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ABSTRACT
Approval ballots provide an opportunity for agents to make
a comment about every candidate, without incurring the
overhead of determining a full ranking on the set of can-
didates; they are very natural for many practical settings.
We study the computational complexity of the committee
selection problem for several approval-based voting rules in
the presence of outliers. Our first result shows that out-
liers render the committee selection problem intractable for
approval, net approval, and minisum approval voting rules.
We next study the parameterized complexity of this problem
with five natural parameters, namely the target score, the
size of the committee (and its dual parameter namely the
number of candidates outside the committee); and the num-
ber of outliers (and its dual parameter namely the number of
non-outliers). For approval, net approval, and minisum ap-
proval voting rules, we provide a dichotomous result, which
resolves the parameterized complexity of this problem for
all subsets of the above five natural parameters considered
(by showing either FPT or W[1]-hardness for all subsets of
parameters).

CCS Concepts
•Theory of computation → Analysis of Algorithms
and Problem Complexity; •Distributed Artificial In-
telligence → Multi-agent Systems;

Keywords
voting; committee selection; outliers; social choice; parame-
terized complexity

1. INTRODUCTION
Aggregating preferences of a set of agents is a fundamen-

tal problem in artificial intelligence and social choice the-
ory [11]. Typically, agents (or voters) express their prefer-
ences over alternatives (or candidates). There are many dif-
ferent models for expressing preferences, ranging from the
simple plurality voting (each voter provides his or her fa-
vorite choice) to the most comprehensive method where each
voter provides a complete ranking over the set of all candi-
dates. Approval ballots represent an intermediate model,
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where a voter approves of or disapprove each candidate –
thus a vote may be captured in the form of a subset of
approved candidates or as a binary string indexed by the
candidate set. Approval votes provide a well-studied model
in their own right (see, for instance, [20, 9, 23, 25, 5]). Ap-
proval ballots provide the agents an opportunity to make a
comment about every candidate, without incurring the over-
head of determining a full ranking on the candidate set.

Just as there are multiple ways of expressing or modelling
preferences, there exist several notions of aggregating pref-
erences as well. Often, the goal is to just find a winning
alternative. In an extreme scenario we may wish to derive
a complete ranking of the alternatives that suitably reflects
the preferences of the agents. Another possibility is the de-
sire to find the “top k” alternatives, or to find an unordered
subset of k alternatives. Our focus in this paper will be on
finding the “best” subset of k candidates, and we will refer
to a subset of k candidates as a committee.

A natural way of aggregating approval votes is approval
voting – every candidate gets one point for every approval,
and the candidates can be ranked according to score. In
a single-winner scenario, this method of aggregation works
rather well; in fact, it coincides with Condorcet winners
(for an appropriate interpretation of the notion in the di-
chotomous setting, see [25, Chapter 11]) and moreover it
is robust to strategic behavior of the voters [20, 9, 3, 25].
However, when it comes to choosing a committee, issues be-
gin to emerge, especially to do with fairness, susceptibility
to manipulation, and proportional representation of agents.
Several other voting rules have been proposed to address
some of these concerns.

We now informally describe a general way of thinking
about a certain class of voting rules, in the context of ap-
proval ballots. Recall that a committee is a subset of can-
didates, and note that a vote can also be interpreted as a
subset of candidates. Therefore, one might consider various
natural notions of distance between these two sets. A cer-
tain fixed notion of distance leads to a measure of suitability
of a committee with respect to an election – for instance, by
considering the sum of distances to all voters, or the maxi-
mum distance incurred from any voter. For a committee X
and a vote S, the notions of distance that are well-studied
in the literature include the size of the symmetric difference
(leading to the minisum or minimax rules) [10, 24, 14, 21];
the size of the intersection (leading to the notion of approval
score); or the difference between |X ∩S| and |X \S| (leading
to the notion of net approval scores) [28, 30, 2].
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Motivation
The standard approach to the selection of a winning commit-
tee is to look for one that optimizes these scoring functions
over the entire election – that is, when the sum or maxi-
mum of scores is taken over all the votes. However, in many
scenarios where voting has been applied successfully, for ex-
ample, social networks [6, 29], computational biology [22],
spam detection [15], restaurant rating, etc., it is common to
have some outliers or errors in the input set of votes. In such
situations, it is plausible that there is a committee that rep-
resents a satisfactory consensus when the scores are taken
over all the voters barring a few rather than the entire set
of voters. For example, consider the minisum voting rule,
which minimizes the sum of the Hamming distances of the
committee from the votes in the electorate (the sum is taken
over the votes). For a committee of size k, the best possible
minisum score is zero. Clearly, the lower the minisum score,
the greater the overall satisfaction of the electorate. Now,
imagine in an electorate where most voters agree on a com-
mittee C∗ of size k, and a very small number of voters do
not approve anyone from this committee. Ignoring the vot-
ers who do not approve anyone from C∗ as outliers leads us
to a situation where there exists a committee with the best
possible minisum score. The discussion certainly provokes
the following lines of thought: how much can the best min-
isum committee change if a few voters are removed? More
specifically, is there a subset of at least n∗ votes that admits
a committee whose minisum score is at most k∗? The prob-
lem of finding the best minisum committee is a special case
of this problem (when n = n∗). This generalization allows
us to explore trade-offs and structure in the election: if there
is a committee that prescribes a satisfactory consensus over
a large fraction of the election, then it is likely to be per-
ceived a more suitable choice by the community compared
to a committee that optimizes the same score function over
the entire election. We acknowledge that it may be unfair to
“leave out” some of the votes in many real life applications
of voting, proportional representation and political election
for example. However, in many other real life applications
of voting as mentioned above, the presence of outliers are
quite common and we believe that considering outliers in
such applications is important. Indeed, the notion of out-
liers is very popular in the closest string problem [8] whose
main motivation comes from biology and in social network
scenario.

Related Work
The notion of finding a satisfactory consensus over a large
subset has been explored in multiple contexts. For instance,
the well-studied the Young voting rule [31] can be inter-
preted as finding the minimum number of “outliers” whose
removal makes a certain candidate a Condorcet winner. A
closely related notion is control, where one is interested in
the possibility of influencing the outcome of an election by
either restricting the set of candidates or voters, or intro-
ducing “spoiler” candidates or voters. This is a well-studied
phenomenon, see, for instance, [4] for an overview of the
computational complexity of various types of control prob-
lems. A specific type of control is control by deleting voters,
which arises in the context of single-winner elections: we
wish to know if it is possible to make a particular candidate
c win by removing at most k votes from the instance. For a

fixed candidate c, this problem has the flavor of identifying
outliers, with respect to making c a winner.

Outliers are also quite common in the literature of Clos-
est String problems. The setting of closest string involves a
collection of n strings, and the goal is to find a single string
that minimizes either the maximum distance, or the sum of
distances, from all the input strings. The most commonly
studied notion of distance is the Hamming distance. An-
other question that is often asked is the following: given a
budget k, is there a string that is“close to”at least k strings?
This question has been studied for both the minimax and
minisum notions of closeness [7, 26].

While the problem of finding outliers in multiwinner elec-
tions shares similarities with the aforementioned problems,
nevertheless, there are also significant differences. For in-
stance, the problem of control by deleting voters involves
a favorite candidate and the goal is to manipulate the out-
come. To begin with, the control problems studied so far are
mostly in the context of single-winner elections. More im-
portantly, the question we are raising is in a different spirit.
Here, we don’t identify favorites – our goal is to find out
if the election structurally admits a satisfactory consensus
barring a small number of votes.

Further, once we interpret votes as binary strings, we are
asking a question that is rather similar to the Closest String
family of problems. Here, the main distinction is that our
search is only over strings that have a fixed number of ones.
This similarity has been noted and explored in some pre-
vious works on voting (see, for instance, Byrka and Sor-
nat [13] and Boucher and Ma [8]). More specifically, and
again in the spirit of observing similarities with the closest
string family of problems, the minimax approval rule has
been studied from the perspective of outliers [27]. To the
best of our knowledge, our work is the first comprehensive
study of computational complexity of approval ballots in the
presence of outliers.

Our Framework
An advantage of using scoring rules for approval ballots de-
scribed above is that the winning committees are polynomi-
ally computable for most of them (with the notable excep-
tion of the minimax voting rule). However, once we pose
the question of whether a target score t is achievable after
the removal of at most k outliers, the complexity landscape
changes quite dramatically. We show that this question is
a computationally hard problem – in particular, we estab-
lish NP-hardness. Having shown hardness in the classical
setting, we explore the complexity issue further, primarily
from the perspective of fixed-parameter algorithms, using
the framework of parameterized complexity. We refer the
reader to the book [19] for a comprehensive overview of pa-
rameterized complexity.

Our Contributions
Our main result is a set of parameterized dichotomy theo-
rems for the problem of identifying a small subset of outliers.
We focus on three specific scoring-oriented voting rules for
aggregating approval ballots. These are Minisum, Approval,
and Net Approval (we refer the reader to the next section
for a detailed description of these voting rules). Next, our
task is to identify reasonable parameters. The fundamental
structural parameters for a voting problem are the number
of voters or candidates. These parameters provide natural
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starting points, and have been popular among several works
that address the parameterized complexity of computational
problems in voting.

Also, for any optimization problem, a natural choice of pa-
rameter is the quantity that is being optimized, often called
the standard parameter. In our setting, the standard param-
eter would be the target score. In the context of outliers for
multiwinner elections, the other natural parameters would
be the size of the committee that is sought, and the num-
ber of outliers. We explore the parameterized complexity
of finding outliers from the lens of all possible combinations
of these parameters, and obtain classification results for the
three voting rules under investigation. We defer a precise
statement of these results to the next section. We believe
resolving parameterized complexity for all subsets of the pa-
rameters considered for the Minisum, Approval, and Net Ap-
proval voting rules are novel as well as non-trivial. We re-
mark that proving such parameterized dichotomy results for
important problems has recently gained a lot of interest in
theoretical computer science; see, for example, the work of
Bringmann et al. [12], Aravind et al. [1], etc. and our work
is the first of such kind in computational social choice.

Organization
The rest of this paper is organized as follows. In Section 2,
we describe our main contributions, summarizing it in Sec-
tion 2.1, and along the way we setup the notation and the
definitions that will be used in subsequent sections. As we
will see, our results are parameterized dichotomy theorems
that classify the parameterized complexity of the problem of
finding outliers. Subsequently, in Section 3, we begin with
presenting our algorithm results in Section 3.1; then move
on to our parameterized hardness results in Section 3.2 and
finally combine them to prove the main theorems in Sec-
tion 3.3. We conclude in Section 4. In the interest of space,
we skip few proofs which can be found in the full version [17].

2. DEFINITIONS AND OVERVIEW OF
KEY RESULTS

We consider three standard approval scoring rules, namely
the minisum, approval, and net approval scores. The last
two scores, as originally defined in the literature, are de-
signed to simply give us the total amount of approval that a
committee incurs from all the voters. The scores themselves
are therefore non-decreasing functions of n, and as such, the
question of outliers is not interesting if we use the scores di-
rectly (in particular, it is impossible to improve these scores
by removing votes). Therefore, we consider the dual scoring
system that complements the original – namely, we score
a committee based on the amount of disapproval that it
incurs from all the votes, and seek to minimize the total dis-
approval. Typically, for any notion of approval, there are
either one or two natural complementary notions of disap-
proval that present themselves (discussed in greater detail
below). This formulation is consistent with the idea that we
want our scores to capture “distance” rather than closeness.
We note that in terms of scores, these rules are equivalent
to the original, but choosing to ask the minimization ques-
tion allows us to formulate the problem of finding the best
committee in the presence of outliers.

Remark 1. We chose to use the notion of disapproval
instead of approval because of its consistency with the other

distance-based rules (like minisum and minimax). All the
variations are equivalent as scoring functions, and we note
that our choice is only a matter of exposition.

Measures of approval Measures of disapproval

Minisum |X∆S| Minisum

Approval |X ∩ S| |X \ S|
Disapproval

|S \ X |
Net Approval |X ∩ S| − |X \ S| |X \ S| − |X ∩ S| Net Disapproval

Table 1: The approval-based rules that are considered in
this paper. Here, X is a committee and S is a vote, and the
table illustrates the possible scores that X can incur from S.
The total score of X will be the sum of these scores taken
over S. ∆ denotes the symmetric difference of sets.

Number of votes n Set of candidates C
Number of candidates m Committee chosen C∗

Number of outliers n Non-committee C(= C \ C∗)
Number of non-outliers n∗(= n− n) Set of votes V

Size of committee m∗ Set of non-outliers V∗

Size of non-committee m(= m−m∗) Set of outliers V(= V \ V∗)
Score of the committee t Hamming distance h(·)

Table 2: Notation.

In Table 1, we summarize the notions of distances between
a committee and a vote. We also refer the reader to Table 2
for an overview of the notation we use in this paper. Each
of these notions naturally gives rise to a score-based voting
rule. Formally, for any distance function s : 2C × 2C → N
between two subsets of candidates, we overload notation and
define the corresponding score function s : 2C × 2V → N as
follows (the view of s(·) will be clear from the context):

s(X ,W) :=
∑
S∈W

s(X ,S).

For the winner determination problem, the goal is to find a
committee X of size m∗ that minimizes s(X ,V). For all the
scoring rules in Table 1, a winning committee of size m∗ can
be found in polynomial time for any m∗ 6 m. We are now
ready to define the problem of winner determination for a
scoring rule s in the presence of outliers:

s-Outliers
Input: A set of votes V = {S1, . . . ,Sn} over a set of
candidates C = {c1, . . . , cm}, a committee size m∗, a re-
quirement n∗, and a target score t.
Question: Does there exist a committee C∗ ⊂ C and
a set of non-outliers V∗ ⊂ V such that |V∗| > n∗,
|C∗| = m∗, and s(C∗,V∗) 6 t?

Remark 2. We will focus on only one variant of disap-
proval for the approval scoring rule, namely the one given
by the top row in Table 1. The other variation is symmetric
and our results hold in the exact same fashion.

At this point, we briefly introduce terminology that will
be pertinent to the description of our contributions. A pa-
rameterized problem instance comprises of an instance x in
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the usual sense, and a parameter k. A problem with pa-
rameter k is called fixed parameter tractable (FPT) if it is
solvable in time f(k) · p(|x|), where f is an arbitrary func-
tion of k and p is a polynomial in the input size |x|. There is
also a hierarchy of complexity classes above FPT, and show-
ing that a parameterized problem is hard for one of these
classes is considered evidence that the problem is unlikely
to be fixed-parameter tractable. Indeed, assuming the Ex-
ponential Time Hypothesis, a problem hard for W[1] does
not belong to FPT [18]. We refer the reader to [16, 19] for a
detailed introduction to parameterized algorithms and com-
plexity.

2.1 Summary of Results
We show that the s-Outliers problem is NP-complete for

all the scoring rules considered here, even in the special cases
when every vote approves exactly two candidates or every
candidate is approved by exactly two votes (these results
follow from Lemma 3 and Lemma 6, respectively). To ini-
tiate the parameterized study of the s-Outliers problem,
we have to identify suitable parameters. Recall that for an
optimization problem, a natural choice of parameter is the
quantity that we are optimizing, or the standard parameter.
In our setting, the standard parameter would be the target
score t. However, as we will see, the problem turns out to be
W [1]-hard when parameterized by the target score. There-
fore, we consider other natural parameters in the hope that
they may lead to tractability.

We now turn our attention to the next most natural pa-
rameters, that is, the number of voters or candidates. In
contrast to the standard parameter, the s-Outliers prob-
lem is FPT for all the scoring rules that we consider, with
respect to either the number of candidates or voters. We
briefly describe the overall approach here. Note that we can,
in “FPT time”, enumerate all choices of outliers or all pos-
sible committees, for the parameters n and m, respectively.
For any fixed choice of outliers (respectively, committee), it
turns out that a natural greedy strategy leads us to the op-
timal solution for any of the scoring rules studied here. The
greedy algorithm is easy to implement in polynomial time,
and we describe this argument formally in Proposition 1.

Given this initial landscape, we approach the problem
with a finer set of parameters, which are motivated by the
definition of the problem: the size of the committee (m∗),
the number of candidates not in the committee (m), the
number of non-outliers (n∗), the number of outliers (n).
Along with the target score, we therefore have five param-
eters to consider. Note that the parameters m and n im-
plicitly accounted for as combinations of these parameters,
since m = m∗ + m and n = n∗ + n.

Our main results are the following three dichotomy the-
orems, that completely classify the parameterized complex-
ity of the problem for the parameters considered above. In
particular, for any subset of these parameters, we estab-
lish if the s-Outliers problem is FPT or W[1]-hard when
s ∈ {Minisum, Net Disapproval, Disapproval}. In all cases,
parameterizing by m or n makes the problem tractable, but
beyond that, the classifications diverge and are slightly dif-
ferent for each of the three problems. The precise classifica-
tions are given by the following theorems.

Theorem 1. Let P = {m∗,m, n∗, n, t}, and Q ⊆ P. The
Minisum-outliers problem parameterized by Q is FPT if Q

contains either {m∗,m}, {n∗, n}, or {n, t}, and is W[1]-hard
otherwise.

Theorem 2. Let P = {m∗,m, n∗, n, t}, and Q ⊆ P. The
Net-Disapproval-outliers problem parameterized by Q is
FPT if Q contains either {m∗,m} or {n∗, n}, and is W[1]-
hard otherwise.

Theorem 3. Let P = {m∗,m, n∗, n, t}, and Q ⊆ P.
The Disapproval-Outliers problem parameterized by Q
is FPT if Q contains either {m∗,m}, {n∗, n}, or {m,n, t}
and is W[1]-hard otherwise.

3. RESULTS
In this section, we present our parameterized dichotomy

results. We first describe our FPT algorithms for s-
Outliers when parameterized by either m, n, or n + t. In
the next subsection, we describe our W[1]-hardness results
for various carefully chosen combinations of parameters. In
the last subsection, we tie these results together into a proof
of Theorems 1 to 3. The reason that a small number of
classifications account for all possible cases is the following.
Note that if a problem is FPT (respectively, W[1]-hard) with
respect to some subset Q ⊆ P of parameters, then it is also
FPT (W[1]-hard) with respect to any superset (subset) of
Q. Therefore, typically it suffices to demonstrate algorithms
and hardness results on carefully constructed subsets of pa-
rameters, that will in turn account for all possibilities.

3.1 FPT Algorithms
We begin by discussing the FPT algorithms. While de-

scribing running times, we will use the O∗() notation to
suppress polynomial factors. Our first result relies on the
fact that the s-Outliers problem is polynomial time solv-
able for all the voting rules considered here if we know either
the committee or the non-outliers of the solution. Hence by
guessing either the committee or the the set of non-outliers
as applicable, we immediately obtain the following result.

Proposition 1. The Minisum-Outliers problem ad-
mits algorithms running in time O∗(2n) and O∗(2m).

Now we show that the Minisum-outliers problem, pa-
rameterized by (t + n), is in FPT.

Lemma 1. There is a O∗(2t+n) time algorithm for the
Minisum-outliers problem.

Proof. Notice that if t > n− n (that is n 6 t + n), then
we can simply use the algorithm in Proposition 1, which runs
in O∗(2n) = O∗(2t+n) time. Otherwise, we have t < n− n.
In this case, consider any committee X that achieves the
target score t with respect to some set of at most n outliers.
If t < n − n, then there exists a vote, say Si, such that
s(X ,Si) = 0. Indeed, otherwise every vote contributes at
least one to the Minisum score and the total score of X will
be at least n− n, contradicting the assumption that X had
a Minisum score of at most t.

Since s(X ,Si) = 0, observe that the vote Si determines
the committee. We can proceed by guessing Si, declaring
the candidates approved by Si as the committee, and then
finding the corresponding outliers (recall that the last step is
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easy when the committee is fixed). Therefore, the algorithm
iterates over all votes S that approve exactly m∗ candidates,
and fixes X to be S. It then identifies the non-outliers V∗
with respect to the committee X , and returns Yes if there
is at least one choice of S for which the number of outliers
is at most n, and No otherwise.

We begin with the details of FPT algorithm for
Disapproval-outliers when parameterized by t,m, n. To
begin with, we have the following straight forward observa-
tions that naturally lead to preprocessing rules,:

Observation 1. Let (V = {Si : i ∈ [n]}, C, n∗,m∗, t) be
a Yes instance of Disapproval-outliers.
• If Sj = C for some j ∈ [n], then there exists a set
V∗ ⊆ V of non-outliers of size n∗ containing Sj and a
committee C∗ ⊆ C of size m∗ such that the disapproval
score of C∗ with votes V∗ is at most t.

• If |Sj | > m̄ + t for some j ∈ [n], then there does not
exist a set V∗ ⊆ V of non-outliers of size n∗ containing
Sj and a committee C∗ ⊆ C of size m∗ such that the
disapproval score of C∗ with votes V∗ is at most t.

Next, we need to define an annotated variant of the prob-
lem.

Definition 1. Forced-Disapproval-outliers
Given a set of votes V = {Si : i ∈ [n]}, a set of candidates C,
a subset C′ ⊆ C of candidates that should be in the committee,
a subset V ′ ⊆ V of votes that should be in the set of non-
outliers the number n∗ of non-outliers, the size m∗ of the
committee, and target score t, do there exists a set of non-
outliers V∗ ⊆ V and a committee C∗ ⊆ C such that |V∗| >
n∗, |C∗| = m∗, C′ ⊆ C∗,V ′ ⊆ V∗ and the disapproval score of
C∗ with votes V∗ is at most t.

It is easy to establish the following.

Observation 2. Disapproval-outliers many-to-one
reduces to Forced-Disapproval-outliers.

We are now ready to describe the branching algorithm.

Lemma 2. There is a O∗((t + m̄ + n̄)t+m̄+n̄) time algo-
rithm for the Forced-Disapproval-outliers problem.

Proof. We delete all votes S ∈ V for which S = C. The
correctness of this step follows from Observation 1. We pick
any arbitrary non-outlier vote T ∈ V and branch according
to the following guesses:

1. If n̄ > 0, then we guess that T is an outlier - in this
case, we decrement n̄ by one and remove T from the
instance.

2. If T is not an outlier, then let T̄ = C \ T be the set
of candidates which are not approved in the vote T .
We branch on every possible intersection D of T̄ with
the “final” set of candidates C̄ ⊆ C not in the commit-
tee. In the branch corresponding to D, we remove all
the candidates in D from the instance, mark all the
candidates T̄ \ D to be in the committee if they are
not already been marked, reduce the target score t by
|T̄ \ D|, and mark T to be a non-outlier.

At every node of the branching, we again delete all votes
S ∈ V for which S = C and branch again. We have the
following base cases:

• If t < 0, then we return No.

• If either n̄ = O(1) or m̄ = O(1), then we solve the

problem in O(mO(1)) time by either trying all possible
outliers or all possible candidates not in the committee.

Notice that, in every branch, the value of the parameter
(t + m̄ + n̄) decreases by at least one. Also the branching
factor is at most (t + m̄ + n̄) and at every node we perform
O(poly(m,n)) time operations. Hence, the running time of
the algorithm is O∗((t + m̄ + n̄)t+m̄+n̄).

3.2 W[1]-Hardness Results
In this section, we establish our W[1]-hardness results. To

begin with, we focus on parameters combined with the target
score t. Notice that we have tractability when we combine
either (n+n∗) or (m+m∗) along with t (follows from Propo-
sition 1), and also for t and n, from Lemma 1. Therefore,
the interesting combinations remaining are (t+n∗+m) and
(t+n∗+m∗). We first consider the parameter (t+n∗+m∗).
To show hardness, we will need the d-Clique problem,
which is known to be W[1]-hard parameterized by clique
size [19]. The problem is defined below.

d-Clique Parameter: k
Input: A d-regular graph G = (U,E) with vertex set U
and edge set E and a positive integer k.
Question: Is there a clique of size k in G?

All the results in this section are based on reductions from
the d-Clique problem. In general, our reductions will typ-
ically have candidates and voters based on the vertices and
edges, and the approval ballots will be designed to encode
the structure of the graph. The instance will be engineered
such that the vertices and edges involved in the clique will
naturally correspond to outliers and committee members,
for a carefully chosen value of the target score.

Our first result is the W[1]-hardness of the Minisum-
Outliers problem when parameterized by (t + m∗ + n∗),
even when every vote approves exactly two candidates. This
also establishes NP-hardness of the natural decision version
of the problem in the classical setting (as the proof involves
a polynomial time reduction from a NP-hard problem).

Lemma 3. Let s ∈ {Minisum, Net-Disapproval,
Disapproval}. Then the s-Outliers problem is W[1]-
hard, when parameterized by (t+m∗+n∗), even when every
vote approves exactly two candidates.

Proof. First let us prove the result for the Minisum-
outliers problem. We exhibit a parameterized reduc-
tion from the Clique problem to the Minisum-outliers
problem thereby proving the result. Let (G = (U,E), k)
be an arbitrary instance of the d-Clique problem. Let
U = {u1, · · · , un} and E = {e1, · · · , em}. For construct-
ing the corresponding instance of the Minisum-outliers
problem, we introduce one candidate for each vertex, and
one vote for each edge (see Figure 1). The ith vote approves
the candidates corresponding to the endpoints of the edge
ei. We ask for a k-sized committee, set a target score of
t = (k − 2)k(k−1)/2, and allow for at most m− k(k−1)/2 out-
liers. Formally, the instance (V, C, n∗,m∗, t) of the Minisum-
outliers is the following.

V = {S1, · · · ,Sm}, C = {c1, · · · , cn}, n∗ = k(k−1)/2,m∗ = k,
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Figure 1: A schematic depicting the reduction in Lemma 3.

t = (k − 2)k(k−1)/2,Si = {cj : uj ∈ ei},∀i ∈ [m]

We briefly describe the intuition for the equivalence of these
two instances. Given a clique, suppose we choose a commit-
tee based on the vertices of the clique, and the non-outliers
based on the edges of the clique. Then the sum of the dis-
tances incurred by this committee is (k − 2)k(k−1)/2, since
every non-outlier approves of two members from the k-sized
committee, and disapproves of everyone else. Notice also
that since every voter approves exactly two candidates, this
is the best that we can hope for if we are allowed at most
m− k(k−1)/2 outliers.

We now turn to a formal proof of the equivalence. In
the forward direction, suppose W ⊂ U forms a clique with
|W | = k in G, and let Q denote the set of edges that have
both endpoints in W . Consider the committee C∗ = {ci :
ui ∈ W} and the set of non-outliers V∗ = {Si : ei ∈ Q}.
This achieves the minisum score of (k − 2)k(k−1)/2.

In the reverse direction, suppose there exists a set of non-
outliers V∗ ⊂ V with |V∗| > k(k−1)/2 and a committee C∗ ⊂ C
with |C∗| = k such that s(C∗,V∗) 6 (k−2)k(k−1)/2. We claim
that the vertices corresponding to C∗ form a clique of size k.
To see this, we consider the edges given by Q = {ej : Sj ∈
V∗}. We show that each edge ej has both its endpoints in
W = {ui : ci ∈ C∗}. Indeed otherwise, suppose that there
is an edge ej ∈ Q for which at least one of its endpoints are
not in W . Then s(Sj , C∗) > (k − 2). On the other hand we
have s(S, C∗) > (k − 2) for every S ∈ V∗. Hence we have
s(C∗,V∗) > (k − 2)k(k−1)/2, a contradiction.

The proofs for the other rules are identical, except for the
values of the target score. We define t = (k − 2)k(k−1)/2 for
the disapproval and t = (k − 4)k(k−1)/2 for the net disap-
proval voting rules. It is easily checked that the details are
analogous.

We next consider the parameter (t+n∗+m) and exhibit a
parameterized reduction from the d-Clique problem. This
reduction is very similar to the one before, except that we
need to bound the number of non-committee members (m)
as a function of k, as opposed to the committee. The theme
of the previous reduction was to give every voter (edge) two
approvals that was forced to correspond to the chosen can-
didates, by the choice of the target score. Now we flip the
structure of the approval ballots, and encode the edges with

two disapprovals instead. In particular, the ith vote ap-
proves all candidates except the ones corresponding to the
endpoints of the edge ei. We ask for an (n − k)-sized com-
mittee. As before, the target score is again such that all the
disapprovals among non-outliers must correspond to mem-
bers not chosen, which in turn will correspond to the clique.
We now turn to the formal proof.

Lemma 4. The Minisum-outliers problem is W[1]-
hard, when parameterized by (t + n∗ + m). Also, for s ∈
{disapproval, net disapproval}, the s-Outliers problem is
W[1]-hard when parameterized by (n∗+m), even when t = 0.

Proof. First let us prove the result for the Minisum-
outliers problem. We exhibit a parameterized reduc-
tion from the d-Clique problem to the Minisum-outliers
problem thereby proving the result. Let (G = (U,E), k)
be an arbitrary instance of the d-Clique problem. Let
U = {u1, · · · , un} and E = {e1, · · · , em}. For construct-
ing the corresponding instance of the Minisum-outliers
problem, we introduce one candidate for each vertex, and
one vote for each edge. The ith vote approves all candidates
except the ones corresponding to the endpoints of the edge
ei. We ask for an (n − k)-sized committee. The other de-
tails are similar to our previous reduction, in that we have
a target score of t = (k − 2)k(k−1)/2, and allow for at most
m− k(k−1)/2 outliers.

We define the corresponding instance (V, C, n∗,m∗, t) of
the Minisum-outliers problem as follows:

V = {S1, · · · ,Sm}, C = {c1, · · · , cn},

Si = {cj : uj /∈ ei} ∀i ∈ [n],

n∗ = k(k−1)/2,m = k, t = (k − 2)k(k−1)/2

We claim that the two instances are equivalent. In the for-
ward direction, suppose W ⊂ U forms a clique with |W | = k,
and let Q denote the set of edges that have both endpoints
in W . Then the committee C∗ = {ci : ui /∈ W} along with
the set of non-outliers V∗ = {Si : ui ∈ Q} achieves minisum
score of (k − 2)k(k−1)/2.

In the reverse direction, suppose there exists a set of
non-outliers V∗ ⊂ V and a committee C∗ ⊂ C such that
s(V∗, C∗) 6 (k − 2)k(k−1)/2. We claim that the vertices in
W = {ui : ci ∈ C} form a clique with edge set Q = {ei :
Si ∈ V∗}. If not then, there exist a vote Sj ∈ V∗ such that
s(Sj , C) > k. On the other hand we have s(Si, C) > k−2 for
every Si ∈ V∗. This implies that s(V∗, C∗) > (k−2)k(k−1)/2,
which is a contradiction. We define t = 0 for the disapproval
and net disapproval voting rules. It is easily checked that
the details are analogous.

Now we turn to parameter combinations that do not in-
volve t. Notice that the only interesting combinations here
are n+m∗ and n+m, since combinations involving n∗ and ei-
ther m∗ or m are accounted for in the W[1]-hardness results
of Lemmas 3 and 4, and the remaining two combinations are
FPT due to Proposition 1.

In the next two reductions, the contrast from the proofs of
Lemmas 3 and 4 is that we will have candidates correspond-
ing to edges, and votes corresponding to vertices. Another
significant divergence is the fact that the target scores we
demand in the next two reductions are no longer pure func-
tions of k (which we do not need also since the parameters
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considered do not involve the target score t). To begin with,
we establish W[1]-hardness with respect to the parameter
(n + m∗). Note that for this, we will need both the com-
mittee size and the number of outliers to be bounded by
a function of k only. We lead up to a scenario where the
outliers correspond to the clique, and the committee corre-
sponds to the edges incident to the clique. To make this
work, we will have a slightly counter-intuitive construction
of the approval ballots – namely that the ith vote (corre-
sponding to the vertex ui) approves of every candidate that
corresponds to an edge not incident to ui. We now turn to
the formal proof.

Lemma 5. The Minisum-Outliers problem is W[1]-hard
when parameterized by (n + m∗). Also, the Disapproval-
Outliers problem is W[1]-hard parameterized by (m∗ + n),
even when the target score t = 0. In particular, s-Outliers
is W[1]-hard parameterized by (m∗ + n + t).

Proof. To begin with, let us prove the result for the
Minisum-outliers problem. We exhibit a parameterized
reduction from the d-Clique problem to the Minisum-
outliers problem thereby proving the result. Let (G =
(U,E), k) be an instance of the d-Clique problem. Let
U = {u1, · · · , un} and E = {e1, · · · , em} be respectively the
set of vertices and the set of edges of G. For constructing
the corresponding instance of the Minisum-outliers prob-
lem, we introduce one candidate for each edge, and one vote
for each vertex. The ith vote approves of every candidate
that corresponds to an edge not incident to the vertex ui.
We ask for a k(k−1)/2-sized committee, set a target score of
t = (m− k(k−1)/2− d) (n− k), and allow for at most k out-
liers. Formally, the instance (V, C, n∗,m∗, t) of the Minisum-
outliers is the following.

V = {S1, · · · ,Sn}, C = {c1, · · · , cm},

Si = {cj : ui /∈ ej} ∀i ∈ [n],

n = k,m∗ = k(k−1)/2, t = (m− k(k−1)/2− d) (n− k)

We briefly describe the intuition for the equivalence of these
two instances. Given a clique in G, suppose we choose a
committee based on the edges of the clique, and the outliers
based on the vertices of the clique. Then every non-outlier
approves of every candidate from the clique (recall that the
approvals are “flipped”). Also, among the members not cho-
sen in the committee, there are exactly d disapprovals (since
G is d-regular), causing a total distance of (m− k(k−1)/2− d)
per non-outlier. Notice also that since every voter approves
exactly m − d candidates, this is the best distance that we
can hope from a committee of size k(k−1)/2. If we are allowed
at most k outliers, it is clear that our best bet overall is to
remove vertices corresponding to a clique of size k.

We claim that the two instances are equivalent. In the for-
ward direction, suppose W ⊂ U forms a clique with |W | = k,
and let Q denote the set of edges that have both endpoints
in W . Then the committee C∗ = {ci : ei ∈ Q} and the set
of non-outliers V∗ = {Si : ui /∈ W} achieves minisum score
of (m− k(k−1)/2− d) (n− k).

In the reverse direction, suppose there exists a set of out-
liers V ⊂ V and a committee C∗ ⊂ C such that |V| 6 k, |C∗| =
k(k−1)/2, and s(V∗, C∗) 6 (m− k(k−1)/2− d) (n − k). We
claim that the vertices in W = {ui : Si ∈ V} form a clique
with the corresponding set of edges Q = {ej ∈ E : cj ∈ C∗}.

If not, then there exists a candidate x ∈ C∗ that is not ap-
proved by at least one vote in V∗. However, this implies that
s(V∗, C∗) > (m− k(k−1)/2− d) (n− k), which is a contradic-
tion.

We define t = 0 for the disapproval voting rule. It is easily
checked that the details are analogous.

Finally, we show that the Minisum-Outliers problem is
W[1]-hard when parameterized by (n + m). This is again
achieved by “flipping” the definition of the approval ballot
from the previous proof, with the same reasoning that al-
lowed the transition from Lemma 3 to Lemma 4.

Lemma 6. Let s ∈ {Minisum, Disapproval, Net-
Disapproval}. Then s-Outliers is W[1]-hard, when param-
eterized by (n + m), even when every candidate is approved
in exactly two votes. Further, the Net-Disapproval-
outliers problem, parameterized by (n + m), is W[1]-hard
even when t = 0 and every candidate is approved in exactly
two votes. In particular, the Net-Disapproval-outliers
problem is W[1]-hard parameterized by (n + m + t).

Proof. First let us prove the result for the Minisum-
outliers problem. We exhibit a parameterized reduction
from the d-Clique problem to the Minisum-outliers prob-
lem thereby proving the result. Let (G = (U,E), k) be an
instance of the d-Clique problem. Let U = {u1, · · · , un}
and E = {e1, · · · , em}. We define the corresponding in-
stance (V, C, n∗,m∗, t) of the Minisum-outliers problem
as follows:

V = {S1, · · · ,Sn}, C = {c1, · · · , cm},

Si = {cj : ui ∈ ej}, ∀i ∈ [n],

n = k,m = k(k−1)/2, t = (n− k) (m− k(k−1)/2− d)

We claim that the two instances are equivalent. In the for-
ward direction, suppose W ⊂ U forms a clique with |W | = k,
and let Q denotes the set of edges that have both endpoints
in W . Consider the committee C∗ = {ci : ei /∈ Q} and the
set of outliers V = {Si : ui ∈W}. Consider now a vote Sj ∈
V∗. Note that |C∗∩Sj | = d, since each edge incident to uj is
an edge that does not belong to Q, by the definition of C∗.
Further, this also implies that |C∗ \Sj | = (m− k(k−1)/2− d).
Therefore, s(Sj , C∗) = (m− k(k−1)/2− d) . Hence we have
s(V∗, C∗) = (n− k) (m− k(k−1)/2− d) .

For the reverse direction, suppose there exists a set of
non-outliers V∗ ⊂ V and a committee C∗ ⊂ C such that
s(V∗, C∗) 6 (n − k) (m− k(k−1)/2− d). We claim that the
vertices in W = {ui : Si ∈ V} form a clique. If not
then there exists a vote S ∈ V∗, such that s(S, C∗) >
(m− k(k−1)/2− d). However, for every vote S ′ ∈ V∗, we
have s(S ′, C∗) > (m− k(k−1)/2− d). This makes s(V∗, C∗) >
(n− k) (m− k(k−1)/2− d) which is a contradiction.

The proofs for the other rules are identical, except for
the values of the target score. We define t = (n −
k) (m− k(k−1)/2− d) for the disapproval voting rule. For
the net disapproval voting rule, we add (m − 2d) many
dummy candidates who are approved by every vote. We
keep m = k(k−1)/2 and make t = 0. It is easily checked that
the remaining details are analogous.

We show next that Net-Disapproval-outliers is W[1]-
hard with respect to the combined parameter (n + t + m∗).
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Lemma 7. The Net-Disapproval-outliers problem is
W[1]-hard, when parameterized by (n + m∗), even when
the target score is 0. In particular, Net-Disapproval-
outliers problem is W[1]-hard, when parameterized by (t+
n + m∗).

Proof. We reduce the Clique problem to the Net-
Disapproval-outlier problem. Let (G = (U,E), k)
be an arbitrary instance of the Clique problem. Let
U = {u1, · · · , un}. We define the corresponding instance
(V, C, n∗,m∗, t) of the Net-Disapproval-outlier problem
as follows:

C = {ce : e ∈ E} ∪D, where |D| = k(k−1)/2,

V = {S1, · · · ,Sn} ∪ {T1, · · · , Tn+2k},

Si = {ce : ui /∈ e}, ∀i ∈ [n], Tj = D,∀j ∈ [k(k−1)/2] ,

n = k, m∗ = 2k(k−1)/2, t = 0

We claim that the two instances equivalent. In the forward
direction, suppose G has a clique on a subset of vertices
W ⊂ U of size k; let Q be the clique edges. Then we define
the set of outlier votes to be V = {Si : ui ∈ W} and the
committee to be the set of candidates C∗ = D ∪ {ce : e ∈
Q}. Now we have

∑
S∈V∗ |S ∩ C∗| = (n− k)k(k−1)/2 + (n +

2k)|D| = (n+k)k(k−1)/2 and
∑
S∈V∗ |Sc∩C∗| = (n−k)|D|+

(n + 2k)k(k−1)/2 = (n + k)k(k−1)/2 thereby achieving the net
approval score t of 0.

In the reverse direction, suppose we have a set of outlier
votes V and a committee C∗ which achieves a net approval
score t of 0. First observe that we can assume without loss
of generality that D is a subset of C∗ since irrespective of the
outliers chosen, every candidate in D receives at least (n+k)
approvals and every candidate not in D receives at most n
approvals. Now since the committee C∗ contains D, for every
j ∈ [n+2k], the vote Tj contributes at most |D|−k(k−1)/2 = 0
to the net approval score, whereas, for every i ∈ [n], the vote
Si contributes at least k(k−1)/2−|D| = 0 to the net approval
score. Hence, we may assume without loss of generality that
Tj belongs to the set of non-outliers V∗ for every j ∈ [n+2k].
Now we claim that the set of edges Q = {e : ce ∈ C∗} must
form a clique on the set of vertices W = {u : Su ∈ V}. If
not then,

∑
S∈V∗ |S ∩C∗| < (n+k)k(k−1)/2 and

∑
S∈V∗ |Sc∩

C∗| > (n+ k)k(k−1)/2 thereby making the net approval score
t strictly more than 0.

3.3 Proof of the Main Theorems
Proof of Theorem 1. We are now ready to describe the
proof of Theorem 1. Since m∗+m = m and n∗+n = n, the
tractability results follow from Proposition 1 and Lemma 1.
Now, we have the following cases.

1. Q excludes at least one of m∗ and m, and

2. Q excludes at least one of n∗ and n, and

3. Q excludes at least one of t and n.

Among such choices of Q, we have the following cases.

1. Suppose t ∈ Q. Then Q is either a subset of Q1 =
{t, n∗,m} or a subset of Q2 = {t, n∗,m∗}. The
hardness for all of these cases follow from Lemma 4
and Lemma 3, respectively.

2. Suppose n ∈ Q. Then Q is either a subset of Q1 =
{n,m} or a subset of Q2 = {n,m∗}. The hardness for

all of these cases follow from Lemma 5 and Lemma 6,
respectively.

3. If neither t nor n belongs to Q, then Q is either a
subset of Q1 = {n∗,m∗}, or Q2 = {n∗,m}. Note that
these cases are already subsumed by Case (1) above.

This completes the proof of the theorem.

Proof of Theorem 2. We now turn to the proof of Theo-
rem 2. Since m∗ + m = m and m∗ + n = n, the tractability
results follow from Proposition 1. Now, we only have to con-
sider subsets of parameters Q such that Q does not contain
both m∗ and m, and Q does not contain both n∗ and n.
Among such choices of Q, we have the following cases.

1. Suppose n∗ ∈ Q. Then Q is either a subset of
Q1 = {n∗,m, t} or a subset of Q2 = {n∗,m∗, t}. The
hardness for all of these cases follow from Lemma 4
and Lemma 3, respectively.

2. Suppose n ∈ Q. Then Q is either a subset of Q1 =
{n,m, t} or a subset of Q2 = {n,m∗, t}. The hardness
for all these cases follow from Lemma 6 and Lemma 7,
respectively.

3. If neither n∗ nor n belongs to Q, then Q is either a
subset of Q1 = {t,m∗}, or Q2 = {t,m}. Note that
these cases are already subsumed by the cases above.

This completes the proof of the theorem.

Proof of Theorem 3. Finally, we turn to the case of the
disapproval voting rules. Since m∗+m = m and m∗+n = n,
the tractability results follow from Proposition 1. Now, we
only have to consider subsets of parameters Q such that Q
does not contain both m∗ and m, and Q does not contain
both n∗ and n. Among such choices of Q, we have the
following cases.

1. Suppose n∗ ∈ Q. Then Q is either a subset of
Q1 = {n∗,m, t} or a subset of Q2 = {n∗,m∗, t}. The
hardness for all of these cases follows from Lemma 4
and Lemma 3, respectively.

2. Suppose n ∈ Q. Then Q is either a subset of Q1 =
{n,m∗, t} or Q2 = {n,m, t}. The hardness for all sub-
sets of Q1 follows from Lemma 5. The status for Q2 is
FPT from Theorem 2. The hardness for all strict sub-
sets of Q2 follows from Lemma 6 and the cases that
are already resolved.

3. If neither n∗ nor n belongs to Q, then Q is either a
subset of Q1 = {t,m∗}, or Q2 = {t,m}. Note that
these cases are already subsumed by the cases above.

This completes the proof of the theorem.

4. CONCLUDING REMARKS
We have showed that consideration of outliers makes the

problem of choosing a good committee substantially harder,
even in the framework of parameterized complexity. How-
ever, there are few fixed parameter tractable algorithms
which we feel are quite practically appealing. Refining the
FPT fragment of our dichotomy to kernelization is an ex-
citing direction for further investigation. We are also inter-
ested in extending our dichotomous results to a dichotomy
based on more parameters, such as the maximum number
of candidates in a vote. Another important future work is
to perform similar study for other committee selection rules
like minimax, Chamberlin-Courant’s, and Monroe’s rules.
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