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ABSTRACT

Mosquito-borne diseases, such as chikungunya, dengue, and
malaria, are re-emerging and expanding to new and formerly
unaffected places, leading to a need for models which can
track their evolution and thus help with public policy and
epidemiological studies. Such diseases’ evolution is driven
by the interactions between hosts and vectors, and is thus
heavily dependent on factors like host and vector population
distributions and mobility, and geographical and weather
conditions. Traditionally used mathematical models fail to
capture such issues, thereby creating a gap between what
epidemiologists and disease modelers can provide, and what
public health policy requires. We give a generalized agent-
based model (ABM) which overcomes these limitations by
careful integration of geographic information (GIS) and cen-
sus data to account for the spatial movement of infections,
and climate data to capture the temporal nature of an epi-
demc. It captures the disorganized interactions of hosts and
vectors at a micro-scale by explicitly modeling each human
and mosquito to simulate the complex trajectories of dis-
ease outbreaks (even those have yet to occur), and makes it
possible to test the efficacy of various public health policies.
This model also suggests that it is possible to estimate hard-
to-determine parameters about vectors (e.g., a mosquito’s
sensing distance), through simple model calibration. Unlike
previous solutions, our model is trained and validated us-
ing real data from a 2013-14 chikungunya epidemic in the
Caribbean and is seen to give accurate results.
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1. INTRODUCTION
Vector-borne diseases, of which mosquito-borne diseases

are the largest subset, account for more than 17% of all
infectious diseases, and cause more than 1 million deaths
every year [49]. Adding to their high fatality rates, they
also have high attack rates, and are very prone to muta-
tion, leading to recurrent infections and a lack of single vac-
cine [50]. This creates the need for more proactive solu-
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tions for their containment—particularly, solutions capable
of tracking the trajectory of the infection evolution at a very
fine granularity. However, modeling the complicated rela-
tionships among human-mosquito-pathogen continues to be
a challenging problem faced by all epidemiologists and pub-
lic health experts.

Traditionally adopted mathematical approaches for this
purpose are the differential equation models [21] and mean-
field type models [30], which fail to track spatial and tempo-
ral factors like population density and dynamics, and ignore
the spatial implications within the system, thereby creat-
ing a huge gap between what epidemiologists can deliver
and and what public health policy makers would like [15,
41]. This neglect of spatial and temporal components in
epidemic model formulation can be resolved by the use of
the agent-based modeling paradigm [44]

We give an agent-based model which overcomes the above
limitations of prior mathematical models, to adequately cap-
ture the spread of vector-borne diseases at a fine granu-
larity, and show how it can contribute to low-level policy
design such as testing intervention strategies in epidemic
life-cycle. It captures the complex relationship between hu-
mans, mosquitoes, and pathogens by modeling them indi-
vidually at a micro scale using simple adaptive rules, and
letting them interact. The environment is structured using
multi-layered GIS data to address the space implications in
disease proliferation, is realistically initialized using census
data to account for variable population density, and driven
by climate (precipitation + temperature) data to correctly
capture disease vector dynamics. Each of these three agent
populations have been designed to imitate the characteristic
behavior of the vector-borne diseases:

1. Our human agent population approximates the mo-
bility patterns across various population sub-groups
while being sensitive to the spreading infection to ade-
quately capture the spatial movement of the infection.
This overcomes the usual drawback of the aggregated
nature of mathematical models and helps us analyze
various intervention strategies.

2. To account for the seasonal nature of an epidemic,
the mosquito agent population is made to be heav-
ily dependent on precipitation data and availability
of resources as these are known to be major factors
in disease propagation [17, 4]. This captures the in-
herently disordered nature of such epidemics. One
of our novel contributions here is the incorporation
of the climate sensitive complex reproduction cycle of
mosquitoes within the mosquito agent. Every stage of
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a mosquito is separately modeled with its age being
a linear function of temperature and time to closely
resemble the mosquito population in nature.

3. Our infection model is designed as a state machine
with variable transition probabilities, making it eas-
ily generalizable to a large subset of mosquito-borne
diseases.

The epidemic emerging from our model is calibrated and
validated using data from the 2013-14 chikungunya epidemic
on some Caribbean islands, as a proof of concept. The model
predictions are 93.3% accurate on the test data of the re-
ported cases, with the small gap suggesting that there were
some cases which went unreported, which matches with re-
ality, where a lot of chikungunya cases go unreported due to
the non-fatal nature of the disease. We also show how our
model can be utilized to estimate some vector parameters
like mosquito sensory range, mortality rate, etc. which are
hard to determine directly. Furthermore, we test two pre-
vention strategies, LSM and ITN+IRS, and the results show
that for a small urban tropical area, LSM is more effective in
terms of cost, mosquito control, and infection elimination.
Also, considering that in most cases a mosquito’s life cycle
is not greatly dependent on the presence or absence of the
infection due to their short lifespan [19], our model can be
easily adapted for other mosquito-borne diseases with minor
modifications. To adopt the model for some other mosquito-
borne disease, we only need to modify the values of relevant
parameters based on the new vector’s and pathogen’s be-
havior, and calibrate others using data from past epidemic
of the same disease.

There are some ABMs proposed to model the spread of
vector-borne diseases. Dommar et al. [17] developed an
ABM to model chikungunya outbreaks, and indicate that
topology and precipitation are dominant factors in vector-
borne disease propagation. Teng et al. [16] also provide a
similar model for simulating dengue spread. However, nei-
ther of these accounts for human mobility patterns, thereby
neglecting the major source of spatial movement of infec-
tions. Arifin et al. [33] provide a framework for effectively us-
ing multi-layered GIS data in an ABM-based malaria study.
Illangakoon et al. [27] explore the efficacy of ABMs for study-
ing malaria prevalence and transmission, and show how hu-
man mobility patterns have a strong affect on disease trans-
mission. Ying et al. [4] study the effect of spatial heterogene-
ity on mosquito populations. All of these only focus on the
spatial nature of the epidemic and are inconsiderate of the
climatic conditions, a leading contributor to vector dynam-
ics. Mniszewski et al. [34] leverage the efficacy of differential
models by proposing a“hybrid network patch model” to give
insights into the effect of variable probabilities in infection
model on the ABM; and Isidoro et al. [28] show the utility
of ABMs to try out different mosquito control strategies.
However, both of these operate on random topologies and
thus do not correctly capture the host-vector interactions.
Miksch et al. [32] show the potential of ABMs to recreate
real life epidemics through model parameterization and cal-
ibration but in a manner very limited to a particular disease
and location. Our work is a significant improvement over
them as most of these models operate at a large scale with
granularity ranging from human crowd to cities network [16,
17, 33, 34], making them infeasible for low level policy de-
sign. They also focus on a very narrow set of parameters

to study disease propagation, disregarding other dominant
factors which severely undermines the prediction accuracy
of such models. Also, none of these models are validated us-
ing real data making their results wildly unpredictable and
impossible to compare with other models.

In summary, our novel contributions are:

(i) A framework for incorporating climate sensitive com-
plex reproduction cycle of mosquitoes in the mosquito
agent.

(ii) A generalized mechanism for an epidemic ABM’s cal-
ibration and validation.

(iii) A method for estimating hard-to-determine vector pa-
rameters like mosquito sensory range, using ABMs.

(iv) Methods for testing different policies like intervention
strategies using our model. (We also have a compar-
ative analysis of existing ABMs for modeling vector-
borne diseases and our model.)

In Section 2, we give a detailed explanation of our model
design and its intrinsic workings. Here, we also describe our
simulation approach and the data-set used for validation.
In Section 3, we explain our model parameterization and
calibration, and discuss our model’s performance on the past
epidemic data. In Section 4, we show how our model can
be used for policy formulation by comparing two popular
mosquito prevention techniques. Finally, we conclude with
the current state of our model and some thoughts for future
directions in Section 5.

2. MODELING DISEASE TRANSMISSION
The modeling of the effects of climate and topology on

vector behavior, and the patterns of human mobility, is a
desideratum in the epidemiology of vector-borne diseases.
Here, we present our agent-based model which successfully
captures these effects in a disease’s evolution at an adequate
scale. The simulation strategy we adopted to qualitatively
analyze our model is also explained here.

2.1 Agent-Based Model
The agent-based model presented here represents the cu-

mulative effects of the behaviors of individual humans and
mosquitoes in an urban environment while noting the bio-
logical trajectory of the spreading infection. It is composed
of three parts: The first is a small modification of the popu-
lar SEIR model [43] to describe the infection life cycle. The
second describes the vector distribution, interaction capabil-
ities with the immediate environment and their dependency
on the climatic conditions. The third presents the laws gov-
erning the daily behavior/movements of human agents, and
is used to stratify the human population. The scale consid-
ered is at city level, and agent granularity is at the level of an
individual human and an individual mosquito. The follow-
ing sections describe the three agents and the environment
they interact in.

2.1.1 Infection Model

Mosquito-borne diseases are transmitted human-to-mosquito
and mosquito-to-human. Symptoms vary but are generally
classifiable into two stages: intrinsic incubation period, and
infectious state. Incubation is when a mosquito has suc-
cessfully infected a human and the pathogen has started
multiplying inside the host body. Depending on the disease,
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a person may or may not be contagious during this stage.
The infectious state is when the pathogen has multiplied
and reached a certain threshold, and the human has possi-
bly started to show symptoms. The probability of pathogen
transmission is very high during this period. Considering
that a lot of vector-borne diseases are known to have sig-
nificant incubation periods (malaria, dengue, chikungunya,
etc.), the SEIR model (Susceptible → Exposed → Infectious
→ Recovered) was chosen as its exposed state addresses the
incubation period. The susceptible state is when an individ-
ual is vulnerable to infection by the pathogen. An individual
is said to be exposed when he is carrying infection but is not
yet contagious. The infected state is when the individual has
started showing symptoms and is ready to infect a mosquito.
Once the infection has passed, the individual enters the re-
covered state. Whether a recovered person gains a lifetime
immunity is determined by the disease. Figure 1 shows the
transition of an individual between the four states and their
respective transition probabilities and average time spent
in each state. The arrows in Figure 1 represents transition
probabilities between connected states. Chronic recovered is
the state when the person has recovered from the infection
and is no longer contagious, but still has symptoms of the
disease. It is given as an extension to the recovered state be-
cause a lot of mosquito-borne diseases are known to exhibit
such behavior [34].

Infection in mosquitoes follows a similar cycle, except they
do not recover once they have been infected. When a sus-
ceptible female mosquito bites an infected human, it gets in-
fected with a non-zero probability. If the mosquito acquires
the pathogen, it multiplies in the mosquito till it reaches
enough strength to infect some other susceptible human,
thereby completing a cycle. This period is called the ex-
trinsic incubation period.

Figure 1: Infection Model: Infection progression states in
humans

2.1.2 Mosquito Agents

The mosquito agents move through the geographical space
and are characterized by the following parameters: flying
speed (Fs), maximum distance (Fr), active period (As,Ae),
maximum number of meals in a day (Mm), mortality rate
(Mr), ovipositioning characteristics (Pm,Oc), sex ratio (Pf ),

and sensory range (Sr). Flying speed and maximum dis-
tance bound the spatial movements of a mosquito agent.
Target locations are assigned to a mosquito within a cir-
cle of radius Fr at the start of the active period, and the
mosquito moves from one location to another with speed Fs.
The active period As to Ae are the hours between which the
mosquito is actively searching for a blood meal or oviposi-
tioning sites. Maximum number of meals Mm bounds the
number of bites a mosquito is going to take in a day. Mor-
tality rate Mr is the probability of a mosquito dying on a
given day due to some natural circumstance. Ovipositioning
characteristics include Pm: probability of an adult female to
mate successfully; and Oc → [0,1]: whether the mosquito
lays egg on a single ovipositioning site or spreads them over
multiple such sites. Sex ratio (Pf ) is the probability that the
hatching egg will be female. The sex ratio is relevant as only
female mosquitoes bite humans and lay eggs; males have no
direct role in the spread of infectious diseases. Sensory range
determines how far a mosquito is aware of its surroundings.
If a human agent or a water source comes within a radius of
Sr of mosquito agent, only then may a mosquito target it.

All these parameters were determined to be essential to
disease propagation (as they directly affect the mosquito
population and their behavior relative to the environment)
and may vary across mosquito species. For example, female
Anopheles mosquitoes are generally active during night, while
Aedes mosquitoes are day-biting. Similarly, Aedes albopic-
tus have more meals as compared to Aedes Aegypti because
of their rapid bites, which generally keep their blood meals
short [7, 29].

Figure 2 shows a flow chart of how all the above parame-
ters are connected together. A mosquito agent is created in
one of the water sources in the environment. There appears
to have been no research with definitive results to mathemat-
ically model mosquito movements. Some evidence suggests
that simple random walk simulations give remarkably good
approximation of real data acquired through mark-release-
recapture field trials [45]. Thus, this study models mosquito
movements as random walks in a radius of Fr/day with a
survival rate of (1-Mr)/day. If it is the active period of
a mosquito, it starts moving randomly till a human agent
comes within its sensory range. Then it follows a targeted
approach and feeds on the human. This is the only stage
when the infection propagates between existing agents. If a
mosquito bites an infected human then it gets itself infected
with a probability β, and when such an infected mosquito
bites a susceptible human, it infects the human with prob-
ability α. If the mosquito has reached its Mm limit, it
rests. Every day, with probability Pm, a mosquito’s state is
changed to carrying eggs. If the mosquito is carrying eggs,
it continues to feed on human agents till its eggs are mature
enough to be laid. A mosquito needs at least one meal after
mating for the eggs to mature [7]. The maturation period τ
is determined as a function of the temperature θ in °Celsius
(equation (1)).

τ = 3 + |θ − 21|/5 (1)

Three days is the time taken to mature eggs at the ideal
temperature of 21°C [13, 10]. The maturation period was
approximated to be decreasing linearly with respect to the
difference of temperature from ideal temperature, and the
slope was derived from the graph of Ae. aegypti (the pri-
mary vector in validation case study) at different tempera-
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tures [10, 46, 20]. Once a mosquito mates successfully, the
time required for the batch of eggs to mature is set to τ as
calculated by that day’s temperature.

Once the eggs have matured, the mosquito starts looking
for ovipositioning sites (water sources) and lays 100 eggs at
once or over time at different sites determined by Oc. For
simplicity, all the three aquatic stages of mosquito life cycle
(egg, larva and pupa) have been modeled as eggs, and will
be referred as such throughout this article. The time taken
by eggs to turn into an adult mosquito µ, is also a function
of temperature θ, but eggs may die before hatching if their
water source dries up and is not refilled [13]. The function
(equation (2)) was approximated using the average life cycle
of Ae. aegypti (aquatic phases) [7] and effects of temperature
on them [35].

µ = µegg + µlarve + µpupae

= (2 + |(θ − 25)|/2) + (2) + (4 + |(θ − 25)|/2|) (2)

= 8 + |(θ − 25)|

Once a batch of egg is laid, the time each egg will spend
in aquatic state before evolving into adult mosquito is set to
µ, calculated according to that day’s temperature.

Due to lack of enough published empirical evidence, both
the above equations ( (1) and (2)) were derived with the
assumption that there is no drastic change of temperature
(< ±5oC) between consecutive days. Eggs turn into adult
female mosquitoes with a probability Pf ; male mosquitoes
are discarded by the model as they do not directly contribute
to disease propagation.

2.1.3 Human Agents

The ABM tries to realistically represent the average daily
behavior of an individual in an urban landscape. Consid-
ering that mosquitoes move in a relatively short range, the
long-distance spatial movement of infection through the city
happens mostly as a result of displacement of human agents.
Thus, human agents were divided into four general cat-
egories based on their mobility patterns, based on where
they gather in groups and how often they go near potential
mosquito breeding grounds like lakes (as shown in Figure 3):

• Type 1: These human agents leave their assigned build-
ings at 7:00 a.m. for school and may take up to 30 min-
utes to reach the school. They stay there till 3:00 p.m.
and come back to their respective dwellings. From
there, with probability Pp1 an agent goes to a park at
4:00 p.m. and comes back at 7:00 p.m., after which it
stays in place till next morning. Overall commuting
takes at most 2 hours.

• Type 2: Similar to Type 1, but the initial destination
is office and the probability of going to a park is Pp2,
which is less than Pp1.

• Type 3: These are agents that are continuously on the
move. They leave their assigned buildings at 7:00 a.m.
and move in between buildings every two hours. They
come back to their dwellings at 7:00 p.m. and stay
there till next morning.

• Type 4: These are stationary agents who do not in-
volve themselves in any dynamic activity; they stay in
their specific buildings throughout the day.

During initialization of the model, each agent is assigned
a category and a building. The number of agents in each

Figure 2: Mosquito Agents: Movement, feeding and re-
production behaviors of a mosquito

category is determined from the age distribution in the cen-
sus data. The agents commute using the road network using
the shortest path to their target location. Each agent has
an attribute called state which depicts which stage (SEIR)
it is in. Once a susceptible agent is bitten by an infected
mosquito, it enters the exposed state with probability β.
An exposed agent carries on its daily activity and is mainly
responsible for the spatial movement of infection through
the city. Once the agent has entered the infectious state, it
stays in its home till it has recovered. It may stay in recov-
ered (immune) state or move to susceptible state depending
on the disease.

2.1.4 Environment

In this model, an infected mosquito is considered to lay
infected eggs, as has been observed in the case of dengue
and chikungunya [8]. Such infected eggs develop into in-
fected adult mosquitoes. Figure 4 gives a flow diagram to
describe the infection propagation among vector and human
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Figure 3: Human Agents: Daily activities of human
agents

agents. An infection is transferred to a human from an in-
fected mosquito with probability α, and infected human to
mosquito with probability β.

(a) Mosquito Feeding

(b) Mosquito
Ovipositioning

(c) Egg Hatch-
ing

Figure 4: Disease Transmission Cycle: Possible scenar-
ios of disease transmission

The model uses two-layered geo-referenced GIS data of a
city to realistically represent spatial movements of an indi-
vidual in an urban setting. The first layer consists of build-
ings which include homes, offices and schools, parks and sta-
tionary water sources like lakes which are an integral part of
a vector’s life cycle. The second layer depicts the road net-
work connecting these buildings, and all human agents move
on this network. To simplify the model, the distribution of
human agents in first layer is initialized randomly. A small
subset of buildings are assigned as schools and offices, and
one park with lake/pond is introduced. The model com-
bines these GIS data with the weather information of the
location which is integral in the study of vector agents. It
consists of daily temperature and precipitation data. Us-
ing these parameters, the development cycles of mosquitoes
and pathogens are determined. Small water patches, which
may serve as mosquito breeding grounds, are introduced af-
ter every rainfall and their number depends on the extent
of rainfall. (Small puddles cease to exist in less than a week
if it does not rain in between, while large water bodies can
persist for months or more.)

For the purpose of this study, GIS data of Luneray, a
commune in Haute-Normandie region in northern France,
was used to model a general urban setting, and was initial-
ized with human population of 1000, mosquito population
of 2000, and 500 mosquito eggs. This relatively low ratio
of mosquito/human was necessary to keep the model com-
putationally tractable, but was accounted for by tuning the
mosquito mortality rate. It was then adapted and scaled to
the case studies using the corresponding location’s census
data, population density, and climate information. A park
with a lake was separately added as it was not a part of the
available GIS data. For the purpose of subjective analysis of
the model, an animated visualization of the simulation was
generated using GAMA platform.

2.2 Simulation
As a proof of concept, an application of the model was

used for simulation of a case study of a past epidemic of
a mosquito-borne disease. The model was used to predict
the trajectory of the epidemic and the results were checked
against real data. Two intervention strategies were also
tested and analyzed. For the purpose of the demonstra-
tion, some model parameters needed to be tuned to fit that
particular scenario. We used a training data set containing
the data from a previous epidemic of the same disease in a
similar location to the testing site. Once all parameters are
determined which provided reasonably accurate results on
training data, the simulation is ran for the testing site.

2.2.1 Case Study

For this study, simulation of outbreak of chikungunya in
the Caribbean region is used to illustrate the given frame-
work. For training the model, data from the 2013-14 chikun-
gunya epidemic in Saint Martin was used. Saint Martin,
with a population of fewer than 75,000, was the epicenter of
the Caribbean epidemic. In December 2013, two laboratory-
confirmed non-imported cases were reported for the first
time in the Caribbean in the district of Ocean Pond, close
to the border of the Dutch side Sint Maarten. The model
trained on this data was tested on epidemic data from an-
other Caribbean island, St. Barthélemy. As with the rest
of the Caribbean, residents of St Barthélemy had never en-
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countered the virus before, and had no existing immunity.
The female Ae. aegypti mosquito was taken as the vector
in the simulation, as it was the primary vector of the 2014
CHIKV outbreak in the Caribbean [36].

2.2.2 Data

Chikungunya epidemic data were taken via the sentinel
network in Guadeloupe, Martinique, Saint Barthélemy and
Saint Martin [47]. It was compiled together and made pub-
licly available on a weekly basis by PAHO WHO [39]. Most
epidemics only last for a few months. Also, only 3 months
of data on confirmed cases was made publicly available by
PAHOWHO. Therefore, we simulated a duration of 3 months
starting from January, 2013 for validation purpose. Weather
information was taken from [38] and interpolated to get daily
temperature and rainfall data. Lunerays’s GIS data were
made openly available by GAMA [2]. Census information
was taken from [6].

2.2.3 Simulation Toolkit

For the simulation of the ABM, GAMA was chosen as the
platform due to its data-driven ability and intuitive agent-
based language [42, 23].

3. MODEL VALIDATION AND RESULTS

3.1 Parameterization and Initialization
Summarizing the above model, the following are parame-

ters that drive the model: Mosquito Parameters (Fs, Fr,
As, Ae, Mm, Mr, Pm, Oc, Pf , Sr), Human Parameters
(Pp1,Pp2), Infection Cycle Parameters (Ne, Ni, Prc, Pirc)
and Infection Transmission Cycle Parameters (α, β). Of
these parameters, Sr, Mm, Pf , Pm, α and β were tuned
during the training of the model due to the lack of any con-
crete empirical evidence of their values, while the value of
others were compiled together from various sources. Some
detailed description of the parameters and their sources is
provided as Table 1. The number of schools, offices and
households were initialized using census data [6]. Buildings
with the largest areas in the GIS data were assigned to be
schools and offices randomly.

3.2 Training
Model parameters were tuned using trial and error to give

a good fit on training data. The results were animated as
a simulation and were graphically represented. Error was
derived with respect to the historical/training data. Sen-
sitivity analysis was conducted to determine the effect of
each parameter on the model’s output and the more sen-
sitive parameters were made sufficiently accurate to reduce
the error [25].

A slight error margin was left while training because train-
ing data only consists of reported cases, while due to its non
fatal nature, some number of chikungunya infections go un-
reported [1, 3].

The entire population of even a small city cannot be taken
into consideration due to computational in-feasibility. The
model simulation was accomplished considering 1000 human
individuals and 2000 mosquitoes involved in a chikungunya
epidemic and interacting at a city scale, in case of training
location.

Considering that the population density of the testing lo-
cation is only about half that of the training location, and

the area is likewise smaller, the model was initialized with
500 human individuals and 500 mosquitoes during testing.
This relatively low ratio of mosquito/human was accounted
for by significantly reducing the mosquito mortality rate to
0.05/day (in comparison to the typically accepted rate of
0.2/day).

Uni-variate sensitivity analysis was conducted, i.e., model
outcomes were analyzed with respect to one parameter at a
time. The first parameter was a mosquito’s sensory range
Sr, which was tested for six different values and error in
fitting was recorded for each value as shown in Figure 5.

Figure 5: MSE: Mean-Squared Error recorded for different
Sr values (Mm = 2)

The error metric used was mean-squared error Equation
3 (where, n is the total number of epidemiological weeks, i
is the current week in simulation, Ȳi is the number of newly
reported cases in real life and Yi is the number of new cases
in simulation).

MSE =
1

n

n∑

i=1

(Ȳi − Yi)
2 (3)

Sr parameter was found to be significantly sensitive, and
gave best results when tuned to 3 meters. The second pa-
rameter for sensitivity analysis was Mm, a mosquito’s max-
imum number of meals in a day. It was varied for three
different values and errors were recorded (Figure 6). Mm

was then fixed to 1 to minimize the error. Pm, Pf and Mr

were likewise fixed to 0.2, 0.5 and 0.05 respectively as they
on average gave approximately constant mosquito popula-
tion.

Figure 6: Mm: Mean-Squared Error recorded for different
Mm values

Figure 7 shows how the ABM was fit into the historical
data. An error of ±9 cases was left to account for unreported
cases.
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Table 1: ABM Parameters

Parameter Description Value Reference
Mosquito Parameters:

Fs Flying speed 0.0...1.0 km/hr [5]
Fr Maximum distance 350m [45]

As,Ae Active period 7:00 a.m., 6:00 p.m. [8]
Mm Maximum number of meals in a day 1 Trained
Mr Mortality rate 0.05/day* [45]
Pm Probability of an adult female to mate successfully 0.2 Trained
Oc Ovipositioning behavior (single (0) or spread over multiple sites (1)) 1 [8]
Pf Probability that the hatching egg will be female 0.5 Trained
Sr Sensory range 3 m Trained

Infection Transmission Cycle Parameters:
α Transmission probability of infection from mosquito to human 0.6 [17]
β Transmission probability of infection from human to mosquito 0.275 [17]

Infection Cycle Parameters:
nb infected init Initial number of infected people 2 [47]

Ne Number of days a human spends in exposed state 2...6 days [9]
Ni Number of days a human spend in infected state 4...7 days [9]
Prc Probability of transiting from recovered state to susceptible state 0 [48]
Pirc Probability that passing infection leaves human in chronic state 0.95 [9]

Human Parameters:
Pp1 Probability of a Type 1 agent of going to park at 4:00 p.m. 0.5 Trained
Pp2 Probability of a Type 2 agent of going to park at 4:00 p.m. 0.1 Trained

* [45] proposes 0.2/day mortality rate which was reduced considering the relatively low mosquito/human ratio in the model.

Figure 7: St. Martin Epidemic (Training): Results
from training the model on the St. Martin epidemic

3.3 Testing
Figure 8 shows the results when the trained model was

ran to check the effects of a chikungunya epidemic in Saint
Barthélemy and results were compared with the actual 2014
chikungunya epidemic of the same. The error encountered
was ± 0.54 cases, nearly insignificant, indicating that our
model scales well to changing population size. The initial
results are a little less than the reported results which may
very well be from the fact that by the time the first case
was recorded, the infection had already spread through the
environment in the real world, while the model is initialized
as infection-free. It also suggest estimates on certain Ae.
aegypti parameters like sensory range (3 meters) and average
feeding frequency (1 meal/day).

The results obtained show that ABMs can provide very
accurate results when used to model the complex epidemiol-
ogy of mosquito-borne diseases. They also provide estimates
on certain mosquito parameters like sensory range, feeding
frequency, etc. which are difficult to measure otherwise.

4. PREVENTION STRATEGIES
As the model performed well in the validation phase, we

assumed that it is a reasonably effective representation of the

Figure 8: St. Barthélemy epidemic (Testing): Results
from testing the model on the St. Barthélemy epidemic

real epidemic and used it for analyses of different prevention
strategies on the test location.

4.1 Strategies
No vaccine exists to prevent chikungunya virus infection.

It can only be prevented by avoiding mosquito bites either
at the individual level or by reducing the mosquito popula-
tion [12]. Keeping this in mind, two popular paradigms of
mosquito prevention were implemented, analyzed and com-
pared using the above model:

1. Centralized Prevention Strategies: In this case, there
is a centralized organization dedicated to reducing the
mosquito population through methods like detection
and elimination of breeding places, proper covering of
persistent water sources, and reliable water supply [37].
We choose LSM (Larval Source Management), which
is economical and very popular, as a strategy. Its per
sq km associated annual cost when adjusted for 2016
prices [11], comes to US$6000 [26].

2. Decentralized Prevention Strategies: Here people adopt
prophylactic measures like use of mosquito repellent
creams, liquids, coils, mats, etc., or full body coverings
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to prevent mosquito bites. One person can be pro-
tected for an year at a cost of US$10 with insecticide-
treated nets (ITNs); indoor residual spraying (IRS)
costs US$180/building [22, 24].

All costs mentioned above are as quoted by private agen-
cies. They may be brought down significantly by conducting
large-scale mosquito- control programs, and with relevant
government subsidies.

For comparison of the two strategies, the two iterations
were initialized with same resources, i.e., the same initial
budget of US$ 20,000. Considering it would cost approxi-
mately US$ 30,000/year to cover a town of 5 sq km com-
pletely for a larvicide program, we assume that only 66% of
the larval habitats are found and treated. This is consistent
with the fact that larval habitats may be small and widely
dispersed, making it difficult to locate all of them [14]. For
the second strategy (ITN+IRS), resources worth 20,000 US$
were distributed randomly among the population (220 US$
per household) helping individuals in the population avoid
mosquito bites in their households.

4.2 Outcomes
Strategy 1 (LSM) was found to be more effective at com-

pletely eliminating the infection from both the human and
mosquito populations within 5 weeks. Strategy 2 took 7
weeks to do the same. Not trying to contain the infection
kept it going even after 13 weeks (Figure 9). This differ-
ence in effectiveness may be from the fact that Strategy 2 is
mostly useful during the night time when most individuals
are back to their households, while A. Aegypti is a day-biting
mosquito.

Figure 9: Prevention Strategies: Results from testing the
two strategies

Strategy 1 also had a much greater effect on mosquito pop-
ulation, reducing it by 70% while Strategy 2 only reduced it
by 25% (Figure 10 and Figure 11). The results of both the
strategies were found to be consistent with past studies [31,
40].

From the fact that in most cases a mosquito’s life cycle
is not greatly dependent on the presence or absence of the
infection due to their short lifespan [19], it can be reasoned
that the above results will hold true for other diseases spread
by A. Aegypti, like the presently prominent Zika virus.

5. CONCLUSION AND DISCUSSION
Diseases like chikungunya and dengue which currently have

no vaccine, need proactive measures to prevent or contain
their breakout. Our ABM provides a good mechanism for

Figure 10: Mosquito Population (Strategy 1): Number
of Mosquitoes and Eggs per Day

Figure 11: Mosquito Population (Strategy 2): Number
of Mosquitoes and Eggs per Day

quantitative analyses of mosquito-borne epidemics. This
and other such models carry high practical value as they can
be used to quickly try out different combinations of strate-
gies, study the effects of infection on different population
groups, find high risk groups, plan vaccination programs,
and categorize locations with respect to their seasonal risk
factor. They can also be used to arrive at estimates of vec-
tor parameters (such as the mosquito’s sensing range) that
are not easy to measure directly. The case study demon-
strated how the model was accurately able to trace the evo-
lution of the infection, given data from a past epidemic in
a similar location is provided. It also predicted that on a
low budget, centralized strategies like larval source manage-
ment are more effective compared to individual measures
like insecticide-treated bed nets and indoor residual spray-
ing. Though the above model has been tested on tropical
climate of Caribbean Islands, it can be easily extended to
other locations provided relevant training data are available.

The model can also be extended to consider mutations
of infection [18], actual human mobility patterns, multiple
mosquito species, and other factors like wind velocity.
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