∈ N define an
instance of ∀∃SubsetSum that we reduce to the following
instance of coCSWM. Recall that problem coCSWM asks
whether for all matchings there exists a blocking coalition.

Without loss of generality, we rule out the case in which∑
wi∈S∀ wi > α. We introduce a number M that is large

enough. From multisets S∀, S∃ of the ∀∃SubsetSum in-
stance, we make two sets of students S∀ and S∃ in the
coCSWM instance: for each item wi ∈ S∀, we introduce
a student si ∈ S∀; and for each item wj ∈ S∃, we intro-
duce a student sj ∈ S∃. Then, let us define 3 colleges: c∀∅,
c∀∃ and c∃∅. The budgets of the colleges are: bc∀∅ = M ,
bc∀∃ = α and bc∃∅ = M . Finally, we also insert Example
1, by allowing student s1 to go to college c∀∃ with wage
w(s1, c∀∃) = 1/2 and giving to college c∀∃ additional utility
uc∀∃(s1) = 1/2. Crucially, if student s1 is matched to college
c∀∃, then there is a coalitionally stable matching in Example
1; and otherwise, if s1 is not matched to c∀∃, then there is
no coalitionally stable matching in Example 1, nor in the
whole coCSWM instance, which is then a ‘yes’ instance.

For college c∀∅, hiring a student from S∀ costs 0 and adds
utility 0. For college c∃∅, hiring a student from S∃ costs 0
and adds utility 0. Hence colleges c∀∅ and c∃∅ can hire every
student that comes, but are indifferent to the sets of students
that they receive. For college c∀∃, hiring student si from
S∀ costs wi (the corresponding weight in the ∀∃SubsetSum
instance) and adds utility M . Also, hiring student sj from
S∃ costs wj and adds utility wj . As a consequence, the
preference of college c∀∃ is lexicographically to:

1. take all the students from S∀ who come,
2. maximize budget consumption, trying to hit budget α.
3. If budget consumption does not hit α, hire student s1.
For every student si in S∀, her preference (c∀∅, 0) �si

(c∀∃, wi) �si (c∅, 0) means that her first choice is to go to
college c∀∅, while c∀∅ is indifferent between hiring her or not.
In a matching, let T ∀ denote the subset of students from
S∀ matched to c∀∃, and let S∀ \ T ∀ denote those matched
to college c∀∅. Note that no student from S∀ may form a
blocking coalition: First, students in T ∀ will not provide
a strict interest to college c∀∅ by deviating to it. Second,
students in S∀ \ T ∀ are not interested into deviating to c∀∃.

For every student sj in S∃, her preference (c∀∃, wj) �sj
(c∃∅, 0) �sj (c∅, 0) means that her first choice is to go to
college c∀∃, which enthusiastically welcomes her. Similarly,
let T ∃ denote the subset of students from S∃ matched to
college c∀∃, and let S∃ \ T ∃ denote those matched to c∃∅.

(no ⇒ no.) Assume that the ∀∃SubsetSum instance is a
‘no’-instance, which means that

∃T ∀ ⊆ S∀, ∀T ∃ ⊆ S∃,
∑

wi∈T ∀

wi +
∑

wj∈T ∃

wj 6= α

and let us show that there exists a coalitionally stable match-
ing. We construct this matching as follows. The set of stu-
dents T ∀ given by T ∀ in the formula above goes to college
c∀∃. Then, college c∀∃ hires the subset of students T ∃ that
maximizes its budget consumption, but does not hit target
α, because of the conditions on isomorphic sets T ∃ in the
formula above. Finally, college c∀∃ hires student s1, and
there is a coalitionally stable matching in Example 1. This
matching is coalitionally stable.

S∀

S∃

si

sj

c∀∃

c∀∅

c∃∅

(c∀∅, 0) ≻si (c∀∃, wi)

(c∀∃, wj) ≻sj (c∃∅, 0)

bc∀∅ = M

bc∀∃ = α

bc∃∅ = M

Example 1

s1

(
0
0

)

(
M
wi

)

(
wj

wj

)

(
0
0

)
(1/2
1/2

)

T ∀

S∀ \ T ∀

S∃ \ T ∃

T ∃

≻si (c∅, 0)

≻sj (c∅, 0)

(c∀∃, 1/2) ≻s1 Example 1

Figure 4: Reducing ∀∃SubsetSum to coCSWM.

(yes ⇒ yes.) Assume that the ∀∃SubsetSum instance is
a ‘yes’-instance, which means that

∀T ∀ ⊆ S∀, ∃T ∃ ⊆ S∃,
∑

wi∈T ∀

wi +
∑

wj∈T ∃

wj = α

and let us show that every matching admits a blocking coali-
tion. Assume for the sake of contradiction that there exists
a coalitionally stable matching. Then college c∀∃ hired stu-
dent s1 and achieves at best budget consumption α − 1/2.
However, there exists a blocking coalition (T, c∀∃) in which
T is a set of students corresponding to T ∃; the budget con-
sumption of c∀∃ is α.

4. MECHANISM DESIGN IN
TYPED WEIGHTED MARKETS

The previous section suggests that coalitional stability is a
vain requirement. In this section, we discuss a strategy-proof
and pairwise stable mechanism for typed weighted markets8

called the sequential deferred acceptance (SDA) mechanism.

4.1 Mechanism
A mechanism ϕ is a function that takes a profile of pref-

erences of students �S as an input and returns a matching
Y . Let �S\{s} denote a profile of preferences of students
except s, and (�s,�S\{s}) denote a profile of preferences of
all students, where s’s preference is �s and the profile of
preferences of other students is �S\{s}.

Definition 11. Mechanism ϕ is strategy-proof for students,
if it holds that Y (s) �s Y ′(s) or Y (s) = Y ′(s), for every s,
�s, �′

s and �S\{s}, where Y = ϕ((�s,�S\{s})) and Y ′ =
ϕ((�′

s,�S\{s})).

The SDA mechanism sequentially applies the (student-
proposing) deferred acceptance mechanism (DA) [12], from
the highest type θ1 to the lowest type θk. The DA mecha-
nism makes use of the following crafted choice functions.

Definition 12 (Choice function of students). For each stu-
dent s, her choice function Chs maps any subset of contracts

8Theorems 1, 2 and 3 also hold for typed weighted markets.
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Mechanism 1 (Sequential Deferred Acceptance)

Let Y ← ∅ and i← 1.
Round i :

1. Let Ŝ ← {s ∈ S | τ(s) = θi}, i.e., the set of all
type θi students, and run the DA.

2. Let Y i be the obtained matching. Y ← Y ∪ Y i.
3. If i = k then return Y , otherwise:
∀c ∈ C, bc ← bc −

∑
x∈Y i

c
xW ;

i← i+ 1; Go to Round i.

X ′ ⊆ X to contract {x}, which is the most preferred con-
tract in X ′

s based on �s if one exists, otherwise ∅ if no feasi-
ble contract exists. The choice function of a set of students
Ŝ, denoted as ChŜ , is defined as ChŜ(X ′) =

⋃
s∈Ŝ Chs(X

′),

i.e., the union of choice functions of Ŝ.

Definition 13 (Choice function of colleges). For each col-
lege c, choice function Chc(X

′) is defined as:
1. Z ← ∅, Y ← X ′

c.
2. Repeat the following procedure: If Y = ∅, return Z.

Otherwise, remove (s, c, w) ∈ Y with the highest pri-
ority ranking from Y , s.t. s �c s∅, based on preference
%c on students (ties are broken in some deterministic
way, e.g., based on the alphabetical order of students’
identifiers). If

∑
x∈Z xW + w ≤ bc, add (s, c, w) to Z.

The choice function of all colleges is defined as ChC(X ′) =⋃
c∈C Chc(X

′).

Note that the choice function for each college c is crafted
such that it does not reflect %̃c exactly. Actually, it is de-
fined based on preference %c over individual students. This
fact is considered as an advantage, since as discussed in Sec-
tion 2, obtaining %̃c is difficult in general. As we show, we
can guarantee strategy-proofness for students and pairwise
stability by using the choice functions defined this way.

We use the following (student-proposing) DA as a compo-

nent of our SDA mechanism. For a given set of students Ŝ,
it is defined as follows, where XŜ =

⋃
s∈Ŝ Xs.

Definition 14 (Deferred Acceptance mechanism (DA)).
1. Re← ∅.
2. Y ← ChŜ(XŜ \Re), Z ← ChC(Y ).
3. If Y = Z, then return Y , otherwise:
Re← Re ∪ (Y \ Z), go to Step 2.

Here, Re represents the set of rejected contracts, Y repre-
sents the contracts proposed by students Ŝ within XŜ \Re,
and Z represents the contracts in Y accepted by colleges.
Thus, Y \ Z represents a set of newly rejected contracts.

The SDA is defined in Mechanism 1. It repeatedly applies
the DA for students of each type, from θ1 to θk.

Example 3. Let us describe the execution of the SDA on
the market illustrated in Figure 1.

Round 1. We run the DA for Ŝ = {s1, s2, s3}, i.e., all type
θ1 students, under original budgets bC . The iterations in the
DA are as follows:

1. Y = {(s1, c2, 3), (s2, c1, 3), (s3, c1, 3)} and
Z = {(s1, c2, 3), (s2, c1, 3)}; c1 rejects (s3, c1, 3) be-
cause s2 �c1 s3 and its budget is 5.

2. Y = {(s1, c2, 3), (s2, c1, 3), (s3, c2, 3)} and
Z = {(s2, c1, 3), (s3, c2, 3)}; c2 rejects (s1, c2, 3) be-
cause s3 �c2 s1 and its budget is 5.

3. Y = {(s1, c1, 3), (s2, c1, 3), (s3, c2, 3)} and
Z = {(s1, c1, 3), (s3, c2, 3)}; c1 rejects (s2, c1, 3) be-
cause s1 �c1 s2 and its budget is 5.

4. Y = Z = {(s1, c1, 3), (s2, c1, 2), (s3, c2, 3)}. All colleges
satisfy their budget constraints. Therefore, we obtain
Y 1 = {(s1, c1, 3), (s2, c1, 2), (s3, c2, 3)}.

Round 2. We run the DA for Ŝ = {s4, s5} with the re-
maining budget, i.e., bc1 = 5 − 5 = 0 and bc2 = 5 − 3 = 2.
The iterations in the DA are as follows:

1. Y = {(s4, c1, 1), (s5, c1, 1)} and Z = ∅, because c1 has
no budget to accept any student.

2. Y = Z = {(s4, c2, 1), (s5, c2, 1)}. All colleges satisfy
their budget constraints. Therefore, we obtain Y 2 =
{(s4, c2, 1), (s5, c2, 1)}.

To conclude, the SDA returns the following matching:
Y 1∪Y 2 = {(s1, c1, 3), (s2, c1, 2), (s3, c2, 3), (s4, c2, 1), (s5, c2, 1)}.

4.2 Pairwise stability

Theorem 4. The SDA always returns a pairwise stable
matching.

To prove this theorem, we use the following lemmas.

Lemma 4. Let s ∈ S, S′ ⊆ S \ {s} s.t. s′ %c s∅ holds
for all s′ ∈ S′ ∪ {s}. Assume there exists S′′ ⊆ S′ s.t.
S′\S′′∪{s} �̃c S′ holds. Then, s �c s′ holds for all s′ ∈ S′′.

In words, if college c, which currently has S′, prefers
adding s by removing S′′, then c prefers s over any student
s′ ∈ S′′. This is intuitively natural; if s can win against
coalition S′′, she can also win against each individual in S′′.
We formally prove this from the fact that %̃c is responsive.

Proof of Lemma 4. Assume by way of contradiction, there
exists ŝ ∈ S′′ such that ŝ %c s holds. Since we assume
ŝ %c s holds, from responsiveness, when we add either ŝ

or s to S′ \ {ŝ}, we have S′ %̃c S
′ \ {ŝ} ∪ {s}. From the

assumption, s′ %c s∅ holds for all s′ ∈ S′ ∪ {s}. Thus, from
responsiveness, by adding students in S′′ \ {ŝ} one by one

to S′ \ S′′ ∪ {s}, we have S′ \ {ŝ} ∪ {s} %̃c S
′ \ S′′ ∪ {s}.

From these facts, we obtain S′ %̃c S
′ \ S′′ ∪ {s}. However,

this contradicts the assumption S′ \ S′′ ∪ {s} �̃c S′.

Lemma 5. Assume Y is the obtained matching of SDA,
while for student s, where s %c s∅, contract (s, c, w) is re-
jected. Let Z = {(s′, c, w′) ∈ Yc | w′ ≥ w}. Then, bc −∑

(s′,c,w′)∈Z w
′ < w holds.

In words, if (s, c, w) is rejected, college c does not have
enough budget to accept it even when all contracts whose
weights are less than w are rejected.

Proof of Lemma 5. Each student s′, whose type is θ, pro-
poses (s′, c, w′) only after she has proposed (s′, c, w′′) (and
it is rejected) for all w′′ ∈ Wc,θ such that w′′ > w′ holds.
Thus, the fact that (s, c, w) is rejected implies that there
exists contract (s′, c, w) (s′ can be either identical to s or
different from s) that was rejected while no contract whose
weight is less than w is proposed yet. Thus, all contracts ac-
cepted so far have weights larger than or equal to w. Then,
bc −

∑
(s′,c,w′)∈Z w

′ < w must hold.

Proof of Theorem 4. Assume by way of contradiction, there
exists blocking pair (s, c) for the obtained matching Y . More
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precisely, we assume there exist R ⊆ Yc and w ∈ Wc,τ(s)

such that (i) (c, w) �s Y (s), (ii) (Y (c) \R(c)) ∪ {s}�̃cY (c),
and (iii)

∑
x∈Yc\R xW +w ≤ bc hold. From (i), s must have

proposed (s, c, w) and it was rejected. Then, by Lemma 5,
we have bc −

∑
(s′,c,w′)∈Z w

′ < w, where Z = {(s′, c, w′) ∈
Yc | w′ ≥ w}. Then, we obtain the following inequality:

bc <
∑

(s′,c,w′)∈Z

w′ + w. (1)

From (ii) and Lemma 4, we have ∀s′ ∈ R(c), s �c s′. Then,
for all s′ ∈ R(c), where (s′, c, w′) ∈ Yc, w′ < w holds (other-
wise, (s, c, w) must be accepted instead of (s′, c, w′)). Thus,∑
x∈Yc\R xW ≥

∑
(s′,c,w′)∈Z w

′ holds, since Yc \ R ⊇ Z.

Combining this and (iii), we obtain bc ≥
∑
x∈Yc\R xW +w ≥∑

(s′,c,w′)∈Z w
′ + w, which contradicts with (1).

4.3 Strategy-proofness
When the choice functions of all colleges satisfy the follow-

ing three properties, the DA is guaranteed to be strategy-
proof for students [16]. Informally, the irrelevance of re-
jected contracts means if contract x is rejected when it is
added to X ′, it does not affect the outcomes of other con-
tracts in X ′. Also, the substitutability means if some con-
tract x is rejected when x ∈ X ′, it is also rejected when
another contract is added to X ′. Furthermore, the law of
aggregate demand means if the set of contracts expands,
the number of accepted contracts weakly increases. Al-
though our choice functions satisfy the irrelevance of re-
jected contracts, they fail to satisfy the rest. For exam-
ple, assume there are four students s.t. s1 �c s2 �c s3 �c
s4, and bc = 5. From {(s2, c, 2), (s3, c, 3), (s4, c, 1)}, con-
tract (s4, c, 1) is rejected. However, from {(s1, c, 2), (s2, c, 2),
(s3, c, 3), (s4, c, 1)}, (s4, c, 1) is accepted. Thus, the substi-
tutability is violated. Also, from contracts {(s2, c, 2), (s3, c, 2),
(s4, c, 1)}, all three contracts are accepted. However, from
{(s1, c, 3), (s2, c, 2), (s3, c, 2), (s4, c, 1)}, only first two con-
tracts are accepted. Thus, the law of aggregated demand is
violated.

Theorem 5. The SDA is strategy-proof for students.

Proof. Assume student s is a type θi student, i.e., she is
assigned in Round i. It is clear that s has no influence
on the outcomes of Round j, where j < i. Also, the out-
come of later rounds is irrelevant to i. Thus, to show the
strategy-proofness of the SDA, it is sufficient to show the
strategy-proofness of the DA used for each round. To show
this fact, we introduce an alternative market in which each
(sub-)college has its maximum quota/capacity limit (but no
budget constraint). In this market, the standard DA is guar-
anteed to be strategy-proof. We show the equivalence of the
outcomes in these markets.

The alternative market is defined as follows. Let us as-
sumeWc,θi , i.e., the possible set of c’s weights for type θi stu-
dents, is given as {w1

c , w
2
c , . . . , w

`c
c }, where w1

c > . . . > w`cc
for all c ∈ C. We divide college c into `c sub-colleges, i.e.,
c1, c2, . . . , c`c . The maximum quota qci for each sub-college
ci is recursively defined as follows, where r1 = bc (more pre-
cisely, bc is the budget obtained in each round of the SDA).

qci = bri/wicc, ri+1 = ri − qci × w
i
c.

Contract (s, c, wic) in the original market is translated into
contract (s, ci) in the alternative market. The preference of

each student in the alternative market is identical to the
original market according to the above translation. The
preference of each sub-college ci is defined based on %c, i.e.,
ci will accept students according to %c until its maximum
quota qci , using the same tie-breaking method as Chc.

In the original market, c can accept at most qc1 contracts
with weight w1

c due to its budget constraint. Also, each
student s proposes contract (s, c, w2

c) only after (s, c, w1
c) is

rejected. This implies that c already accepts qc1 contracts
with weight w1

c . Then, c can accept at most qc2 contracts
with weight w2

c due to its budget constraint. Also, each
student s proposes contract (s, c, w3

c) only after (s, c, w2
c)

is rejected. This implies that c accepts qc2 contracts with
weight w2

c , and so on. From these facts, the outcome in the
alternative market and that in the original market must be
identical. Then, from the fact that the standard DA in the
alternative market is strategy-proof, the DA (Definition 14)
in the original market must be strategy-proof.

Let us show an example of the alternative market using
the original market illustrated in Figure 1. In Round 1, we
create two sub-colleges for c1, i.e., c11 and c21. The maximum
quotas of these sub-colleges are 1. There exists only one sub-
college for c2, which we denote c12, whose maximum quota
is also 1. Then, s1 is accepted for c11, s2 is accepted for c21,
and s3 is accepted for c12. In Round 2, since the sub-college
for c1 has no capacity, its maximum quota is 0. There exists
one sub-college for c2, which we denote c12, whose maximum
quota is 2. Then, s4 and s5 are accepted for c12.

From Theorem 4, we immediately obtain the following.

Theorem 6. In a typed weighted market, a pairwise stable
matching is guaranteed to exist, and it can be calculated in
the time linear to |X|, assuming the calculation of ChC and
ChŜ can be done in a constant time.

Proof. We can always find a pairwise stable matching using
the SDA. Also, during the iteration of the DA in Defini-
tion 14, at least one contract must be rejected; otherwise,
the procedure terminates. Thus, assuming the calculation of
ChC and ChŜ can be done in a constant time, the run-time
of the SDA is linear in |X|.

5. CONCLUSION
This paper examined two-sided matchings with budget

constraints and showed computational hardness results for
problems related to coalitional stability. Then, we designed
a strategy-proof mechanism that achieves pairwise stability.

Our future works include examining (1 + σ)-coalitional
stability, which is an intermediate concept between pairwise
and coalitional stability, i.e., the number of students in a
coalition is at most σ (where 1 ≤ σ ≤ n). Also, we suspect
problem CSWM to be easier for a constant number of types.
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[2] A. Abdulkadiroğlu, P. A. Pathak, and A. E. Roth.
Strategy-proofness versus efficiency in matching with
indifferences: Redesigning the NYC high school match.
American Economic Review, 99:1954–1978, 2009.
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