
Automated Negotiations for General Game Playing

Dave de Jonge
Western Sydney University

Penrith, NSW 2751, Australia
d.dejonge@westernsydney.edu.au

Dongmo Zhang
Western Sydney University

Penrith, NSW 2751, Australia
d.zhang@westernsydney.edu.au

ABSTRACT
In this paper we present a new algorithm for negotiations
in non-zero-sum games. Although games have been studied
extensively, most game playing algorithms have been devel-
oped under the assumption that players do not communi-
cate. Many real-world problems, however, can be modeled
as non-zero-sum games in which players may mutually ben-
efit if they coordinate their actions, which requires negotia-
tion. The field of Automated Negotiations is another impor-
tant topic in AI, but in this field one usually assumes that
utility functions have explicit expressions and can therefore
be calculated easily. Traditional approaches do not apply
to domains in which the utility values are instead deter-
mined by the rules of a complex game. In this paper we
aim to bridge the gap between General Game Playing and
Automated Negotiations. Our algorithm is an adaptation of
Monte Carlo Tree Search that allows players to negotiate.
It is completely domain-independent in the sense that it is
not tailored to any specific game. It can be applied to any
non-zero-sum game, provided that its rules are described in
Game Description Language.

Keywords
Automated Negotiations, General Game Playing, Monte Carlo
Tree Search, Non-zero-sum Games

1. INTRODUCTION
Games are important in Artificial Intelligence because they

provide controlled environments with clear rules. They can
be seen as simplified metaphors for real-world problems. In
a sense, any multiagent system in which each agent has its
own private goals that may be conflicting with the other
agents’ goals can be seen as a game. Most research on algo-
rithms for games however, has focused on zero-sum games,
such as Chess, Checkers and Go. This is striking, because
many real-world problems are better modeled as non-zero-
sum games. One can think for example of a system of self-
driving cars that negotiate with each other which car will
take which route, in order to prevent traffic jams. Also, the
whole idea of a market economy is essentially a non-zero-
sum game; each participant in the economy has its own per-

Appears in: Proc. of the 16th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2017),
S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),
May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

sonal goals and by exchanging goods and services with one
another each individual participant may benefit.
Although traditional game-playing algorithms such as Min-

imax and Monte Carlo Tree Search can be easily adapted
for non-zero-sum games, they do not allow the agent to
negotiate its actions with its opponent, and may therefore
yield inefficient outcomes. Typical examples of games where
individual play is inefficient are the (Iterated) Prisoner’s
Dilemma [1], the Centipede Game [25], and the Dollar Auc-
tion [29]. If players were allowed to negotiate and make
binding agreements in such games the outcomes would im-
prove for each of them.
The field of Automated Negotiations is another important

field of research within Artificial Intelligence. The domains
investigated in Automated Negotiations, however, are of-
ten of a much simpler nature than traditional games. One
usually assumes that the negotiators make proposals for
which the exact utility values can be determined quickly
[2]. Little attention has been given to negotiation settings
in which determining the utility value of a deal is itself a
hard problem. The preferences of the agent’s opponents
on the other hand, are often assumed to be completely un-
known. This is in sharp contrast to Game Theory, in which
reasoning about one’s own utility and the opponent’s utility
is paramount. Furthermore, one usually assumes the nego-
tiation algorithms do not require any domain knowledge or
reasoning at all, or that all such knowledge is hardcoded in
the algorithm.
Arguably the best-known example of a complex game that

does involve negotiations is the game of Diplomacy [4]. A
number of negotiating agents have been developed for this
game, but they highly depend on details specific for Diplo-
macy and are therefore hard to generalize to other settings.
The aim of this paper is to bridge the gap between Au-

tomated Negotiations and Games, in a completely generic
way. We present a new algorithm for non-zero-sum games
that applies negotiations and that is re-usable because it
is domain independent. In order to achieve this, we base
our algorithm on Monte Carlo Tree Search, which is one of
the most commonly used algorithms in the field of General
Game Playing (GGP). The field of GGP studies algorithms
for game playing agents, under the restriction that the rules
of those games are only known at run-time. Therefore, when
developing a GGP agent, one cannot use any game-specific
heuristics. Although this makes it much harder to write
strong players, the advantage is that the same algorithm
can be re-used for any game.

371



The rest of this paper is organized as follows. In Section
2 we give an overview of existing work on Automated Ne-
gotiations and GGP. In Section 3 we formally describe the
problem we aim to solve and introduce notation. In Sec-
tions 4 and 5 we give brief introductions to Monte Carlo
Tree Search and Automated Negotiations respectively. In
Section 6 we then present our new algorithm. In Section
7 we present the results of our experiments, and finally, in
Section 8 we discuss future work.

2. RELATED WORK
The earliest work on Automated Negotiations has mainly

focused on proving formal properties of idealized scenarios.
A seminal paper of this type is by Nash [21] in which it
was shown that under certain axioms the rational outcome
of a bilateral negotiation is the solution that maximizes the
product of the players’ utilities. Many papers have been
published afterwards that generalize or adapt some of these
axioms. A non-linear generalization has been made for ex-
ample in [7]. A general overview of such theoretical studies
is made in [28].
In later work focus has shifted more towards heuristic ap-

proaches for domains where one cannot expect to find any
formal equilibrium results, or where such equilibria cannot
be determined in a reasonable amount of time. However,
such works often still make many simplifying assumptions.
Important examples are [5] and [6]. They propose a strategy
that amounts to determining for each time t which utility
value should be demanded from the opponent (the Aspira-
tion Level). However, they do not take into account that
it may be hard to find a contract that indeed yields that
aspired utility value. They assume that such a contract
always exists, and that the negotiator can find it without
effort. Another commonly made assumption is that the util-
ity functions are linear and that each negotiator knows the
explicit expression of its own utility function. This was the
case, for example, in the first four editions of the Automated
Negotiating Agent Competition (ANAC 2010-2013) [2].
Recently, more attention has been given to more realistic

settings in which the number of possible deals is very large
so that one needs to apply search algorithms to find good
deals to propose, and where utility functions are non-linear
[19, 11, 20]. Although their utility functions are indeed non-
linear over the vector space that represents the set of pos-
sible contracts, the value of any given contract can still be
calculated quickly by solving a linear equation, which is not
always possible in a real-world setting. The idea of complex
utility functions was taken a step further in [13], in which
determining the value of any contract is NP-hard.
Search algorithms such as Genetic Algorithms (GA)[14,

23] and Simulated Annealing[11, 19] have been used to search
for good proposals in complex domains. Unfortunately, GAs
cannot be applied straightforwardly to games, because the
search space is not closed under the two major operators of
GA (‘mutation’ and ‘crossover’). When applying these op-
erators to a legal sequence of joint actions (see Section 3),
the result will generally be an illegal sequence. A similar
problem occurs with Simulated Annealing.
An important example of negotiations where determining

the utility value of a deal is a hard combinatorial problem
is the game of Diplomacy. In this domain the players’ util-
ity functions are not directly defined in terms of the agree-
ments they make, but more indirectly through the moves

they make in the game. The players negotiate with one
another about which moves each will make, which in turn
influences the outcome of the game. Determining the ef-
fect of an agreement on the player’s final utility is a hard
problem that involves Game Theory and Constraint Satis-
faction. Pioneering work on negotiations in Diplomacy was
presented in [26] and [17]. New interest in Diplomacy as
a test-bed for negotiations has sparked with the introduc-
tion of the DipGame framework [4] for the development of
Diplomacy agents for scientific research. Several negotiating
Diplomacy players have been developed on this platform [8,
3, 12].
General Game Playing is a relatively new topic. Although

earlier work has been done, it only started to draw widespread
attention in the AI community after the introduction of
Game Description Language (GDL) [18] and the introduc-
tion of the annual AAAI GGP competition in 2005 [10].
GDL allows one to write down the rules of a game as a
machine-readable logic program. Common techniques ap-
plied by GGP players are Minimax [30], Alpha-Beta Pruning
[15] and Monte Carlo Tree Search (MCTS) [16]. FluxPlayer
[27]—the winner of the 2006 AAAI GGP competition—
applies an iterated deepening depth-first search with alpha-
beta pruning, and uses Fuzzy logic to determine how close a
given state is to the goal state. Cadia Player [9]—the win-
ner in 2007, 2008, and 2012—is based on MCTS, extended
with several heuristics to guide the rollouts so that they are
better informed and hence give more realistic results, and
also the winner of the 2014 competition, Sancho,1 and the
winner of 2015, Galvanise,2 apply variants of MCTS.

3. PROBLEM DESCRIPTION
In this section we introduce the problem we are tackling.

We consider a setting in which two agents play a game that
takes place over multiple rounds. In each round each agent
chooses an action from a finite set of legal actions. However,
before selecting their actions, the players have the opportu-
nity to negotiate which strategies to follow. The agents only
receive the rules of the game at run-time, so their implemen-
tations cannot use any game-specific heuristics.

3.1 Games

Definition 1. A game G (for 2 players) is a tuple
〈Ag,A,W,w0, T, L, u, U〉, where:

• Ag = (α0, α1) is a pair of agents (or players).
• A is a pair (A0,A1) where each Ai is the finite set of

actions (or moves) of agent αi.
• W is a finite, non-empty set of states.
• w0 ∈W is the initial state.
• T ⊂W is the set of terminal states.
• L = (L0, L1), where each Li is the legality func-

tion of αi, which assigns to each non-terminal state
a nonempty set of legal actions Li : (W \ T )→ 2Ai .
• u : (W \ T ) ×A0 ×A1 → W is the update function
that maps each non-terminal state and action-pair to
a new state.
• U = (U0, U1) where each Ui is the utility function of
player αi, which assigns a utility value to each terminal
state: Ui : T → R+.

1http://sanchoggp.blogspot.co.uk/2014/05/
what-is-sancho.html
2https://bitbucket.org/rxe/galvanise_v2

372

http://sanchoggp.blogspot.co.uk/2014/05/what-is-sancho.html
http://sanchoggp.blogspot.co.uk/2014/05/what-is-sancho.html
https://bitbucket.org/rxe/galvanise_v2


We say an action a ∈ Ai is legal for αi in w iff a ∈ Li(w).
Informally, a turn-taking game is a game in which in every

turn only one player (the active player of that turn) makes
a move. Here however, we follow the standard convention in
GGP that players always make moves simultaneously. This
is not a restriction, because any turn-taking game can be
modeled equivalently as a game with simultaneous moves by
adding a dummy move to the game and assuming that the
non-active player makes that dummy move instead of mak-
ing no move at all. This dummy move is usually referred to
as ‘noop’. Therefore, we formally define turn-taking games
as follows.

Definition 2. A game for 2 players is called a turn-
taking game if we can partition the set of non-terminal
world states into two subsets: (W \T ) = W0∪W1, W0∩W1 =
∅, such that for all i ∈ {0, 1} we have:

If w 6∈Wi then Li(w) = {noop}

If w ∈ Wi we say that αi is the active player of w, while
the other player is called the non-active player of w.

This definition says that in every state either α0 or α1 is
the active player, and that the non-active player always has
exactly one legal move, called noop. To keep the discussion
simple we only explain our algorithm for turn-taking games.
However, the algorithm we have implemented works for non-
turn-taking games as well. In the rest of this paper we will
always be talking about turn-taking games, unless specified
otherwise. We will use the notation u(w, a) as a shorthand
for u(w, a, noop) or u(w, noop, a) where a is an action of the
active player of w.

3.2 Client-Server Model
In this paper we assume the agents that play the game

are implemented as clients in a client-server architecture. In
order to play a game, the two agents need to connect to
the server. The server then sends a message to each player
containing the description of some game, written in GDL,
which encodes the components of Def. 1. The agents are
given some initial time to parse the game description and
initialize their algorithms. Next, the game starts when the
server sends a message to each player indicating the ini-
tial world state w0. In general, whenever the server sends
a message with some non-terminal state wr each player αi
must reply with a message containing its next move ar,i ∈
Li(wr), after which the server sends a new message with
the new state wr+1, which is determined by the game’s up-
date function and the actions chosen by the players: wr+1 =
u(wr, ar,0, ar,1). This process repeats until the state sent by
the server is a terminal state wT ∈ T . Each player αi then
obtains the utility value Ui(wT ) corresponding to that ter-
minal state. If a player does not respond to the server within
a specified deadline, or responds with an illegal action, the
server will instead pick a random legal action for that player.
We sometimes say that the game is in round r or that the
game is in state wr, meaning that the last message sent by
the server contained the state wr.

3.3 Sequences
A pair of actions p = (a0, a1) ∈ A0 × A1, one for each

player, is called a joint move. A joint move (a0, a1) is
legal in w, if a0 is legal for α0 in w and a1 is legal for α1 in
w.

Definition 3. Let wr be a state and let s =
(pr, pr+1, . . . pr+n−1) be a sequence of joint moves. We say
that s is a legal sequence starting at wr, iff there exists
a sequence of states (wr, wr+1 . . . wr+n) such that for each
k ∈ [r . . . r + n − 1] the joint move pk is legal in wk and
wk+1 = u(wk, pk).

We use the notation sk,i to denote the action of player αi
in the joint move pk of the sequence s. That is: pk =
(sk,0, sk,1). The state wr+n in this definition is called the
resulting state of the sequence s.

3.4 Negotiations
So far, our description has been no different from any

other set-up for (general) game playing. What we want,
however, is to allow the players to negotiate. Therefore, af-
ter the server has sent the current world state wr to the
players and before the players reply with their next actions,
we allow the two players to exchange messages with each
other according to some negotiation protocol. These nego-
tiation messages are of the type propose(s) or accept(s) in
which s can be any legal sequence starting at wr, of any
length n. If one player proposes a sequence s and the other
accepts it, then both players must obey it. This means that
for each wk with r ≤ k < r + n each player αi must play
the move sk,i. However, even if the players have already
agreed to play some sequence s, the players may continue
to negotiate and agree on a new sequence s′. In that case
the first agreement is discarded, and instead the players are
only required to obey the newly agreed sequence s′.
The details of the negotiation protocol are irrelevant for

this paper. It could be the Alternating Offers protocol [24],
but it may just as well be any other bilateral protocol.
We regard every round of the game as a separate negoti-

ation session. After all, in each round the state wr of the
game is different, and therefore the sequences the agents
may propose to each other are different.
Although we only allow players to propose linear sequences

of moves, everything explained works just as well for more
complex types of proposals such as tree-shaped structures.
However, it would take up too much space to give a rigorous
definition of such deals, and to explain how to assign utility
values to such deals. Furthermore, the current implementa-
tion of our algorithm only allows linear sequences because
otherwise we would first need to establish a communication
language that allows the agent to express more complex pro-
posals. There is no fundamental problem in doing so, but
we leave this as future work.
To conclude this section, we would like to stress two im-

portant points. Firstly, we emphasize that the agreements
the players make are considered binding. Once an agreement
is made, the players cannot deviate from it unless they make
a new agreement. We do not discuss how to enforce such
agreements in a real-world setting. We simply assume the
game server will enforce the agreements in the same way
that it enforces the rules of the game; if a player makes a
move that is inconsistent with the last agreement made, then
the server will ignore it and instead select a move that does
obey the agreement. Secondly, we should stress that we are
assuming the players to be selfish. Each player is only inter-
ested in maximizing its own utility, and is not interested in
maximizing any form of ‘social utility’. Therefore, a player

373



is only willing to accept a proposal if it estimates that this
will not decrease its utility.3

4. MONTE CARLO TREE SEARCH
In this section we give a quick introduction to Monte Carlo

Tree Search (MCTS). For more information we refer to [16].
We should note that MCTS is an algorithm for games with-
out negotiations. In Section 6 we describe how we have
adapted it for games with negotiations.
MCTS is an anytime algorithm that, given the current

state of a game, returns an estimation of the best move to
make. This is especially useful for games in which the state
space is too large to be explored exhaustively. Given a game
G, MCTS iteratively generates a tree in which every node ν
is labeled with a state wν . If ν′ is a child of ν it means that
the active player of wν has a legal action a such that wν′ =
u(wν , a). The tree is initialized with a single root node that
represents the initial state w0. The algorithm cycles through
the following steps, which are further explained in the next
subsections.

1. Selection: select a branch of the tree that starts at the
root and ends at some leaf node νl.

2. Rollout: randomly pick a legal sequence of joint moves
that starts at the state wl corresponding to the node
νl and that ends at some terminal state wT .

3. Update: for each player αi and each node ν in the
branch selected in step 1 update the Average Rollout
Scores Ũi,ν .

4. Expansion: generate children for νl.

Whenever we refer to a leaf node, we mean a node for which
no children have yet been generated. This should not be con-
fused with a terminal node, which is a node that represents
a terminal state and therefore cannot have any children.

4.1 Selection
Each cycle starts with the selection of a branch of the

tree from the root to some leaf node νl which is the ‘best’
according to some heuristic. This is done by starting at the
root, then selecting the child ν of the root with the highest
heuristic value, then selecting the child ν′ of ν with the
highest heuristic, etcetera, until a leaf node is reached.
A purely greedy algorithm would simply use the Average

Rollout Score Ũi,ν (explained below) for the active player of
wν as the heuristic. However, this usually does not work
well. Therefore, a commonly used heuristic is the UCT
heuristic [16], which adds an ‘exploration term’ uctν to the
Average Rollout Score. A node has a high exploration term
if it is has been selected relatively few times in comparison
to its siblings.

4.2 Rollout
Having selected a branch that ends at some leaf node νl

the algorithm randomly generates a legal sequence of joint
moves that starts at the state wl corresponding to νl and
ends at some terminal state4 wT . It then determines for
each player αi its utility Ui(wT ) for this terminal state.
3We say ‘estimates’ here, because the players are only as-
sumed to be bounded rational.
4This of course only works if we are guaranteed that no
infinite sequences of legal joint moves can exist.

4.3 Update
After the rollout, for every node ν in the selected branch

and every player αi the Average Rollout Score Ũi,ν is up-
dated, to ensure it satisfies the following formula:

Ũi,ν = 1
Nν

Nν∑
j=1

Ui(wj)

where Nν is the total number of times that ν was in the
selected branch among all previous iterations, and wj is the
terminal state that resulted from the rollout in the j-th it-
eration in which ν was in the selected branch.
A key feature of MCTS is the fact that if the algorithm

is run long enough, the Average Rollout Scores of the nodes
will converge to their theoretical Minimax values.

4.4 Expansion
In the last step of the cycle children are generated for

the leaf node νl. If αj is the active player of wl, then the
algorithm will generate one child νa for each action a ∈
Lj(wl). Each child νa will be labeled with the state wa that
satisfies: wa = u(wl, a).

5. TRADITIONAL NEGOTIATIONS
In this section we give a short introduction to traditional

Automated Negotiations. In a typical, classical negotiation
domain two agents α0 and α1 are bargaining to agree on
some contract. The space of all possible contracts is called
the contract space. Each agent αi has its own utility func-
tion Ui that maps each possible contract to a utility value,
which is usually a positive real number. The utility func-
tions are private in the sense that α0 does not know the
utility function U1 of its opponent, and vice versa. For a
contract x we refer to the vector ~U(x) = (U0(x), U1(x)) as
the utility vector of x and we call the set of all utility vectors
the utility space.
The agents have a fixed amount of time to exchange pro-

posals according to some protocol. That is: an agent may
propose a contract x, and then the other agent may either
accept the proposal, or make a counter proposal. If a pro-
posal x is accepted by the other agent, then both agents
receive their corresponding utility values (U0(x) and U1(x)
respectively). However, if no proposal is accepted before
the deadline tdead, each agent αi will receive a pre-defined
amount of utility which is known as its Reservation Value
rvi. Clearly, a rational negotiator would never accept any
proposal that yields an amount of utility less then its Reser-
vation Value. Just like the utility functions, the Reservation
Values are usually assumed to be private.
A typical strategy for a negotiating agent αi is to apply

a time based concession strategy. This means it has a time-
dependent function, called its Aspiration Level, aspi(t). This
function decreases over time from some initial value to some
final value which is greater than or equal to its Reservation
Value. Then, if at some time t it is αi’s is turn to make a
proposal it picks a contract x from the contract space for
which Ui(x) = aspi(t) holds, and proposes that contract to
its opponent. When αi receives a proposal x at time t, it
will accept that proposal if Ui(x) ≥ aspi(t) holds.
Note that in this paper we are assuming players have full

information about each other’s utility functions, as these are
given in the GDL description. However, in our case the util-

374



ity functions are not defined directly over the contract space,
but instead over the set of terminal states of some game G,
while the contracts are legal sequences of joint moves of G.
In the case that a sequence s results in a terminal state ws
we can assign utility values Ui(s) to the sequence, which
equal Ui(ws). In case the resulting state is not terminal we
can, in theory, assign a value Ui(s) to s that equals the equi-
librium value for player αi in the subgame that starts at the
state ws. In practice however, this may be hard to calculate.
Furthermore, we should note that even though for some

contracts we can determine the utility values exactly, we
generally cannot determine a player’s Reservation Values ex-
actly (see Section 6.5), because that would require the agent
to explore the search tree exhaustively. This is important,
because for a negotiator the value of a deal is determined by
the difference between its utility and the negotiator’s Reser-
vation Value, rather than just the pure utility value.

6. MCTS FOR NEGOTIATIONS
We are now ready to present our new algorithm for bi-

lateral negotiations over 2-player games. Just like regular
MCTS it generates a tree in which every node represents a
possible future state. However, in our case in every round
of the game the players negotiate. This means that each
tree node also represents a possible future negotiation ses-
sion, and therefore, for every node ν, we do not only need
to calculate the Average Rollout Scores, but also a pair of
Reservation Values, rvν,i, and a pair of Negotiation Values,
nvν,i (see Section 6.4).
The Negotiation Values of a node νw represent the utility

values the players may reasonably expect to achieve when
negotiating while the game is in state w, while the Average
Rollout Scores represent the utility values the players may
expect if they do not negotiate.
Again like regular MCTS, our algorithm applies a rollout-

procedure to randomly sample the search space. In our case,
every legal sequence generated by this procedure is stored
as a potential proposal. For such proposals we can exactly
calculate both players’ utility values, because the resulting
state of a rollout sequence is terminal.
Similarly, every branch from the current root to any other

tree node represents a legal sequence of joint moves that
may be proposed. However, such a legal sequence does not
necessarily result in a terminal state. Instead, we can use
the Average Rollout Scores of the last node of that branch
as the proposal’s utility vector, although that would only be
an approximation of the true utility the respective players
would receive from such a deal.
In the rest of this section we will describe the algorithm

as if it is running on agent α0. The opponent α1 may be
running the same algorithm, but may just as well be running
any other algorithm, or may even be human.

6.1 Main Algorithm
At the beginning of each new round, right after our agent

has received the new state wr from the server, the algorithm
starts by finding the node νr in the tree that represents the
state wr, and pruning all nodes in the tree that are not in
the subtree under νr. The node νr is now the new root of the
tree (assuming νr was already generated in the tree during
earlier rounds).
Next, it executes Algorithm 1. This algorithm contains

two nested loops. Inside the outer loop, it first calls the

function selectBranchNego() to select a branch ending at
some leaf node νl. Unlike regular MCTS, this selection is
not made based on the Average Rollout Scores, but instead
is based on the Negotiation Values (see Section 6.2).
The inner loop runs for half a second. Inside the inner

loop a subtree is generated under νl, using regular MCTS.
Note that this loop starts by selecting a branch ending at a
leaf node ν′l underneath νl. Of course, in the first iteration
of the inner loop νl itself is already a leaf node, so ν′l will be
equal to νl. In the following iterations however, the node νl
has been expanded, so νl is no longer a leaf.

Algorithm 1 MCTS-NEGO
Require: wr, tdead
1: t← getCurrentTime()
2: while t < tdead do
3: νl ← selectBranchNego()
4: t′dead ← t+ 500 //loop for 500 ms.
5: while t < t′dead do
6: ν′l ← selectBranchMCTS(νl)
7: s← rollout(ν′l)
8: update(ν′l , s)
9: expand(ν′l)
10: t← getCurrentTime()
11: end while
12: receiveIncomingMessages()
13: updateNegoValuesAndResValues(νl, s)
14: asp0

0 ← calculateMyAspLevel(t)
15: asp1

0 ← calculateOpponentAspLevel(t)
16: acceptOrPropose(asp0

0, asp
1
0)

17: end while
18: a← selectMoveToMake()
19: return a

The functions that are called inside the inner loop work
exactly as in normal MCTS. When the inner loop has fin-
ished, the Average Rollout Scores of νl should have been
determined accurately enough so that we can use them to
update the Reservation Values (as explained in Sec. 6.5)
and Negotiation Values (Sec. 6.4) of all its ancestors. The
algorithm next calculates the player’s aspiration levels, and
decides which deal to propose to the opponent, or which
received proposal to accept.

6.2 Selecting Branches
Algorithm 1 applies two functions to select the next branch

to explore. Given some node ν the function selectBranchM-
CTS() selects a branch from ν to some leaf node ν′l in
the subtree under ν, in the same way as regular MCTS.
The function selectBranchNego(), however, selects a branch
based on the Negotiation Values, rather than on the Average
Rollout Scores. That is: it starts with the root node and
then, if the active player is αi, selects the child ν of the root
for which the sum nvν,i+uctν is maximal. This is repeated,
until a leaf node is reached.
Using the Negotiation Values to select a branch rather

than the Average Rollout Scores allows us to focus the search
on that part of the tree where we expect to find more con-
tracts that are beneficial to both players. However, in order
to correctly calculate the Negotiation Values of νl, we need
to determine its Average Rollout Scores, and therefore we
need to generate a subtree under νl using regular MCTS.

375



6.3 Aspiration Levels
At regular intervals our agent needs to decide which pro-

posals to propose or accept. Traditionally, such decisions are
made based on a time-dependent Aspiration function aspi
[5]. The classical notion of an Aspiration Level however, was
invented for domains in which all possible contracts yield
Pareto-optimal utility vectors. In our case, contracts may
not always be Pareto-optimal, and the negotiators may not
know whether they are Pareto-optimal or not, because the
game is complex and agents have bounded rationality.
Therefore, we use an alternative that was introduced in

[13], in which α0 uses two time-dependent Aspiration func-
tions asp0

0 and asp1
0. Here, asp0

0 is a decreasing function that
represents the amount of utility α0 demands from α1, while
asp1

0 is an increasing function that represents the amount of
utility α0 aims to offer to α1.
For a given time t a contract x is selfish enough if U0(x) ≥

asp0
0(t) and it is altruistic enough if U1(x) ≥ asp1

0(t). Agent
α0 only proposes contracts that are selfish enough but, if
possible, proposes contracts that are also altruistic enough.
If it has discovered more than one such contract, it will pro-
pose the one for which U0(x) is maximal. If, on the other
hand, it has not discovered any such contract, it will pro-
pose the contract for which U1(x) is maximal among those
contracts that are selfish enough. If no contract is known to
the agent that is selfish enough, it will not propose anything.
Whenever α0 receives a proposal from α1 that is selfish

enough for α0, then α0 will accept it.

6.4 Negotiation Values
When implementing a negotiating agent, an important

strategic decision one needs to make is the question how far
to concede. That is: what should be the value of asp0

0(tdead),
where tdead is the deadline of the negotiation. One could
simply choose this value to be equal to the Reservation Value
rv0, but this is a weak strategy, because any opponent could
easily exploit it by conceding as little as possible. On the
other hand, choosing this value to be very high is a risky
strategy, because if the opponent does the same, it is likely
that no deal will be made because the contract space does
not contain any contract that yields enough utility to both
agents. Therefore, we need to determine which utility value
we can realistically expect α0 to obtain and concede no fur-
ther than that.
Note that if the utility space is convex, then the solution

to this problem is already given by Nash [21]. According
to the Nash Bargaining Solution both negotiators should
concede towards the contract x that maximizes the prod-
uct U0(x) · U1(x). However, in our case the contracts are
sequences of joint moves, which form a discrete, and there-
fore non-convex, space. This could be solved by allowing
the agents to also negotiate ‘lotteries’ of sequences. That
is: the agents agree to flip a (biased) coin, and if the out-
come is ‘heads’ they will play the sequence s, while if the
outcome is ‘tails’ they will play sequence s′. If we allow
the coin to be biased with any probability P , then the util-
ity space becomes convex. However, the problem with this
solution is that one needs to trust that the coin is indeed
exactly biased with the agreed probability P . One would
need some external source of randomness that is trusted by
both agents. Such a source is not always available.
In this paper we propose another solution. In our solution,

the players only make deterministic agreements. However,

Persist Y ield
Persist rv0, rv1 A,B
Y ield C,D 1

2 (A+B), 1
2 (C +D)

Table 1: Payoff matrix of Gw

player α0 itself will flip a coin in order to choose whether it
will insist on some agreement s with high utility, or concede
to an alternative agreement s′ with lower utility. The impor-
tant difference here is that the coin is only used internally
by α0, so there is no problem with trust.
Let us explain this with an example. Suppose the agents

are playing some game G, which is in some state w. Let
us assume that for both players the Reservation Value in
this state is 0, and that they have to choose between two
Pareto-optimal contracts x and y with corresponding utility
vectors ~U(x) = (60, 40) and ~U(y) = (40, 60) respectively.
We see that player α0 has the choice to either persist and
demand at least 60 utility points (meaning that he is only
willing to accept contract x), or to yield and also accept to
receive only 40 utility points (meaning he is also willing to
accept contract y). The opponent α1 has exactly the same
two options, but with the roles of x and y reversed.
The choice which strategy to follow, to persist or to yield,

may itself also be seen as a game, which we refer to as Gw. If
both players persist, the negotiations fail, and both players
will receive 0 utility points. If one player persists and the
other yields, then the persisting player receives 60 points,
while the other receives 40 points. If both players yield, the
outcome depends on how fast the players’ Aspiration Levels
drop. The player who concedes fastest will receive 40 points,
while the other will receive 60 points. Here we will simply
assume that in that case there is a 50% chance that they
will agree on contract x, and 50% chance it will be y, so the
expected utility for both players is 50.
In general, if we have contracts x and y with utility vec-

tors ~U(x) = (A,B) and ~U(y) = (C,D) and the Reservation
Values for the players are rv0 and rv1, then choosing the con-
cession strategy can be modeled as a game Gw with a payoff
matrix as displayed in Table 1. One can easily calculate (see
e.g. [22]) that the Mixed Strategy Nash Equilibrium of Gw
is given by:

P0 = D −B
B +D − 2 · rv1

P1 = A− C
A+ C − 2 · rv0

(1)

where Pi represents the probability that player αi will play
persist. Agent α0 can now determine its final Aspiration
Level asp0

0(tdead) by flipping a coin and setting it equal to
A with probability P0 and to C with probability 1− P0.
Furthermore, α0 can now also calculate the expectation

values of the utility both agents will receive from negotiating
in state w.

Definition 4. Given a game G and a non-terminal state
w of G, we define the Negotiation Value nvw,i for player
αi as the the expected utility of αi in the game Gw. For
terminal states it is defined as the exact utility value of that
state: nvwT ,i = Ui(wT ).

If we apply this to our example, then we find that P0 =
P1 = 1

5 , and for the Negotiation Values we find:

nvw,0 = 1
5 ·

1
5 · 0 + 1

5 ·
4
5 · 60 + 4

5 ·
1
5 · 40 + 4

5 ·
4
5 · 50 = 48

376



nvw,1 = 1
5 ·

1
5 · 0 + 1

5 ·
4
5 · 40 + 4

5 ·
1
5 · 60 + 4

5 ·
4
5 · 50 = 48

We see that both players can expect to receive 48 utility
points. Interestingly, this is lower than the expected out-
come in the traditional approach where the players negoti-
ate lotteries. In that case, according to Nash, both players
would expect to receive 50 utility points. The reason for this
difference is that the Nash solution calculates the expected
outcome under the assumption that the negotiations will
succeed. However, in our case, there is always the possibil-
ity that negotiations fail, because both players may choose
to persist. Of course, this means that if the players do have
access to a trusted coin, then it is preferable for them to
negotiate lotteries.
In this example we have assumed there are only two con-

tracts the agents have to choose from. In general however,
there may be many more contracts (recall that in a state w
every legal sequence of joint moves starting at w is a con-
tract). Since the payoff matrix of Gw would have one row
and one column for every known contract it would be too
time consuming to calculate the exact Nash Equilibrium of
Gw for every node νw in the tree. Instead, suppose that
for some state w we have a set of contracts {x1, x2, . . . xm}
then for each pair of contracts from this set we determine
what the Nash Product would be if we did allow lotteries
over these two contracts, and then pick the pair for which
this product is maximal. Then, we use this pair to calculate
the Negotiation Values as above.
Note that every time our algorithm finds new sequences of

joint moves starting at state wl corresponding to some leaf
node νl, the Negotiation Values of νl need to be updated.
This is done by the function updateNegoValuesAndResVal-
ues() in Algorithm 1.

6.5 Reservation Values
As explained, our agent determines for each state explored

in the tree a pair of Negotiation Values and in order to do
so it needs to know the Reservation Values of that state.
Remember that the Reservation Values are defined as those
values the negotiators obtain when negotiations fail. In our
case, if negotiations in the current round fail, the players
still have the chance to continue negotiating in the next
round. This means that if the current state is w and we
know that the next state will be w∗, then the Reservation
Values of state w should equal the Negotiation Values of
w∗. Of course, if α1 is the active player of w then α0 cannot
know which will be the next state. However, it can make
an educated guess by assuming that α1 is rational. If w is a
non-terminal state then we define next(w) as the set of all
states that could be the next state:

next(w) = {w′ ∈W | ∃a ∈ Lj(w) : w′ = u(w, a)}

with αj being the active player of w. We can then predict
the next state to be the state w∗ ∈ next(w) that maximizes
the Negotiation Value of the active player:

w∗ = arg max
w′∈next(w)

nvw′,j

We can then define the Reservation Values rvi of a non-
terminal state w as rvw,i := nvw∗,i. For any terminal state
the reservation values are simply defined as the exact utility
values of that state: rvwT ,i := Ui(wT ).
In principle, we have now formally defined the Reserva-

tion Values and the Negotiation Values for any state w of

the game, and hence for every node νw in the search tree.
However, in practice, we have the problem that in order to
calculate the Negotiation Values of a node νw we need to
know its Reservation Values, and in order to calculate the
Reservation Values of νw we need to know the Negotiation
Values of the children of νw. This means we can only cal-
culate them exactly if we have exhaustively generated the
entire subtree under νw. This is a problem, because often
this tree will be too large for exhaustive exploration.
Therefore, we only use the identity rvνw,i = nvνw∗ ,i if the

children of νw have already been generated. If this is not the
case, we can use the Average Rollout Scores Ũνw,i as an al-
ternative. After all, the Average Rollout Score indicates how
much a player can expect to achieve without negotiations at
all, which is obviously a lower bound for the real Reserva-
tion Values. However, this approach may also fail if νw has
not been selected often enough by the branch-selection func-
tions, because in that case the Average Rollout Scores will
not be accurate enough. In that case we simply leave the
Reservation Values undefined. In summary, we define the
Reservation values of a node as follows, with Nνw as defined
in Section 4, and θ being some threshold value:

rvνw,i =


undefined if Nνw < θ

Ũν,i if Nνw ≥ θ but nvνw∗ ,i is undefined
nvνw∗ ,i otherwise

For any node ν the Negotiation Values nvν,i are calculated
according to Section 6.4, using the reservation values rvν,i if
they are defined, and nvν,i is undefined if rvν,i is undefined.

Proposition 1. For any node ν, if its Reservation Val-
ues and its Negotiation Values are defined, then the Reser-
vation Values and Negotiation Values of all its ancestors are
also defined.

Proof. This follows from the fact that if Nν ≥ θ, then
we must also have Nν′ ≥ θ for all ancestors ν′ of ν. This
holds, because a node ν is only ‘selected’ during the selection
steps of the algorithm if its parent was also selected.

6.6 Selecting an Action
In each round of the game, right before the deadline, the

player must send a message to the server with its next ac-
tion. In case the players have made an agreement (either
in the current round or during one of the earlier rounds)
that prescribes the agents’ actions for the current round,
then the agent simply chooses the action according to that
agreement.
Otherwise, it needs to decide which of the currently legal

moves is the best. Here again our algorithm differs from
regular MCTS. While a regular MCTS picks the move that
leads to the state with the highest Average Rollout Score,5
our agent picks the move that leads to the node with the
highest Negotiation Value. After all, as long as the Nego-
tiation Values dominate the Average Rollout Scores, it is
beneficial for both players to negotiate, and therefore it is
reasonable to expect that negotiations will succeed.
5Actually, it picks the move that leads to the child node that
has been selected in a branch the largest number of times,
but if the tree has been expanded enough this move will
be the same as the one that maximizes the Average Rollout
Score.

377



7. EXPERIMENTS
In this section we present the experiments we have per-

formed with our algorithm. We have tested it on the follow-
ing games:

• Iterated Prisoner’s Dilemma (IPD)
• The Centipede Game (CG)
• Dollar Auction (DA)

These are classical games that are often discussed in Game
Theoretical text books. We should remark that none of
these games were intended to be used with negotiations.
They are usually analyzed under the assumption that the
players do not communicate or make binding agreements.
Therefore, one could argue that by allowing negotiations we
have actually changed the rules of these games so we are in
fact playing different games. Nevertheless, we still refer to
our games-with-negotiations by their original names.
We feel it is important to stress here that writing a nego-

tiating agent specifically for any of these games would be an
easy task. However, the point of our algorithm is that it is
entirely generic. We are using exactly the same algorithm
for every game, without even changing a single parameter,
and it could just as well be used for any other non-zero-sum
game, as long as it is described in GDL.
Our agent does not have any knowledge about these games,

other than their GDL descriptions. In particular, this means
there is no straightforward, generic, way for our agent to
determine their Pareto Frontiers. Furthermore, even if an
agent does know which utility vectors are Pareto-optimal,
this is still not enough to negotiate successfully, because it
also needs to know which sequences of joint moves would
lead to these Pareto-optimal outcomes.
For each of these games, we have let two instances of our

agent play 100 matches against each other with negotiations
and 100 matches without negotiations. When our agent
plays without negotiating it just applies a plain MCTS. For
each game we have given the players a deadline to negoti-
ate of 5 seconds per round. Our algorithm is implemented
in Java and the experiments were performed on a HP Z1
G2 workstation with Intel Xeon E3 4x3.3GHz CPU and 8
GB RAM. We have downloaded the GDL descriptions of
the above games from the standard GDL repositories at
http://games.ggp.org/.
The results are displayed in Table 2. Each row repre-

sents one of the games. The first column shows the outcome
of the Subgame Perfect Nash Equilbrium for each game,
and the fourth column shows the optimal outcome for each
game. For the IPD this optimum is the utility vector for
which the Nash Product is maximized. In this game not
even any lottery between two utility vectors yields a higher
Nash Product, so this is the obvious ‘optimal’ outcome. In
case of the CG, there are only two Pareto-optimal utility vec-
tors, namely (95, 90) and (80, 95). However, one can show
that it is never rational for the first player to agree with
the (80, 95) outcome. We will not provide a formal proof
of this, for lack of space. Informally, this is because during
the first 16 rounds of the game the second player cannot
threaten the first player with an early termination, because
that would only result in less utility. On the other hand, if
the game advances to the 17th round then the first player
is already assured of at least 85 utility points even without
making any agreements. In case of the DA, the Pareto Fron-
tier consists of the utility vectors (100, 80) and (75, 100), but

N.Eq. No Nego Nego Optim.
IPD (20, 20) (20, 20) (56± 0.3, 55± 0.4) (60, 60)
CG (5, 0) (5, 0) (95, 90) (95, 90)
DA (80, 80) (80, 80) (100, 80) (100, 80)

Table 2: Without negotiations the results are ex-
actly the equilibrium outcomes. With negotiations
the results are close to optimal.

the second vector is clearly irrational, because the Subgame
Perfect Equilibrium already guarantees 80 points to both
players.
The two middle columns show the average utility obtained

by the two players over 100 matches, with and without ne-
gotiations respectively. We see that without negotiations,
the outcome of every match in every game is exactly the
theoretical equilibrium. When the players do negotiate they
obtain much higher scores. In the case of the CG and the
DA, the players reach exactly the optimal outcome in every
match. In the case of the IPD the players score an average
of 55 and 56 points respectively, with standard errors of 0.3
and 0.4 respectively, which is close to the optimal solution.
The reason that the algorithm does not achieve the theoret-
ical optimum in the IPD is simply because the IPD has a
very large search space, so it does not always find the opti-
mal contract. Each player has 2 legal actions in each round
and the game lasts for 20 rounds, so there are 420 possi-
ble terminal sequences starting at the initial state. For the
other two games the search space is small enough to explore
exhaustively.
We conclude that our algorithm enables the players to

significantly increase their scores by means of negotiation,
and obtain results that are very close to optimal.
The GGP repositories do contain a number of other (more

complex) non-zero-sum games, such as Free-For-All, Skir-
mish, Chinese Checkers, and Chinook. Unfortunately, it
turns out that these games are not suitable for negotiations,
because even without negotiating our pure MCTS algorithm
already achieves near-optimal scores.

8. FUTURE WORK
In this paper we have assumed the negotiators have full in-

formation about the game. In particular, this means that for
any proposed deal, our agent was able to perfectly determine
the opponent’s utility value of this deal. Although we think
that in real life a negotiator does have information about
the opponent’s utility function, it is unrealistic to assume
this information is perfect. Therefore, we plan to generalize
our algorithm to games described in GDL-II, which allows
hidden information. The games used in our experiments
were highly theoretical. It would be more interesting to see
if we can implement some real-world negotiation scenarios
in GDL and apply our algorithm to them. Furthermore,
we would like the negotiators to be able to negotiate more
complex kinds of deals, rather than just linear sequences of
joint moves. They could for example make proposals of the
form “I promise that if you do a then I will do b, but if you
do c then I will do d”. This could be realized by letting the
players formulate their proposals in a recently introduced
strategic language called SGL [31]. Finally, we will inves-
tigate how our algorithm can be generalized to games for
more than 2 players, such as Diplomacy.

378

http://games.ggp.org/


REFERENCES
[1] R. Axelrod and W. Hamilton. The evolution of cooperation.

Science, 211(4489):1390–1396, 1981.
[2] T. Baarslag, K. Hindriks, C. M. Jonker, S. Kraus, and R. Lin.

The first automated negotiating agents competition (ANAC
2010). In T. Ito, M. Zhang, V. Robu, S. Fatima, and
T. Matsuo, editors, New Trends in Agent-based Complex
Automated Negotiations, Series of Studies in Computational
Intelligence. Springer-Verlag, 2010.

[3] A. Fabregues. Facing the Challenge of Automated
Negotiations with Humans. PhD thesis, Universitat Autònoma
de Barcelona, 2012.

[4] A. Fabregues and C. Sierra. Dipgame: a challenging
negotiation testbed. Engineering Applications of Artificial
Intelligence, 2011.

[5] P. Faratin, C. Sierra, and N. R. Jennings. Negotiation decision
functions for autonomous agents. Robotics and Autonomous
Systems, 24(3-4):159 – 182, 1998. Multi-Agent Rationality.

[6] P. Faratin, C. Sierra, and N. R. Jennings. Using similarity
criteria to make negotiation trade-offs. In International
Conference on Multi-Agent Systems, ICMAS’00, pages
119–126, 2000.

[7] S. Fatima, M. Wooldridge, and N. R. Jennings. An analysis of
feasible solutions for multi-issue negotiation involving
nonlinear utility functions. In Proceedings of The 8th
International Conference on Autonomous Agents and
Multiagent Systems - Volume 2, AAMAS ’09, pages
1041–1048, Richland, SC, 2009. International Foundation for
Autonomous Agents and Multiagent Systems.

[8] A. Ferreira, H. Lopes Cardoso, and L. Paulo Reis. Dipblue: A
diplomacy agent with strategic and trust reasoning. In 7th
International Conference on Agents and Artificial
Intelligence (ICAART 2015), pages 398–405, 2015.

[9] H. Finnsson. Simulation-Based General Game Playing. PhD
thesis, School of Computer Science, Reykjavik University, 2012.

[10] M. Genesereth, N. Love, and B. Pell. General game playing:
Overview of the AAAI competition. AI Magazine, 26(2):62–72,
2005.

[11] T. Ito, M. Klein, and H. Hattori. A multi-issue negotiation
protocol among agents with nonlinear utility functions.
Multiagent Grid Syst., 4:67–83, January 2008.

[12] D. de Jonge. Negotiations over Large Agreement Spaces. PhD
thesis, Universitat Autònoma de Barcelona, 2015.

[13] D. de Jonge and C. Sierra. NB3: a multilateral negotiation
algorithm for large, non-linear agreement spaces with limited
time. Autonomous Agents and Multi-Agent Systems,
29(5):896–942, 2015.

[14] D. de Jonge and C. Sierra. GANGSTER: an automated
negotiator applying genetic algorithms. In N. Fukuta, T. Ito,
M. Zhang, K. Fujita, and V. Robu, editors, Recent Advances
in Agent-based Complex Automated Negotiation, Studies in
Computational Intelligence, pages 225–234. Springer
International Publishing, 2016.

[15] D. E. Knuth and R. W. Moore. An analysis of alpha-beta
pruning. Artificial Intelligence, 6(4):293 – 326, 1975.

[16] L. Kocsis and C. Szepesvári. Bandit based monte-carlo
planning. In Proceedings of the 17th European Conference on
Machine Learning, ECML’06, pages 282–293, Berlin,
Heidelberg, 2006. Springer-Verlag.

[17] S. Kraus. Designing and building a negotiating automated
agent. Computational Intelligence, 11:132–171, 1995.

[18] N. Love, M. Genesereth, and T. Hinrichs. General game
playing: Game description language specification. Technical
Report LG-2006-01, Stanford University, Stanford, CA, 2006.
http://logic.stanford.edu/reports/LG-2006-01.pdf.

[19] I. Marsa-Maestre, M. A. Lopez-Carmona, J. R. Velasco, and
E. de la Hoz. Effective bidding and deal identification for
negotiations in highly nonlinear scenarios. In Proceedings of
The 8th International Conference on Autonomous Agents
and Multiagent Systems - Volume 2, AAMAS ’09, pages
1057–1064, Richland, SC, 2009. International Foundation for
Autonomous Agents and Multiagent Systems.

[20] I. Marsa-Maestre, M. A. Lopez-Carmona, J. R. Velasco, T. Ito,
M. Klein, and K. Fujita. Balancing utility and deal probability
for auction-based negotiations in highly nonlinear utility
spaces. In Proceedings of the 21st International Jont
Conference on Artifical Intelligence, IJCAI’09, pages 214–219,
San Francisco, CA, USA, 2009. Morgan Kaufmann Publishers
Inc.

[21] J. Nash. The bargaining problem. "Econometrica",
"18":155–162, 1950.

[22] M. Osborne and A. Rubinstein. A Course in Game Theory.
MIT Press, 1994.

[23] L. Pan, X. Luo, X. Meng, C. Miao, M. He, and X. Guo. A
two-stage win-win multiattribute negotiation model:
Optimization and then concession. Computational
Intelligence, 29(4):577–626, 2013.

[24] J. S. Rosenschein and G. Zlotkin. Rules of Encounter. The
MIT Press, Cambridge, USA, 1994.

[25] R. W. Rosenthal. Games of perfect information, predatory
pricing and the chain-store paradox. Journal of Economic
Theory, 25(1):92 – 100, 1981.

[26] E. E. S. Kraus, D. Lehman. An automated diplomacy player.
In D. Levy and D. Beal, editors, Heuristic Programming in
Artificial Intelligence: The 1st Computer Olympia, pages
134–153. Ellis Horwood Limited, 1989.

[27] S. Schiffel and M. Thielscher. M.: Fluxplayer: A successful
general game player. In In: Proceedings of the AAAI National
Conference on Artificial Intelligence, pages 1191–1196. AAAI
Press, 2007.

[28] R. Serrano. bargaining. In S. N. Durlauf and L. E. Blume,
editors, The New Palgrave Dictionary of Economics. Palgrave
Macmillan, Basingstoke, 2008.

[29] M. Shubik. The dollar auction game: A paradox in
noncooperative behavior and escalation. The Journal of
Conflict Resolution, 15(1):109–111, 1971.

[30] J. von Neumann. On the theory of games of strategy. In
A. Tucker and R. Luce, editors, Contributions to the Theory
of Games, pages 13–42. Princeton University Press, 1959.

[31] D. Zhang and M. Thielscher. A logic for reasoning about game
strategies. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence (AAAI-15), pages
1671–1677, 2015.

379


	Introduction
	Related Work
	Problem Description
	Games
	Client-Server Model
	Sequences
	Negotiations

	Monte Carlo Tree Search
	Selection
	Rollout
	Update
	Expansion

	Traditional Negotiations
	MCTS for Negotiations
	Main Algorithm
	Selecting Branches
	Aspiration Levels
	Negotiation Values
	Reservation Values
	Selecting an Action

	Experiments
	Future Work



