
Parameterized Complexity of Group Activity Selection

Hooyeon Lee
Moloco, Inc.

haden.lee@molocoads.com

Virginia Vassilevska Williams
Massachusetts Institute of Technology

virgi@mit.edu

ABSTRACT
We consider the Group Activity Selection Problem (GASP) in which
a group of agents need to be assigned to activities, subject to agent
preferences and stability conditions. In GASP, the agents announce
dichotomic preferences on which (activity, number-of-participant)
pairs are acceptable to them. We consider five solution concepts of
assignments: (1) individual rationality (everyone who is assigned to
an activity is willing to participate), (2) (Nash) stability (no agent
wants to deviate from the assignment), (3) envy-freeness (no agent
is envious of someone else’s assignment), (4) stability and envy-
freeness, and (5) perfection (everyone is assigned and willing to
participate). It is known that finding an assignment of a given size
with any of these properties is NP-complete. We study the com-
plexity of GASPon a finer scale, through the lens of parameterized
complexity. We show that the solution concepts above differ sub-
stantially, when parameterized by the size of the solution (the num-
ber of assigned agents or the number of used activities). In partic-
ular, finding an individually rational assignment is fixed parameter
tractable, yet other solutions concepts are less tractable (W[1]- and
W[2]-hard) even under very natural restrictions on inputs.

Keywords
Parameterized Complexity; Fixed parameter tractability; W-hierarchy;
Individual rationality; Stability; Envy-free

1. INTRODUCTION AND RELATED WORK
Imagine an event in which several activities are to take place

concurrently. A group of agents are willing to participate, subject
to their preferences. In many settings, the agent preferences include
not only which activities the agent is willing to participate in, but
also the number(s) of participants in each activity that are accept-
able to the agent. For example, agents may wish to have enough
participants in certain activities (such as a group bus tour) to split
the cost associated with it, whereas they may wish to have just few
participants in activities with limited resources (such as a showcase
with a limited number of devices). Given the preferences of agents,
the organizer wishes to find a “good” assignment subject to certain
rationality and/or stability conditions. The first condition is indi-
vidual rationality: everyone assigned to some activity is willing to
participate. In addition to individual rationality, the organizer may
want to ensure that agents who are not assigned to any activity do
not prefer to deviate from their assignment by joining an activity

Appears in: Proceedings of the 16th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2017), S.
Das, E. Durfee, K. Larson, M. Winikoff (eds.), May 8–12, 2017,
São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

(Nash stability). Other concepts include envy-freeness that asserts
that no unassigned agent would prefer to take the place of an as-
signed agent, and perfection in which all agents must be assigned.

To model this setting, Darmann et al. [6] proposed the Group
Activity Selection Problem (GASP) and defined three solution con-
cepts (individual rationality, stability, and perfection). In addition,
they also provided many NP-hardness results even under various
restrictions on inputs. These hardness results essentially argue that
it is hard to find an assignment that maximizes the number of par-
ticipants in activities. Suppose, however, that we are satisfied if we
can assign a small number k out of the n participants to some (up
to k) of the p activities while satisfying our rationality criteria. For
instance, consider a VR company that is hosting a hackathon event
in which n developers wish to participate and develop prototype
software for the company’s latest VR devices. The company can
supply up to p VR devices of different models, while the venue has
space for k developers in total (due to safety reasons and limited
number of workstations). As developers may have different pref-
erences on which model of VR devices they want to use and with
how many others they are willing to share the workstation, this is a
natural instance of GASP in which small-size solutions matter.

In general, we can find small-size solutions in a brute-force man-
ner: try all possible O(pk) ordered choices of k activities, all O(kk)
choices for the number of participants in each activity, and all O(nk)
ordered choices of k participants; then check whether the desired
criterion (such as individual rationality or stability) is satisfied by
the induced assignment. This runs in O((pnk)k) time,1 which is
polynomial for any fixed k but is not very desirable. A much bet-
ter running time would be one of the form O(f (k) · (p+n)) - such
a runtime would be linear, regardless of the constant k, and the
function f . More generally, on input size n, one would like a fixed
parameter tractable (FPT) algorithm with runtime f (k) · nc, where
c is independent of k. The problems that admit such algorithms are
said to be in the class FPT. Developing FPT algorithms, especially
linear time ones, greatly mitigates the NP-hardness of problems as
it shows that the problems are actually quite tractable.

The field of parameterized complexity aims to classify NP-hard
problems by determining their membership within a hierarchy of
complexity classes under parameterization, called W-hierarchy. Be-
cause complexity is analyzed in terms of both the input size and an
additional parmeter, it analyzes NP-hard problems on a finer scale
than classic complexity. The W-hierarchy contains classes such as
FPT, W[1], W[2], etc. Hierarchy theorems show that FPT is con-
tained in W[1] which is contained in W[2], and so on (see [7] for
more details). It is believed that FPT 6= W[1] 6= W[2], so that the
problems in W[2] are believed to be harder than those in W[1] that
are themselves believed to be harder than the FPT problems. Lastly,

1This shows that the problems we consider are in the class XP.

353

hardness assumptions such as the Exponential Time Hypothesis
(ETH) of Impagliazzo and Paturi [11] can often be used to show
that particular W[1]-hard problems cannot be solved in no(k) time,
giving concrete runtime lower bounds.

In this work, we investigate tractability of GASP under different
solution concepts and different restrictions on inputs when the size
of the solution is parameterized. We place different NP-hard ver-
sions of GASP under this parameterization into different parts of the
W-hierarchy. Our classification is nearly complete, as seen in Ta-
ble 1, Section 3. We show that GASP for individual rationality is in
FPT, whereas for the other solution concepts the problem is W[1]-
hard or W[2]-hard even if all agents have increasing (decreasing)
preferences, i.e., wanting more (fewer) participants for each activ-
ity. Surprisingly to us, the case of decreasing preferences is more
tractable than that of increasing preferences. Lastly, we consider
the special case in which all activities are equivalent. Here the pref-
erences of the agents can vary but for each particular agent the pref-
erences are the same for all copies of the activity. Even though the
problem is NP-hard, all parameterized versions of it (except possi-
bly perfection) are FPT.2

Related Work. Computational social choice is an interdisci-
plinary research area involving economics, social science, and com-
puter science including artificial intelligence and multi-agent sys-
tems. Much work has been devoted to investigating both classical
and parameterized complexity of social choice problems that range
from winner determination [16, 14, 3], control problems in voting
rule [9, 10, 8], coalition games [15, 4], and more. This work stud-
ies parameterized complexity of a social choice problem under five
different solution concepts and restrictions on inputs.

Most closely related work to ours is that of Darmann et al. [6], in
which the authors defined GASP, and provided a number of classical
complexity results for individual rationality, stability, and perfec-
tion. In this work, we adopt their definitions, but we also consider
the new solution concept of envy-freeness. It is worth noting that
GASP is closely related to Hedonic Games (see Section 2.2 of [6]
and Section 2 of [12] for more details); in fact, GASP can be viewed
as a class of hedonic coalition games with concise representation
of preferences of agents. Ballester [2] provides a number of com-
putational complexity results (in fact, hardness results) for finding
a core-stable, Nash-stable, or individually rational outcome in he-
donic games and anonymous hedonic games, but these results do
not apply to GASP because of the concise representation of an in-
put to GASP. Recently, Darmann [5] considered a different setting
of GASP where agents are assumed to have strict, ordinal prefer-
ences over the outcomes, whereas both our work and [6] assume
that agents are indifferent among all outcomes that they approve
of. It is an interesting future problem to consider how our results in
this work can be extended to the ordinal setting that Darmann [5]
considered. Lee and Williams [13] recently analyzed parameterized
comlexity of the Stable Invitations Problem (first studied by Lee
and Shoham [12]) that generalizes GASP with social relationships
(friends and enemies) while assuming only one activity. Lastly, Lee
and Shoham [12] showed that incentive compatibility and solution
concepts being considered in this work are not compatible in GASP,
yet we do not consider strategic agents in this work.

2. DEFINITIONS AND KNOWN RESULTS
To make this work self-contained, we begin by introducing the

formal definitions proposed by Darmann et al. [6], with minor mod-
ifications to notation for readability and consistency.

2We note that Darmann et al. [6] defined increasing/decreasing
preferences as well as equivalent activities in their work.

Definition 1. In the Group Activity Selection Problem (GASP), we
are given a set of agents N = {1,2, . . . ,n}, a set of non-void activi-
ties A∗ = {a1,a2, . . . ,ap}, and the void activity (a /0) which refers to
the case when an agent does not participate in any of the activities
in A∗. An outcome is a pair (a j,x)∈ A∗× [n] which is interpreted as
x agents participating in non-void activity a j. For each agent i we
are given a set Si of outcomes (called approval set) such that the
outcomes in Si are equally liked and strictly preferred to a /0, where
Si ⊆ A∗× [1,n]. We write Si(a j) = {x : (a j,x) ∈ Si} to refer to the
set of sizes which agent i approves for activity a j.

Similarly to Darmann et al. [6], we assume that each agent is
indifferent among the outcomes in Si; that is, the void-activity (a /0)
draws the line between which outcomes are approved and which
ones are not by the agent. While this is a simplifying assumption,
note that hardness results immediately imply the same hardness for
the general case without this assumption.
Example 1. Consider N = {1,2,3} and A∗ = {a1,a2}, and the six
outcomes, A∗ × [3]. Suppose S1 = {(a1,1),(a1,2),(a1,3)}, S2 =
{(a1,2),(a2,2),(a2,3)}, and S3 = {(a1,1),(a2,1),(a2,2)}. That
is, agent 1 approves a1 for any size (i.e., unconditional approval)
while she does not approve a2 for any size (i.e., unconditional re-
fusal). Using our notation, S1(a1) = {1,2,3} and S1(a2) = /0. If we
assign all agents to a1, then (a1,3) is the outcome realized by all
agents – notice that only agent 1 approves it (and thus is willing to
participate) while agents 2 and 3 do not (and thus are unwilling to
participate). Naturally, this assignment induces instability.
Definition 2. An assignment in GASP is a mapping π : N → A∗ ∪
{a /0}where π(i) = a /0 means that agent i is not assigned to any non-
void activity. An assignment naturally partitions the agents into at
most |A∗|+ 1 groups. We define π0 = {i : π(i) = a /0} and π j =
{i : π(i) = a j} for j = 1, . . . p, so that |π j| refers to the number of
agents assigned by π to a specific activity. Let us define the size
of an assignment, denoted by |π|, as the number of agents that are
assigned to non-void activities; that is, |π|= ∑

p
j=1 |π

j|.
π induces an outcome for each agent: If π(i) = a /0, then the spe-

cial outcome a /0 is induced as i does not participate, and if π(i) =
a j ∈ A∗, then (a j, |π j|) is the induced outcome for agent i.

We define solution concepts with different levels of stability.
Definition 3. Let π be any assignment in GASP.

π is individually rational (IR) if ∀ j ∈ [p] and ∀i ∈ π j , it holds
that (a j, |π j|) ∈ Si.

π is (Nash) stable if it is IR, and ∀i ∈ N such that π(i) = a /0 and
∀a j ∈ A∗ it holds that (a j, |π j|+1) 6∈ Si.

π is envy-free (EF) if it is IR, and ∀i ∈ N such that π(i) = a /0 and
∀i′ ∈ N such that π(i′) = a j ∈ A∗, it holds that (π(i′), |π j|) 6∈ Si.

π is stable-EF if it is both stable and envy-free.
π is perfect if it is IR and π(i) 6= a /0 for all i ∈ N.
IR requires every agent assigned to an activity be unwilling to de-

viate. Stability further requires that every unassigned agent be un-
willing to deviate (unilaterally, without permission of other agents).
EF requires that every unassigned agent be not envious of some-
one else assigned to an activity. Stability and EF together define a
stronger solution concept than the two. Lastly, a perfect assignment
is the strongest solution concept which implies all others.

Darmann et al. [6] showed that finding a solution in GASP is NP-
hard even under some restrictions on inputs – when agents have re-
stricted domains of preferences and when activities are of the same
type (i.e., all activities are equivalent).
Definition 4. (Darmann et al. [6]) Agent i has an increasing prefer-
ence for activity a j if there exists a threshold li(a j) ∈ {1,2, . . . ,n+
1} such that Si(a j) = [li(a j),n] (where [n+ 1,n] = /0). Similarly,
Agent i has a decreasing preference for activity a j if there ex-

354

ists a threshold ui(a j) ∈ {0,1, . . . ,n} such that Si(a j) = [1,ui(a j)].
Lastly, we say that two activities a j and a j′ are equivalent if for
every agent i ∈ N, Si(a j) = Si(a j′).

Let us re-visit the problem instance from Example 1, and relate it
to various definitions and concepts we have defined in this section.
Example 2. In Example 1, agent 2 has an increasing preference for
a2 with l2(a2) = 2 while agent 3 has a decreasing preference for a2
with u3(a2) = 2. Agent 1 has (degenerate) increasing/decreasing
preferences for both a1 and a2 with l1(a1) = 1,u1(a2) = 3 and
l1(a2) = 4,u1(a2) = 0. Now consider an assignment π with π(1) =
π(2) = a1 and π(3) = a2; under the assignment π , agents 1,2 re-
alize the outcome (a1,2) and agent 3 realizes (a2,1). It is easy to
check that π is prefect (and thus IR, stable, and EF). Consider an-
other assignment π ′ with π ′(1) = a1 and π ′(2) = π ′(3) = a /0; under
π ′, agent 1 realizes the outcome (a1,1) and agents 2,3 realize a /0.
π ′ is individually rational (as (a1,1) ∈ S1), but it is not stable (as
(a1,2) ∈ S2) or envy-free (as (a1,1) ∈ S3).

Darmann et al. [6] proved many hardness results of GASP, and
we mention their most relevant results to this work.
Theorem 1. Finding a perfect assignment is NP-hard, even if all
agents have increasing preferences for all activities, if all agents
have decreasing preferences for all activities, or if all activities are
equivalent (Theorems 4.1, 4.2, 4.3, and 4.4 of [6]).

As corollaries, finding an assignment of size k under IR, sta-
bility, EF, or stable-EF is NP-hard; we refer to these problems as
k-IR-GASP, k-Stable-GASP, k-EF-GASP, and k-Stable-EF-GASP.
Also as a corollary, finding a perfect assignment using k activi-
ties is NP-hard, to which we refer as k-Perfect-GASP. At the end
of the paper we also consider the related problems of finding an
IR/Stable/EF/Stable-EF solution of size at least k, and also a Perfect-
GASP solution using at most k activities.

3. PARAMETERIZED COMPLEXITY
Our main technical results are summarized in Table 1. “General”

refers to the case of arbitrary preferences of agents, “Increasing”
(“Decreasing”) refers to the case where all agents have increasing
(decreasing) preferences for all activities, and “Equivalent” refers
to the case where all activities are equivalent. All problems are
known to be NP-complete due to Darmann et al. [6].

Input k-GASP Solution Concepts
IR Stable EF Stable & EF Perfect

General FPT W [1]-hard W [1]-C W [1]-hard W [2]-hard
Increasing FPT W [1]-C W [1]-C W [1]-hard W [2]-hard
Decreasing FPT FPT W [1]-C FPT W [2]-hard
Equivalent FPT FPT FPT FPT Unknown

Table 1: Complexity of the Group Activity Selection Problem.

3.1 Complexity of IR-GASP
We show that k-IR-GASP can be solved in (exp(k)np logn) time.

The largest input size to GASP is Θ(n2 p) as the number of possible
outcomes is np and each agent needs to specify an approval set
of size O(np). As we seek solutions of size k, only the outcomes
with the number of participants being at most k matter. We can
prune the input to size Θ(nkp) (in about that much time, assuming
random access to preferences). Hence our algorithm runs in sub-
linearithmic time in input size.
Theorem 2. k-IR-GASP can be solved in time 2O(k)(np logn) where
n = |N| and p = |A∗| (hence it is in FPT).

Proof. We use “Color Coding” to design a randomized (Monte
Carlo) algorithm, which can easily be de-randomized using a fam-
ily of k-perfect hash functions as shown in the work [1].

We first “color” the agents using k colors independently and uni-
formly at random. We seek to assign exactly one agent of each color
to some activity such that the resulting assignment is IR and of size
k. Let c(i) denote the color of agent i where c(i) ∈ [k]. For each
activity a j ∈ A∗ and every subset C of colors (i.e., C ⊆ [k]), we will
first determine whether it is possible to assign to activity a j exactly
|C| agents with distinct colors specified by C while satisfying the
IR constraint; we refer to this subproblem by T (C, j). For any fixed
a j and C, we check for every color d ∈ C whether there exists an
agent i with c(i) = d and (a j, |C|) ∈ Si in time O(n) by iterating
over agents and look up their approval sets. If the test is affirma-
tive, we can assign exactly |C| agents with distinct colors specified
by C to activity a j . We solve T (C, j) for every a j ∈ A∗ and every
subset of colors, which can be done in time O(n · p ·2k) overall.

Next, we solve another set of subproblems (which we call R(C, j))
to check if it is possible to assign |C| agents of distinct colors in C
to activities in A j = {a1,a2, . . . ,a j} for every j ≤ p and C ⊆ [k].
When j = 1, R(C, j) is equivalent to T (R, j). When j > 1, we enu-
merate over every subset C′ ⊆C, and solve R(C′, j−1) and lookup
the result of T (C \C′, j). If both R(C′, j− 1) and T (C \C′, j) are
affirmative for some C′ ⊂C, then we conclude that R(C, j) is also
affirmative. Finally, if R([k], p) is affirmative, then we can find an
IR assignment of size k with distinct colors of agents. There are at
most O(2k · p) subproblems R(C, j)’s, and each subproblem can be
solved in time O(2k) (as we enumerate over all subsets of C).

The overall runtime of this algorithm is O(4k · p+ 2k · (np)) =
2O(k)(np). This algorithm is a Monte Carlo algorithm; even if there
exists a solution, there is a chance that the algorithm does not find
it due to coloring. The probability that random coloring yields dis-
tinct colors of the k agents of any fixed solution is at least k!/kk >
1/ek, which is exponentially small only in k. We can repeat this
algorithm ek lnn times to increase the probability of success to 1−
1/n (with overall runtime 2O(k)(np logn)). To de-randomize the al-
gorithm, we use a k-perfect family of hash functions from N to [k].
If we have a list of colorings of agents such that for every subset
N′ ⊆ N of size k there exists a coloring in the list that colors each
agent in N′ distinctly, then we can enumerate over this list of color-
ings in lieu of random coloring. This is precisely what a k-perfect
family of hash functions offers, and the list can be specified using
2O(k) logn bits (for details, see [1]). This leads to a deterministic
FPT algorithm with 2O(k)(np logn) runtime.

3.2 Complexity of Stable-GASP
Stability is a stronger solution concept than individual rational-

ity. This relationship is not apparent under classic complexity as
both problems are NP-complete. However, under parameterization,
k-IR-GASP is FPT whereas k-Stable-GASP is W [1]-hard.
Theorem 3. k-Stable-GASP is W [1]-hard, even if each agent ap-
proves at most one size per activity. Assuming the ETH [11], k-
Stable-GASP cannot be solved in time (np)o(

√
k).

Proof. We reduce from k-Clique3. The result based on ETH fol-
lows as we increase the parameter from k to O(k2).

Construction of GASP instance. Consider an instance of the k-
Clique problem, G=(V,E) and a parameter k where V = {v1, . . . ,vn}.
Let us create an instance of GASP as follows: Let N = V ∪{wi,x :
(1≤ i≤ n)∧ (1≤ x≤ k−1)}; that is, we create n node-agents vi’s
(by abusing notation) and (k−1) copies of neighbor-agents (wi,x’s)
for each vi. The neighbor-agents will be used to “select” the k− 1
edges incident to each node if the node is to be included in a clique

3k-Clique is to find a clique of size k in given graph, known to be
W[1]-hard.

355

we are seeking. Let A∗ = {a1, . . . ,ak}∪{ei, j : 1 ≤ i < j ≤ n}; we
create k clique-activities (which are used to determine membership
of a node in a clique) and

(n
2
)

edge-activities ei, j (where i < j).
For each node-agent vi, we set its approval set Svi = {(a j,1) : 1 ≤
j ≤ k}∪{(ei, j,3) : i 6= j}. For each neighbor-agent wi,x, we set its
approval set Swi,x = {(ei, j,2) : (vi,v j) ∈ E}. Finally we set the pa-
rameter k′ of GASP (to distinguish from k in the Clique problem) to
k′ = k+ 2

(k
2
)
. This is a valid FPT-reduction as k′ depends only on

k but not on n, and the size of our instance of GASP is polynomially
bounded in n,k as there are O(nk) agents and O(n2) activities.

Let us describe how cliques and stable assignments are related
in this reduction. A node-agent is assigned to a clique-activity if
and only if its corresponding node belongs to a (corresponding)
clique. For each node-agent, there exists k−1 neighbor-agents, and
these neighbor-agents must be assigned properly to edge-activities
in order to ensure that the resulting set of nodes is indeed a clique.

Proof of equivalence between instances. We claim that a clique
of size k exists if and only if a stable assignment of size k′ exists.
Without loss of generality, suppose that C = {v1,v2, . . . ,vk} forms
a clique in G. Consider the following assignment π:

π(vi) =

{
ai i≤ k
a /0 i > k

and π(wi,x) =

ei,x+1 i≤ k∧ i≤ x
ex,i i≤ k∧ i > x
a /0 i > k

.

That is, node-agents are assigned to clique-activities and their
associated neighbor-agents are assigned to edge-activities; all other
agents are assigned to the void activity. Clearly π assigns exactly
k+2

(k
2
)
= k′ agents to non-void activities. It is easy to verify that π

is indeed a stable assignment (we omit details due to space limit).
Conversely, suppose there is a stable assignment π of size k′ =

k+ 2
(k

2
)
. First notice that for each edge-activity ei, j there are pre-

cisely two agents who approve the outcome (ei, j,3) – namely, vi
and v j. Therefore if π is stable, it cannot assign any node-agents (of
the form vi) to any edge-activity (of the form ei, j). In other words,
for each vi, π(vi) ∈ {a /0}∪{a1, . . . ,ak}. Let C = {vi : π(vi) 6= a /0};
since there are k clique-activities, |C| ≤ k. We claim that |C| = k
if π is stable; if |C| < k, then there exists some a j such that no
agent is assigned to it; since k ≤ n, there must be some vi such that
π(vi) = a /0. This implies that π is not stable because (a j,1) ∈ Svi

while π(vi) = a /0; hence |C|= k must hold. By re-labeling, assume
C = {v1,v2, . . . ,vk} (i.e., π(vi) = ai if i≤ k and π(vi) = a /0 if i > k).

We argued earlier that π never assigns node-agents to any edge-
activities if it is stable. This implies that, if π assigns any agent
to an edge-activity, it must be the case that π assigns exactly two
neighbor-agents (of the form wi,x) to it (due to the construction of
Swi,x ’s). If π is stable, then π must assign no neighbor-agents to ei, j
if i > k or j > k and exactly two neighbor-agents to ei, j if i≤ k and
j≤ k. To prove the first claim, suppose that π assigns two neighbor-
agents to ei, j where i > k (and recall that π(vi) = a /0 when i > k).
Then π is not stable because (ei, j,3)∈ Svi , and thus vi wishes to join
ei, j, and this is a contradiction. Similarly one can prove the claim
in the case where j > k. To prove the second part, recall that |π|=
k′ = k + 2

(k
2
)
. Since π assigns exactly k node-agents to non-void

activities, it must assign k(k− 1) = 2
(k

2
)

neighbor-agents to
(k

2
)

edge-activities from {ei, j : i, j ≤ k}. Therefore, π must assign two
agents to each of the edge-activities in {ei, j : i, j ≤ k}. This implies
that there is an edge between vi and v j in the original instance if
i, j ≤ k. Otherwise, if (vi,v j) 6∈ E where i, j ≤ k, then there is no
neighbor-agents who can be assigned to ei, j, which contradicts the
assumption that π is of size k′.

Let us consider the restricted case when all agents have increas-

ing preferences for all activities. That is, all agents prefer no less
participants for all activities that they approve.
Theorem 4. k-Stable-GASP is W [1]-complete when all agents have
increasing preferences for all activities.

Proof. We reduce from the k-Clique problem to show W[1]-hardness.
We omit proof of completeness due to space.

Construction of GASP instance. Let G = (V,E) be a graph in-
stance of the k-Clique problem. For each vertex vi ∈ V , we create
k2 copies of vi as agents (call them copies of vi) and create an ac-
tivity ai; this creates k2|V | agents and |V | activities. For each edge
ei, j = (vi,v j) ∈ E, we create two copies of ei, j as agents (call them
copies of ei, j) and create an activity wi, j; this creates 2|E| agents
and |E| activities. Let k′ = k3 + k2− k, and we create k′+1 copies
of dummy agents (call them copies of z). For each of the k2 copies
of vi agents, we set its approval set such that lvi(ai) = k2 (i.e., ap-
proves any outcome with ai and size k2 or larger) and lvi(wi, j) = 3
if (vi,v j)∈ E and lvi(·) = n+1 (effectively, +∞) for all other activ-
ities (where n = k2|V |+2|E|+ k′+1 is the total number of agents
we create). For each of the two copies of ei, j agents, we set its ap-
proval set such that lei, j (wi, j) = 2. For each of the k′+ 1 copies of
z agents, we set its approval set such that lz(wi, j) = 4 for all (i, j)
where (vi,v j)∈ E. We claim that a clique of size k exists in G if and
only if a stable assignment of size k′ exists in our GASP instance.

Proof of equivalence between instances. Without loss of gener-
ality, suppose that C = {v1,v2, . . . ,vk} is a clique of size k in G. We
can construct a stable assignment of size k′ as follows: (a) For k2

copies of vi, we assign them to ai if vi ∈C and to a /0 otherwise, (b)
for two copies of ei, j, we assign them to wi, j if vi ∈C and v j ∈C
and to a /0 otherwise, and (c) copies of z are assigned to a /0. Note
that this assignment assigns exactly k3 +2

(k
2
)
= k3 + k(k−1) = k′

agents to non-void activities. It is easy to verify that π is IR and
stable, proof of which is omitted due to space.

Conversely, now suppose that π is a stable assignment of size k′,
and we show that there exists a clique of size k in G. If π assigns
three or more agents to any wi, j, then π must assign all copies of z to
some activity (possibly wi, j) or π would not be stable; yet we know
that π is of size k′ and there are k′+1 copies of z, and therefore π

can only assign two or fewer agents to each wi, j. If π assigns two
agents to some wi, j, then those two agents must be the two copies of
ei, j because no other agent approves the outcome (wi, j,2). Further-
more, if π assigns the two copies of ei, j to wi, j , then π must assign
all k2 copies of vi to ai and all k2 copies of v j to a j – otherwise,
π would not be stable. Let W be the set of activities of the form
wi, j such that π assigns exactly two agents to wi, j; if |W | >

(k
2
)
,

then there must be at least k+1 indices that appear in elements of
W , which implies that π must assign agents to at least k+1 activ-
ities of the form ai. This is a contradiction because π is of size k′

but (k+ 1)k2 > k′. Therefore, |W | ≤
(k

2
)
. Now suppose |W | <

(k
2
)

instead. As argued earlier, π can assign to at most k activities of
the form ai, but k3 +2|W | < k′, which implies that π cannot be of
size k′ if |W | <

(k
2
)
. Lastly, suppose |W | =

(k
2
)

(and from previous
arguments, it is clear that the number of the indices that appear in
the elements of W must be exactly k); without loss of generality,
assume W = {wi, j : 1 ≤ i < j ≤ k} (by re-labeling) – this implies
that π assigns k2 copies of vl to al if 1 ≤ l ≤ k, but more impor-
tantly, it implies that (vi,v j) ∈ E because we create wi, j if and only
if there is an edge between vi and v j. That is, C = {v1,v2, . . . ,vk} is
a clique in G. This shows W[1]-hardness of the problem.

Unlike the case of increasing preferences, if all agents have de-
creasing preferences the problem admits an FPT algorithm.
Theorem 5. k-Stable-GASP is in FPT when all agents have de-
creasing preferences for all activities.

356

Proof. We use Color Coding to reduce this problem to a variant
of the Vertex Cover problem. With probability which is exponen-
tially small only in k, we color agents and activities “properly”, and
given a proper coloring we can find a stable assignment of size k in
polynomial time in n, p yet exponential only in k.

Preliminaries. Suppose that a stable assignment of size k exists,
and without loss of generality we know that it assigns k agents to
l distinct activities (where l ∈ [1,k]), which can be done by check-
ing every value in [1,k]. We first color agents and activities using l
colors 1 through l, uniformly and independently at random (let c(i)
denote the color of agent i and c(a j) the color of activity a j), and
then fix the value of kd for each d ∈ [1, l] such that ∑d∈[1,l] kd = k.
We say that the coloring c (together with l and kd’s) is compatible
with a stable assignment π of size k (using l activities) if π as-
signs exactly kd agents to an activity of color d for every d ∈ [1, l].
Given some coloring c, our algorithm either finds a stable assign-
ment compatible with c or determines that no such solution exists.
Clearly, any stable assignment (of size k) has at least one compat-
ible coloring. With probability at least (1/l)l+k, our randomized
coloring is a compatible coloring of some stable assignment of size
k (if it exists); it can be de-randomized using a family of k-perfect
hash functions as shown in the work [1].

FPT Algorithm. We now proceed with fixed values of l and kd’s
as well as some coloring c as described earlier. We will use the
special color l + 1 to mark the agents and activities that cannot be
assigned/used in any stable assignment that is compatible with the
given coloring c. Define Nd = {i ∈ N : c(i) = d} and A∗d = {a j ∈
A∗ : c(a j) = d}where d ∈ [1, l+1]; these subsets naturally partition
N and A∗ into l + 1 subsets by their colors (at first Nl+1 and A∗l+1
are empty, but we may re-color some agents and activities during
the course of the algorithm). Let N(a j) = {i ∈ Nc(a j) : ui(a j) ≥
kc(a j)}, which is the set of agents who have the same color as a j
and approve the size kc(a j) for activity a j (recall that agents have
decreasing preferences, so we only need to check their upper-bound
ui(a j) for a given activity a j). If |N(a j)|> kc(a j), then we label the
activity a j as “popular” because any compatible assignment must
assign kc(a j) agents of the same color to a j, but more than kc(a j)

agents approve a j for size kc(a j). If any color d ∈ [1, l] contains two
or more popular activities, we reject the coloring because there is
no stable assignment compatible with this coloring. To see why, if
no agents are assigned to a popular activity of some color d, then
due to compatibility there must exist at least one agent of the same
color who is assigned to the void activity but approves the popular
activity for size 1. Therefore, any stable, compatible assignment
must assign kd agents to a popular activity for color d (if any), but
if there exist multiple popular activities of the same color, then no
compatible assignment is stable. Without loss of generality (by re-
coloring) let us assume that “popular” colors [1,q] contain exactly
one popular activity and “unpopular” colors [q+1, l] contain non-
popular activities (it is possible that q = 0 or q = l).

Let us now examine each color to decide whether we should re-
ject the coloring or whether we can exclude some agents and/or
activities from consideration (by re-coloring them as the special
color, l + 1). First, for each popular color d ∈ [1,q] with a popu-
lar activity a jd (recall that there is exactly one popular activity for
each popular color), we re-color all agents in (Nd \N(a jd)) and
all activities in (A∗d \ {a jd}) as the special color (l + 1) because
they cannot be assigned/used in any stable assignment compatible
with c. Next, we check for each unpopular color d ∈ [q+ 1, l]. If
a j ∈ A∗d and |N(a j)|< kd then we re-color a j as l +1 as assigning
kd agents to a j violates IR; if A∗d becomes empty, we reject the col-
oring. Then, if there exist two distinct activities a j,a j′ ∈ A∗d such
that N(a j) 6= N(a j′), then we reject the coloring; any compatible

assignment must assign no agents to at least one of these two ac-
tivities (assume that a j is such activity), but at least one agent in
N(a j) approves (a j,1) (due to decreasing preferences) while she
must be assigned to the void activity, which implies instability of
the assignment. If the coloring is not rejected after these condi-
tions are checked, then we have N(a j) = N(a j′) for all a j,a j′ ∈ A∗d
where d ∈ [q+1, l]. Let us re-color all agents in Nd \N(a j) as l+1
where a j is any activity in A∗d for all d ∈ [q+ 1, l]. We then check
for another condition for each unpopular color d ∈ [q+ 1, l]. Let
A′d = {a j ∈ A∗d : ∃i ∈ Nl+1,ui(a j)≥ 1}. If A′d contains two or more
activities, it is clear that the coloring must be rejected because agent
i (who cannot be assigned to any activity under the given coloring)
approves size 1 for the activities in A′d but the assignment can only
choose one activity from A∗d . Therefore, if |A′d | ≥ 2 then we reject
the coloring; otherwise, if |A′d | = 1, then we re-color all activities
in A∗d \A′d as l + 1 (because the only one in A′d must be used for
color d). If |A′d |= 0, this step has no effect for this color.

Lastly, we consider the agents of color l + 1 (who must be as-
signed to the void activity by any stable assignment compatible
with the coloring). Let us define kl+1 = 0 for convenience (i.e., we
do not assign any agents of color l + 1 to any activities). For each
color d ∈ [1, l + 1], if there exists some activity a j ∈ A∗d and some
agent i ∈ Nl+1 with ui(a j)≥ kd +1, then we reject the coloring be-
cause agent i is to be assigned to the void-activity, but she approves
the outcome (a j,kd +1) as well as (a j,1) (due to decreasing pref-
erences), which means that regardless of whether a j is used or not,
no assignment would not be stable and compatible at the same time
due to agent i. If the coloring has not been rejected, then we can
now safely ignore all agents in Nl+1 (as if they are non-existent)
because stability constraint would not be violated by those agents.

We now proceed with the assumption that the coloring has not
been rejected by our algorithm. Recall that we need to choose kd
agents among Nd where d ∈ [1,q] to be assigned to the popular ac-
tivity a jd while we know exactly which kd′ agents must be assigned
to one of the activities in A∗d′ where d′ ∈ [q+1, l]. For each popular
color d ∈ [1,q] define N′d = {i ∈ Nd : ∃d′ ∈ [1, l+1],ui(a j)≥ kd′ +
1 where a j ∈ Ad′}∪{i ∈ Nd : ∃d′ ∈ [q+1, l], |{a j ∈ Ad′ : ui(a j) ≥
1}| ≥ 2}. Any stable assignment compatible with c must assign all
agents in N′d to the popular activity a jd . If some agent i in N′d is
assigned to the void-activity instead, then the resulting assignment
cannot be stable; if i is contained in the first set (on the right-hand-
side of definition of N′d) above, then i approves sizes of both kd′+1
and 1 for some activity a j, which implies that regardless of whether
a j is used or not, i would wish to join a j instead of a /0, while if i is
contained in the second set (on the right-hand-side of definition of
N′d), then i approves size 1 for at least two non-popular activities of
the same color which implies that i would wish to join one of them
that is not used. Therefore, if |N′d |> kd for some d ∈ [1,q] we must
reject the coloring, and otherwise we must assign all agents in N′d
to a jd . Without loss of generality we can assume that N′d = /0 for
all d ∈ [1,q] (provided that the coloring is not rejected yet) by as-
signing all such agents to the appropriate popular activity and then
decreasing kd by |N′d | before we proceed further.

Now suppose that for some color d ∈ [1,q] and agent i ∈ Nd
and some color d′ ∈ [q+ 1, l] and some activity a j ∈ A∗d′ , we have
ui(a j)≥ 1. If i is assigned to a /0 (instead of a jd) and a j is not used
(no agent is assigned to it), then the assignment cannot be stable
as i approves (a j,1). That is, any compatible, stable assignment
must assign i to a jd and/or use activity a j . If we consider agents in
X = ∪d∈[1,q]Nd and activities in Y = ∪d′∈[q+1,l]A

∗
d′ as vertices and

there is an edge between (i,a j) if and only if ui(a j)≥ 1 where i∈X
and a j ∈ Y (as a bipartite graph), finding a compatible assignment
is equivalent to finding a vertex cover such that it chooses exactly

357

kd vertices from each Nd with d ∈ [1,q] and exactly 1 vertex from
each A∗d′ with d′ ∈ [q+ 1, l]. Because the total number of vertices
to be selected is bounded above by k + l, one can use a bounded
search tree to determine whether a vertex cover of a small size ex-
ists or not in FPT time (i.e., exponential only in k but polynomial
in n, p). If vertex i from X is chosen then we assign i to the popular
activity of the same color and if vertex a j from Y is chosen then
we assign the agents of the same color to it. It is easy to verify that
a compatible, stable assignment exists if and only if a vertex cover
(with the aforementioned constraints) exists in this bipartite graph.

We omit the proof that our algorithm would not reject any color-
ing c which is compatible with at least one stable assignment.

Lastly, we consider another special case of GASP when all activ-
ities are (pairwise) equivalent.
Theorem 6. k-Stable-GASP with equivalent activities is in FPT.

Proof. Let p = |A∗| be the number of non-void activities which we
assume are all equivalent. We use Color Coding to design a ran-
domized FPT algorithm, which can easily be de-randomized using
a family of k-perfect hash functions [1] as mentioned earlier.

We can assume that p ≤ k+1 because k agents can be assigned
to at most k copies and having more than one extra copy to which
no agent is assigned does not change the problem (this is because
we are seeking a solution of size exactly k). Due to space we only
prove the claim when p = k+1, but it is easy to extend our proof.

Preliminaries. Let N = {1,2, . . . ,n} be the set of n agents and
A∗ = {a1,a2, . . . ,ap} be the set of p copies of the only activity
when p = k+ 1. Recall that by definition of equivalent activities,
every agent i has Si(a j) = Si(a j′) for all j, j′. We first fix l (the
number of copies of the activity to be used by a stable assignment)
which must be between 1 and k, and k1,k2, . . . ,kl which is the num-
ber of agents assigned to each of the l copies; for convenience we
define kl+1 = 0 as there is at least one extra copy that would not be
used by the assignment. The total number of possible values for l
and kd’s are bounded above by O(kk), which is exponential only in
k. After we fix l, we color all agents uniformly and independently
at random using colors 1 through l; let c(·) be this coloring scheme
and c(i) denote the color of agent i. We say that coloring c (together
with l and kd’s) and a stable assignment π of size k are compatible
if π assigns exactly kd agents of color d to activity ad for d ∈ [1, l].

FPT Algorithm. Our algorithm will find a stable assignment
compatible with c or determine that no such solution exists. Any
stable assignment of size k has at least one compatible coloring,
and the probability that a random coloring is compatible with some
fixed stable assignment of size k is at least (1/l)k. Our algorithm
first partitions agents of each color into several subsets, and checks
several necessary conditions for the coloring to be compatible with
at least one stable assignment; if any of the conditions is not met,
the coloring will be rejected by the algorithm.

For each color d ∈ [1, l], the algorithm computes three subsets:
Nd = {i ∈ N : c(i) = d}, NIR

d = {i ∈ Nd : (ad ,kd) ∈ Si}, and NIN
d =

{i ∈ Nd : ∃d′ ∈ [1, l + 1] s.t. (ad′ ,kd′ + 1) ∈ Si} (recall kl+1 = 0).
If |NIR

d | < kd for any d ∈ [1, l], no stable assignment is compatible
with c because assigning kd agents to ad would not be individually
rational (i.e., not enough agents approve the outcome), so the col-
oring should be rejected in this case. If for some d ∈ [1, l] the set
NIN

d −NIR
d is not empty but contains some agent i, then no stable as-

signment is compatible with c because a stable assignment cannot
assign i to ad (because i 6∈NIR

d) but i would wish to join ad′ for some
d′ ∈ [1, l + 1] which would make the assignment not stable; hence
the coloring should be rejected in this case. If |NIN

d | > kd , then at
least one agent i in NIN

d should be assigned to the void activity, but i
would wish to join ad′ for some d′ ∈ [1, l+1] which would make the

assignment not stable; hence the coloring should be rejected. If the
coloring is not rejected by any of the cases mentioned earlier, then
we have the following three conditions for every color d ∈ [1, l]: (a)
|NIR

d | ≥ kd , (b) |NIN
d | ≤ kd , and (c) NIN

d ⊆ NIR
d . Let us define Xd for

each d ∈ [1, l] as follows: Xd contains an arbitrary set of kd agents
from NIR

d such that every agent in NIN
d is contained in Xd . Note

that this is always possible due to the three conditions mentioned
above. We claim that an assignment π which assigns agents in Xd
to ad and all other agents to a /0 is a stable assignment compatible
with c. To prove compatibility, all agents in Xd are by definition
of color d and |Xd | = kd for all d ∈ [1, l]. To prove stability, first
consider any agent i who is assigned to the void activity and sup-
pose d = c(i). Since i 6∈ Xd , we know that i 6∈NIN

d by definition, and
therefore there is no d′ ∈ [1, l+1] such that (ad′ ,kd′+1) ∈ Si. Now
consider any agent i who is assigned to ad by π (thus c(i) = d). By
definition i ∈ Xd and thus i ∈ NIR

d , which implies that (ad ,kd) ∈ Si.
Therefore π is a stable assignment of size k, compatible with c.

Let us now prove that if there is at least one stable assignment
that is compatible with c, then the algorithm does not reject the
coloring. Let π be one such assignment and let Xd be the set of
agents assigned to ad by π . Due to compatibility we have |Xd | =
kd and c(i) = d for all i ∈ Xd for all d ∈ [1, l]; in particular, by
definition Xd ⊆ NIRd and thus the first condition (a) above holds
for all d ∈ [1, l]. Due to stability of π , every agent i with π(i) = a /0
satisfies that 6 ∃d′ ∈ [1, l +1] such that (ad′ ,kd′ +1) ∈ Si. Therefore
the conditions (b) and (c) above hold for all d ∈ [1, l], which proves
that the coloring c would not be rejected by the algorithm.

We have shown that if we begin with a coloring c (together with l
and kd’s) that is compatible with at least one stable assignment, then
our algorithm would find a stable assignment compatible with the
coloring and that if no such assignment exists the coloring would
be rejected. This is a Monte Carlo algorithm with probability of
success at least (1/k)k and runtime bounded by O((kk)nk) (as our
algorithm must enumerate all possible values of l and kd’s), which
is polynomial in n but exponential only in k.

3.3 Complexity of EF-GASP
Envy-freeness (EF) is a stronger solution concept than individ-

ual rationality. This relationship is not apparent under the classic
complexity, but they differ under parameterization.
Theorem 7. k-EF-GASP is W [1]-complete. It remains to be W [1]-
complete even if each agent approves at most one size per activity.
Proof. We reduce from the k-Clique problem.

Construction of GASP instance. Let G = (V,E) be a graph in-
stance of the k-Clique problem. Without loss of generality, assume
k ≥ 2. Let V = {v1,v2, . . . ,vn}, and for each vertex vi ∈V , we cre-
ate activity ai and k2 copies of vi as (vertex) agents. For each edge
(vi,v j) ∈ E, we create an activity ei, j and an (edge) agent wi, j. This
creates |V |+ |E| activities and k2|V |+ |E| agents overall. For each
copy of vi, we define Svi = {(ai,k2)}∪{(ei, j,1) : (vi,v j) ∈ E} and
for each agent wi, j we define Swi, j = {(ei, j,1)}. Let k′ = k3 +

(k
2
)
=

k3 + k(k−1)/2. We claim that a clique of size k exists in G if and
only if an EF assignment of size k′ exists in our GASP instance.

Proof of equivalence between instances. Suppose that π is an EF
assignment of size k′. If π assigns any copy of vi to some activity
ei, j, then π cannot be EF because wi, j wishes to be assigned to ei, j
in place of the copy of vi; furthermore, π cannot assign more than
one agent to any ei, j as no other agent approves the activity with
any size other than 1. If π assigns any copy of vi to ai, then it must
assign all k2 copies of vi to ai as those agents only approve ai with
size k2. Because π is of size k′, it is clear that π can only assign
agents to at most k different activities of the form ai. Now suppose

358

π assigns some wi, j to ei, j; due to EF, all k2 copies of vi must be
assigned to ai and all k2 copies of v j must be assigned to a j; this
implies that π can assign at most

(k
2
)

agents of the form wi, j to ac-
tivities of the form ei, j (otherwise, π cannot be of size k′ because
k2(k + 1) > k′). Therefore, we conclude that π assigns k3 vertex
agents to k activities of the form ai (without loss of generality, as-
sume {a1,a2, . . . ,ak}) and that π assigns wi, j to ei, j if and only if
1 ≤ i, j ≤ k (all other agents are assigned to the void activity, be-
cause any unassigned vertex agent vl ensures that no other agents
are assigned to vl’s edge activities due to stability). This implies
that the original instance contains a clique C = {v1,v2, . . . ,vk} as
there is an edge (vi,v j) if 1≤ i, j ≤ k.

To prove the converse, suppose that C = {v1,v2, . . . ,vk} is a clique
in the original instance. Let π be an assignment such that π assigns
k2 copies of vi to ai if i ≤ k and wi, j to ei, j if 1 ≤ i, j ≤ k and as-
signs all other agents to the void activity. Clearly π is individually
rational by the construction of approval sets; π is also EF because
no copy of vi with i > k or wi, j with i > k or j > k wishes to re-
place any other agent who is assigned to a non-void activity. This
completes the proof of W [1]-hardness. To show completeness, one
can reduce k-EF-GASP to the colored k-clique problem (known to
be W[1]-complete), but we omit this proof due to space.

In our reduction each agent approves at most one size per activ-
ity, proving the second statement in the theorem.

Unlike k-Stable-GASP, k-EF-GASP remains to be W [1]-complete
even if all agents have increasing or decreasing preferences. Due to
space, we only provide proof sketches.
Theorem 8. k-EF-GASP is W [1]-complete even if all agents have
increasing preferences.

Proof sketch. We modify the reduction from our proof of Theo-
rem 7. We construct the same GASP instance, but change approval
sets such that if agent i approves an outcome (a,x), then we let
the agent approve all outcomes (a,x′) with x < x′ ≤ |N|, to ensure
increasing preferences. We also create k′+ 1 copies of a dummy
agent z such that z approves all outcomes (ei, j,x) with 2≤ x≤ |N|
for all activities ei, j we create. Dummy agents ensure that any EF
assignment of size k′ assigns all copies of z to the void activity.

Theorem 9. k-EF-GASP is W [1]-complete even if all agents have
decreasing preferences.

Proof sketch. We modify the reduction from our proof of Theo-
rem 7. We construct the same GASP instance, but we change ap-
proval sets such that if agent i approves an outcome (a,x), then we
let the agent approve all outcomes (a,x′) with 1 ≤ x′ < x, which
ensures that all agents have decreasing preferences.

Theorem 10. k-EF-GASP is in FPT if all activities are equivalent.

Proof. We use Color Coding to design a randomized FPT algo-
rithm, which can easily be de-randomized using a family of k-
perfect hash functions [1] as mentioned earlier.

Because there are only n agents we can assume that p ≤ k be-
cause k agents can be assigned to at most k copies (unlike the case
of stability, k+1 copies has no effect). Due to space we only prove
the claim when p = k, but it can be easily extended.

Preliminaries. Let N = {1, . . . ,n} be the set of n agents and
A∗ = {a1, . . . ,ak} be the set of p = k activities. By definition of
equivalent activities, every agent i has Si(a j) = Si(a j′) for all j, j′.
We first fix l (the number of activities to be used by an EF assign-
ment) which must be between 1 and k, and k1,k2, . . . ,kl which is the
number of agents assigned to each of the l copies. The total num-
ber of possible values for l and kd’s are bounded above by O(kk).
After we fix l, we color all agents uniformly and independently at

random using colors 1 through l; let c be this coloring scheme and
c(i) denote the color of agent i. We say that coloring c (together
with l and kd’s) and an EF assignment π of size k are compatible if
π assigns exactly kd agents of color d to activity ad for d ∈ [1, l].

FPT algorithm. Our algorithm either finds an EF assignment
compatible with c or determines that no such solution exists. Any
EF assignment of size k has at least one compatible coloring, and
the probability that a random coloring is compatible with some
fixed EF assignment of size k is at least (1/k)k.

The algorithm first partitions agents of each color into subsets,
and check several necessary conditions for the coloring to be com-
patible with at least one EF assignment; if any of the conditions
is not met, the coloring will be rejected by the algorithm (as there
is no EF assignment compatible with the given coloring). For each
color d ∈ [1, l], the algorithm computes three subsets: Nd = {i ∈
N : c(i) = d}, NIR

d = {i ∈ Nd : (ad ,kd) ∈ Si}, and NIN
d = {i ∈ Nd :

∃d′ ∈ [1, l] s.t. (ad′ ,kd′)∈ Si}. If |NIR
d |< kd for any d ∈ [1, l], no EF

assignment is compatible with c because assigning kd agents to ad
would not be individually rational (i.e., not enough agents approve
the outcome), so the coloring should be rejected in this case. If for
some d ∈ [1, l] the set NIN

d −NIR
d is not empty but contains some

agent i, then no EF assignment is compatible with c because an
EF assignment cannot assign i to ad (because i 6∈ NIR

d) but i would
wish to join ad′ for some d′ ∈ [1, l] which would make the assign-
ment not envy-free; hence the coloring should be rejected in this
case. If |NIN

d | > kd , then at least one agent i in NIN
d should be as-

signed to the void activity, but i would wish to join ad′ for some
d′ ∈ [1, l] which would make the assignment not envy-free; hence
the coloring should be rejected.

If the coloring is not rejected by any of the cases mentioned ear-
lier, then we have the following three conditions for every color
d ∈ [1, l]: (a) |NIR

d | ≥ kd , (b) |NIN
d | ≤ kd , and (c) NIN

d ⊆ NIR
d . Let

us define Xd for each d ∈ [1, l] as follows: Xd contains an arbitrary
set of kd agents from NIR

d such that every agent in NIN
d is contained

in Xd . Note that this is always possible due to the three conditions
mentioned above.

We claim that π which assigns agents in Xd to ad and all other
agents to a /0 is an EF assignment compatible with c. To prove com-
patibility, all agents in Xd are by definition of color d and |Xd |= kd
for all d ∈ [1, l]. To prove stability, first consider any agent i who is
assigned to the void activity and suppose d = c(i). Since i 6∈ Xd , we
know that i 6∈ NIN

d by definition, and therefore there is no d′ ∈ [1, l]
such that (ad′ ,kd′) ∈ Si. Now consider any agent i who is assigned
to ad by π (thus c(i) = d). By definition i ∈ Xd and thus i ∈ NIR

d ,
which implies that (ad ,kd) ∈ Si. This proves the claim.

Let us now prove that if there is at least one EF assignment that
is compatible with c, then the algorithm does not reject the color-
ing. Let π be one such assignment and let Xd be the set of agents
assigned to ad by π . Due to compatibility we have |Xd | = kd and
c(i) = d for all i ∈ Xd for all d ∈ [1, l]; in particular, by defini-
tion Xd ⊆ NIRd and thus the first condition (a) above holds for all
d ∈ [1, l]. Due to stability of π , every agent i with π(i) = a /0 satisfies
that 6 ∃d′ ∈ [1, l] such that (ad′ ,kd′) ∈ Si. Therefore the conditions
(b) and (c) above hold for all d ∈ [1, l], which proves the claim.

We have shown that if we begin with a coloring c (together with
l and kd’s) that is compatible with at least one EF assignment, then
our algorithm would find an EF assignment compatible with the
coloring and that if no such assignment exists the coloring would
be rejected. This is a Monte Carlo algorithm with probability of
success at least (1/k)k and runtime bounded by O((kk)nk) (as our
algorithm must enumerate all possible values of l and kd’s), which
is polynomial in n but exponential only in k.

359

3.4 Complexity of Stable-EF-GASP
Stability and envy-freeness are not the same, but they are not ex-

clusive, either. They together define another solution concept that
is stronger than the two. k-Stable-EF-GASP is W [1]-hard under in-
creasing preferences, but it is in FPT under decreasing preferences
or equivalent activities. Due to space we omit proofs, but the fol-
lowing theorems can be proved in a similar way we proved Theo-
rems 4, 5 and 6, respectively in this order, with some modifications.
Theorem 11. k-Stable-EF-GASP is W [1]-hard even if all agents
have increasing preferences for all activities.
Theorem 12. k-Stable-EF-GASP is in FPT if all agents have de-
creasing preferences for all activities.
Theorem 13. k-Stable-EF-GASP is in FPT if all activities are
equivalent.

3.5 Complexity of Perfect-GASP
Recall that k-Perfect-GASP is the problem of finding a perfect

assignment that uses k activities out of p activities. Under this pa-
rameterization, GASP is W[2]-hard as the following theorem shows.
Theorem 14. k-Perfect-GASP is W [2]-hard. It remains to be W [2]-
hard even if all agents have increasing preferences or all agents
have decreasing preferences.
Proof. We reduce from the Dominating Set problem which is known
to be W [2]-complete; recall that D ⊂ V is a dominating set if ∀v ∈
V \D, v has a neighbor in D.

Given G = (V,E) and parameter k, let us create an instance of
GASP as follows: Let N = {1,2, . . . ,n} and A∗ = {a1,a2, . . . ,an}
where n = |V |. For each agent i, define Si = {(a j,x) : ((vi,v j) ∈
E)∧ (1≤ x≤ n)}∪{(ai,x) : 1≤ x≤ n}. Note that in this instance
agents only care about activities. We set k′ = k, and seek a perfect
assignment using k activities. Let D be a dominating set of size k
in G, and we can construct a perfect assignment π as follows: For
each agent i, if vi ∈D, then let π(i) = ai; if vi 6∈D, then there exists
some v j ∈ D such that (vi,v j) ∈ E because D is a dominating set,
and let π(i) = a j. Clearly π is a perfect assignment that uses only
k activities. Conversely, suppose that a perfect assignment π exists
which uses exactly k activities. Let A′ be the set of k activities to
which at least one agent is assigned under π (note that |A′|= k). Let
D= {vi : ai ∈ A′}, and we claim that D is a dominating set in G. For
any node vi 6∈ D, we know that π assigns agent i to some activity
a j ∈ A′ where a j 6= ai, and thus v j ∈ D. Since π is individually
rational, it implies that (vi,v j)∈ E, and therefore D is a dominating
set. This reduction also proves the second statement of the theorem
as all agents have increasing and decreasing preferences.

We do not know the exact complexity of k-Perfect-GASP when
all activities are equivalent (besides NP-hardness).

3.6 Solutions of size at least or at most k
We have only considered finding a solution of size exactly k. Yet

one may wish to find a solution of size at least k (for maximiza-
tion problems like k-GASP under IR, stable, EF, or stable-EF) or at
most k (for minimization problems like k-Perfect-GASP). Unlike
for most studied maximization problems (e.g. Clique, k-Path, etc.)
the existence of an IR, stable, or EF assignment of size k does not
guarantee existence of a solution of size k−1 or smaller (whereas
a clique of size k always contains cliques of smaller sizes). There-
fore we are essentially solving a different problem when we seek a
solution of size at least k for these three solution concepts.

For k-IR-GASP, finding a solution of size at least k is also in FPT.
Theorem 15. At-least-k-IR-GASP is in FPT.
Proof. For readability, we write a “solution” to refer to an IR as-
signment of size at least k. Among all solutions, first suppose that

there is some π such that |π j| ≥ k for some j ∈ [1, p] (recall the
notation from Definition 2). Let π ′ be an assignment such that it
assigns all agents in π j to a j while all other agents to a /0; clearly, π ′

is also a solution. We can find in O(n2 p) time this kind of solutions
as follows: For each integer x ∈ [k,n] and activity a j , we count the
number of agents approving (a j,x), and if this number exceeds x,
then assigning any x agents of them to a j results in an IR assign-
ment of size at least k. Now suppose instead that such solutions do
not exist, and every solution π satisfies that ∀ j ∈ [1, p], |π j| < k.
We claim that, then, a solution of size between k and 2k−1 (inclu-
sive) exists. If this claim is true, then we can use our FPT algorithm
from Theorem 2 to find a solution of size k,k+1, . . . ,2k−1, which
would run in FPT time overall. To see why the claim is true, sup-
pose that π is a solution of size at least 2k and let j ∈ [1, p] be any
index such that |π j| > 0. If π ′ is the same as π except that π ′ as-
signs all agents in π j to a /0 (while other agents are assigned in the
same manner as π), then π ′ is also a solution whose size is exactly
|π j| smaller than the size of π . As we keep applying this process,
we eventually end up with a solution of size at most 2k−1. Hence,
in all cases, we can find a solution in FPT time.

For k-Stable-GASP, Darmann et al. [6] show that finding a per-
fect assignment can be reduced to finding a stable assignment of
size at least one (i.e., k = 1), which rules out FPT algorithms for
“at least k”-Stable-GASP unless P=NP. The same reduction also
applies for k-Stable-EF-GASP. For k-EF-GASP, we conjecture that
a similar reduction may exist, and leave it as an open problem. For
k-Perfect-GASP, finding a perfect assignment using at most k activ-
ities remains to be W[2]-hard: a solution using k activities implies
the existence of a solution using at most k+1 activities.

4. DISCUSSION AND FUTURE WORK
We investigated the parameterized complexity of the Group Ac-

tivity Selection Problem (GASP) for various solution concepts and
restrictions on inputs. Our results indicate that the computational
complexity of GASP varies when its input is restricted (due to pref-
erences of agents or uniformity of activities) or the solution con-
cept changes, which is not distinguishable under classic complex-
ity. In particular, decreasing preferences make the problems more
tractable, but increasing preferences do not. This is intriguing be-
cause Lee and Shoham [12], on the other hand, showed that in-
creasing preferences lead to a strategy-proof, optimal mechanism
but decreasing preferences lead to an impossibility result, under
strategic settings with just one activity.

Our work leaves a few interesting open problems for future work.
First, we do not know the exact complexity of k-Perfect-GASP with
equivalent activities besides its NP-completeness. It would be in-
triguing if the problem is FPT. Second, the focus in this paper is to
exhibit any FPT algorithm; we have not tried hard to optimize the
dependence on k. It would be interesting to show conditional lower
bounds on how the runtime should depend on k, especially in the
case of k-IR-GASP. Third, obtaining completeness results to match
our W[1]- and W[2]-hardness results is a natural follow-up prob-
lem. Lastly, one can consider a different setting where agents have
a strict ordering over the set of outcomes (complexity results of
which are recently shown by Darmann [5]), instead of dichotomic
preferences on outcomes.

Acknowledgements
This work was done while both authors were at Stanford University.
This work was funded in part by the National Science Foundation
(grant IIS-1347214), AFOSR MURI, and the Kwanjeong Educa-
tional Foundation.

360

REFERENCES
[1] N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of

the ACM (JACM), 42(4):844–856, 1995.
[2] C. Ballester. Np-completeness in hedonic games. Games and

Economic Behavior, 49(1):1–30, 2004.
[3] N. Betzler, J. Guo, and R. Niedermeier. Parameterized

computational complexity of dodgson and young elections.
Information and Computation, 208(2):165–177, 2010.

[4] R. H. Chitnis, M. Hajiaghayi, and V. Liaghat. Parameterized
complexity of problems in coalitional resource games. In
Twenty-Fifth AAAI Conference on Artificial Intelligence,
2011.

[5] A. Darmann. Group activity selection from ordinal
preferences. In T. Walsh, editor, Algorithmic Decision
Theory, volume 9346 of Lecture Notes in Computer Science,
pages 35–51. Springer International Publishing, 2015.

[6] A. Darmann, E. Elkind, S. Kurz, J. Lang, J. Schauer, and
G. Woeginger. Group activity selection problem. In
P. Goldberg, editor, Internet and Network Economics,
volume 7695 of Lecture Notes in Computer Science, pages
156–169. Springer Berlin Heidelberg, 2012.

[7] R. G. Downey and M. R. Fellows. Fundamentals of
parameterized complexity, volume 4. Springer, 2013.

[8] U. Endriss, R. De Haan, and S. Szeider. Parameterized
complexity results for agenda safety in judgment
aggregation. In Proceedings of the 2015 International
Conference on Autonomous Agents and Multiagent Systems,
pages 127–136. International Foundation for Autonomous
Agents and Multiagent Systems, 2015.

[9] G. Erdélyi and M. Fellows. Parameterized control
complexity in bucklin voting and in fallback voting. In
Proceedings of the 3rd International Workshop on
Computational Social Choice, pages 163–174. Universität
Düsseldorf, 2010.

[10] L. A. Hemaspaandra, R. Lavaee, and C. Menton. Schulze
and ranked-pairs voting are fixed-parameter tractable to
bribe, manipulate, and control. In Proceedings of the 2013
international conference on Autonomous agents and
multi-agent systems, pages 1345–1346. International
Foundation for Autonomous Agents and Multiagent
Systems, 2013.

[11] R. Impagliazzo and R. Paturi. Complexity of k-sat. In
Computational Complexity, 1999. Proceedings. Fourteenth
Annual IEEE Conference on, pages 237–240. IEEE, 1999.

[12] H. Lee and Y. Shoham. Stable invitations. In Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence,
January 25-30, 2015, Austin, Texas, USA., pages 965–971,
2015.

[13] H. Lee and V. V. Williams. Complexity of the stable
invitations problem. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, February 4-10, 2017,
San Francisco, California, USA., 2017.

[14] H. Liu and J. Guo. Parameterized complexity of winner
determination in minimax committee elections. In
Proceedings of the 2016 International Conference on
Autonomous Agents & Multiagent Systems, pages 341–349.
International Foundation for Autonomous Agents and
Multiagent Systems, 2016.

[15] T. Shrot, Y. Aumann, and S. Kraus. Easy and hard coalition
resource game formation problems: a parameterized
complexity analysis. In Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent
Systems-Volume 1, pages 433–440. International Foundation
for Autonomous Agents and Multiagent Systems, 2009.

[16] L. Xia. Fixed-parameter tractability of integer generalized
scoring rules. In Proceedings of the 2014 international
conference on Autonomous agents and multi-agent systems,
pages 1599–1600. International Foundation for Autonomous
Agents and Multiagent Systems, 2014.

361

