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ABSTRACT
This article explores the computation of conventions in ag-
ents’ societies via social learning methods, when agents aim
to perform tasks collaboratively with their acquaintances.
The settings considered require agents to accomplish multi-
ple tasks simultaneously w.r.t. operational constraints, in
coordination with their peers, even when they have lim-
ited monitoring and interaction abilities. In conjunction
to that, agents have limited information about the poten-
tial strategies of others towards accomplishing tasks jointly,
implying the need for coordination. The article formulates
the problem as an MDP, and presents social reinforcement
learning methods according to which agents interact con-
currently with their acquaintances in their social contexts
towards (a) learning about others’ options and strategies to
perform tasks, and (b) forming own strategies in coordina-
tion with others. The paper reports on the effectiveness of
the learning methods w.r.t. to agents’ constraints and limi-
tations.

Keywords
social conventions; multi-agent reinforcement learning; learn-
ing social conventions

1. INTRODUCTION
It is well known that norms, policies or conventions can

significantly enhance the performance of agents acting in
groups and societies, since they do enable a kind of social
control to the behaviour of agents, without compromising
autonomy [8]. The learning of social norms, laws and con-
ventions in agents’ societies is a major and important chal-
lenge, given that these societies maybe complex (not only in
terms of structure - as studied in [7]- but also in terms of
contradictory requirements and operational constraints im-
posed to agents), agents may not be qualified to collaborate
effectively under previously unseen conditions, and they may
need to compute rules of behaviour very effectively, w.r.t.
preferences and operational constraints.

There are several learning models that have been proposed
for computing agreed and emerging norms / conventions via
agents’ interaction experiences. The major research question
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is how effectively agents converge to agreed norms or conven-
tions, in cases where there are multiple strategies yielding
the same optimal payoff. To frame the existing models to-
wards answering this question, as pointed out in [15], these
approaches can be categorized to imitation, normative ad-
vise, machine learning and data-mining models. Previous
studies (e.g. [13], [17], [26]), have shown that Q-learners
are competent at computing conventions compared to other
learners using for instance WoLF [5], Fictitious Play [9],
Highest Cumulative Reward -based [18] models. Starting
from that point, and extending the work reported in [23],
this article explores the effectiveness of social reinforcement
learning approaches to compute social conventions (i.e. sets
of agreed, stipulated, accepted standards for agents to per-
form joint tasks, considering social as well as self interests
and operational constraints) rather than as deontic aspects.
These social learning models allow agents via communica-
tion to form specific expectations for the behaviour of others.
We assume that agents do this in their social contexts, en-
suring local interactions with peers: Agents exchange their
computed strategies, and compute the best strategy to fol-
low, given the strategies of peers. Beyond that, while some
of the research works have considered local agents’ interac-
tions, and learning-by-doing via local interaction with mul-
tiple agents, they do not consider the simultaneous perfor-
mance of multiple tasks in the social context of agents. As-
suming multiple, simultaneous tasks that each agent has to
perform either on its own or jointly with others, we consider
settings with additional and realistic complexity which is
due not only on the number and distribution of connections
between agents, but on the (sometimes contradictory) oper-
ational constraints imposed to agents to perform tasks. Fur-
thermore, this work focuses on interactions in agents’ social
context, also distinguishing between agreements of agents in
their social context and society-wide conventions: Agents,
although they may reach local agreements, they may not
agree on society-wide conventions.

Therefore, this article explores the emergence of conven-
tions in agents’ societies when agents aim to simultaneously
perform multiple -even incompatible- joint and own tasks
with peers in their social neighborhood, under operational
constraints, and having limited interaction and monitoring
abilities. Agents are not assumed to have prior information
about the preferences of others to specific options towards
performing tasks 1, nor about their payoffs regarding their

1The notion of “option” and related operational constraints
are formalised in the next section: Options concern alterna-
tive means for performing tasks, at any level of granularity.
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strategies. This models open collaborative settings where
agents have no prior information about others and need to
coordinate towards forming strategies for their tasks jointly,
under previously unseen conditions.

To address this problem, this article considers that agents
interact concurrently with their acquaintances, aiming to (a)
learn about others’ options and strategies to perform tasks
(i.e. ”understanding”how own options combine with those of
peers towards performing tasks jointly), and (b) form own
strategies, coordinating effectively with peers. The paper
aims to show the effectiveness of social reinforcement learn-
ing methods: The question that this article aims to answer
is “how effectively do conventions emerge in a society via
establishing agreements in social contexts through local in-
teractions and with limited information about others prefer-
ences?” .

The contributions of this research work, compared to the
state of the art approaches for learning social conventions
are as follows:
• The article formalises a generic problem where collabo-

rative agents aim to coordinate with peers in open settings
with increased operational complexity towards the simulta-
neous performance of own and joint tasks.
• Considering operational constraints for the performance

of tasks, the proposed method supports agents to reconcile
conflicting options and decide about their own strategies col-
laboratively with peers, having no information about the
preferences and payoffs of others, even in restricted moni-
toring and interaction settings.
• The article describes and explores the efficacy of social

reinforcement learning techniques for learning social conven-
tions. Finally,
• Agents learn society conventions via computing agree-

ments in their social contexts: This implies that neither
agents have to interact with all agents in the society, not that
they do interact with some peers chosen randomly. Agents
interact simultaneously with all peers in their social context.

According to the proposed social learning methods, each
agent, and for each task, forms a strategy by exploiting (a)
own preferences for different options to perform the task, (b)
communicated strategies of peers, and (c) rewards received
while applying the chosen strategies.

This article is structured as follows: Section 2 formu-
lates the problem and section 3 presents the MDP frame-
work considered and the proposed social learning methods.
Section 4 presents experimental results. Section 5 presents
related works and finally, section 6 concludes the article by
summarising the contributions made and presents future re-
search.

2. PROBLEM SPECIFICATION
A society of agents S = (T ,A, E) is modelled as a graph

with one vertex per agent Ai in A and any edge (Ai, Aj)
in E connecting pairs of agents. Such a connection repre-
sents the existence of at least one task that should be per-
formed jointly by agents Ai and Aj , requiring their interac-
tion. T = {T1, T2...} is the set of tasks assigned to agents

These can be concrete plans, tools, or resources. We may
use the terms “option” and “means” for performing tasks in-
terchangeably. To coordinate with others towards the joint
performance of tasks, agents need to learn to deliberatively
choose the best options depending on circumstances, form-
ing a strategy or a policy to perform a task.

in the society, and this is common knowledge to all agents.
It must be noticed that agents may perform tasks jointly
with peers, as well as own, private tasks. In this article
tasks are not strictly distinguished to own and joint tasks:
Actually, we consider that each task assigned to an agent
requires the performance of own subtasks (performed indi-
vidually), but also needs specific subtasks to be performed
in coordination with others’ tasks. This is generic, given
that each task should respect different types of operational
constraints (explained below), maybe requiring the reconcil-
iation of conflicting options.

Subsequently, the fact that agent Ai has been assigned
the task Tk ∈ T , is denoted by Ai:Tk or simply i:k. The set
of tasks assigned to an agent Ai are denoted by Tasks(Ai).
Thus, Tasks(Ai) = {Tk|Tk ∈ T ∧ (Ai : Tk)}. The situation
where agents Ai and Aj interact for the joint performance of
tasks Tk and Tl s.t. Ai:Tk and Aj:Tl, is denoted by [Ai:Tk ./
Aj :Tl] or simply [i:k ./ j:l]. Without sacrificing generality, we
consider that given two agents Ai and Aj with (Ai, Aj) ∈ E ,
each couple of tasks in Tasks(Ai) × Tasks(Aj) should be
performed jointly, i.e. require agents’ coordination.
N(Ai) denotes the neighbourhood of agent Ai, i.e. the set

of agents connected to agent Ai ∈ S (thus, performing tasks
jointly with it), including also itself: These are referred as
peers or acquaintances of Ai.

Considering [Ai:Tk ./ Aj :Tl], agent Ai may have numer-
ous options towards the performance of task Tk (respectively
Aj for Tl): Let these options be Oi:k = {oi:k1 , oi:k2 ...} (respec-

tively Oj:l = {oj:l1 , oj:l2 ...} for Aj:Tl). Let O be the set of op-
tions available to any agent for any of the tasks. Formally,
O = ∪Aj∈A,Tl∈TOj:l. Notice that options available per task
may differ between agents, even for the same task, given
that agents may have different abilities, beliefs, etc. Task-
specific options in Oi:k can be ordered by the preference of
agent Ai, according to the function γ(i : k) : Oi:k → R. We
do not assume that agents in A−{Ai} have any information
about γ(i : k), although they do know the identities of op-
tions available to the agents in their neighbourhood for any
of the tasks assigned to them.

Any combination of tasks performed by agents may im-
pose operational constraints: These are restrictions to the
options that agents may jointly choose to perform their
tasks, and thus, require agents’ coordination.

Operational constraints are formalised by means of con-
sistency and compatibility relations between options:

First, we define the consistency relation ∼ in O×O speci-
fying the valid combination of options available to agents to
jointly perform their tasks. Notice that this relation may
depend on the agents performing the tasks. In this article
we assume that that two options are consistent indepen-
dently of the pair of agents considering them. This is with-
out loss of generality, given that agents may have different
options to perform the same task, depending on knowledge,
abilities, etc. It is assumed that ∼ is unknown to agents.
This models many real-world situations, especially in open
societies, where agents need to coordinate while using, for
instance, different vocabularies for representing the world,
or resources that are available under restrictions to some of
the agents, or plans to accomplish goals requiring highly-
complex processes and/or large amount of information to
figure out their consistency or combined validity, or situ-
ations where agents have lack of knowledge. Finally, the
consistency relation ∼ is assumed to be transitive.
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oi:k1 oi:k2
oj:l1 u, v x, y

oj:l2 y, x v, u

oi:k1 oi:k2
oj:l? ?, ? ?, ?

oj:l? ?, ? ?, ?
(a) (b)

Figure 1: Payoff matrices for 2× 2 games

Second, given a pair of tasks (Tk, Tl) these may be in-
compatible if performed by a single agent, given joint op-
tions available. For instance, the tasks of meeting someone
and working on a paper are incompatible if performed by
the same agent during a specific time period. Therefore
incompatible tasks require a kind of compatibility between
options, which is assumed to be known by each agent for
its own tasks. We denote the compatibility relation between
options for performing tasks (Tk, Tl) by �kl defined in O×O.
There is no relation assumed between the sets ∼ and �.

Given these operational constraints, agents must select
strategies (or policies) among the available options, which
are (a) consistent for performing tasks jointly with others,
and (b) are compatible for performing own tasks.

A social context for an agent Ai (SocialContext(Ai) ) is
the set of tasks played by the agents in its neighborhood:
SocialContext(Ai) = {Tk|Tk ∈ T ∧∃Aj ∈ N(Ai) s.t. j : k}.

Thus, SocialContext(Ai) includes agents’ own tasks. Also,
all tuples of tasks in Tasks(Ai) × (SocialContext(Ai) −
Tasks(Ai)) should be performed jointly by Ai and one of
its peers in N(Ai). Considering two acquaintances Ai and
Aj ∈ N(i) − {Ai}, and two tasks Tk and Tl that must
be performed jointly by these agents (i.e. it holds that
[Ai:Tk ./ Aj :Tl] ), agents must select among the sets of
available options Oi:k and Oj:l respectively, so as to increase
their expected payoff with respect to their task-specific pref-
erences on options and operational constraints.

Given, for instance, two options per agent and task, agents
are assumed to play a game of the form shown in figure
1(a): All entries in this matrix are different than zero, x, y
are positive integers, and u, v are negative integers. As it
can be noticed, this can be a coordination game, if u = v,
x = y, with two Nash equilibria, namely the joint options
proving payoffs x and y. However, this is not necessarily
a symmetric game, given that the payoff received depends
on the task performed by each agent. It must be noticed
that any agent in the society plays such a game for any
combination of tasks to be performed jointly with peers (i.e.
for every task in its social context).

Given that the consistency relation among options avail-
able to agents for performing their tasks is not known to
any in the society, and that agents do not know about the
payoffs of other agents when choosing specific strategies to
perform their tasks, agents need to learn about the structure
of the game to be played, and they have to coordinate with
others, as well. The information that an agent (e.g. the row
playing agent) has about a 2 × 2 game is as shown in fig-
ure1(b). Question marks indicate the missing information:
For instance, the agent does not know neither how options
can be combined, nor the payoffs from these combinations.

For conventions to emerge in the society, any pair of con-
nected agents (anywhere in the society) jointly performing
tasks Tk, Tl must reach the same decisions for their strategies
to perform their tasks.

This problem specification emphasises on the following
aspects of the problem:
• Agents need to coordinate their strategies (i.e. chosen

options) to perform own and joint tasks w.r.t. their prefer-
ences and operational constraints.
• Agents need to explore and discover how different combi-

nations of options affect the performance of joint tasks w.r.t.
operational constraints, given that consistencies among op-
tions are not known: This is essential for them to coordinate
effectively and finally reach conventions.
• Agents must coordinate and reach agreements on the

strategies to be followed for performing their joint tasks,
w.r.t. their preferences, operational constraints and assump-
tions on options’ consistency.
• Agents’ preferences on the options available may vary

depending on the task performed and are kept private.
• Each agent must learn to perform multiple (even incom-

patible), interrelated tasks in its social context.

3. REINFORCEMENT LEARNING METH-
ODS FOR COMPUTING CONVENTIONS

To describe the proposed methods for the computation
of conventions, we distinguish between two, actually highly
intertwined, computation phases: (a) The computation of
consistencies between options for joint tasks in the social
context of each agent, and the computation of strategies for
performing tasks w.r.t. own preferences, operational con-
straints and strategies of peers; and (b) the computation of
contextual agreements concerning agents’ strategies to per-
form joint tasks.

Given an agent Ai performing the task Tk, and any task
Tl ∈ SocialContext(Ai) assigned to an agent Aj , it holds
that [Ai:Tk ./ Aj :Tl]. Agents need to coordinate towards
performing these tasks jointly. To do that, agents need to
discover the consistencies between the options in Oi:k and
Oj:l.

The agent Ai (e.g. based on the information disclosed
to it) may assume a subjective consistency relation between
available options, denoted by ∼i. Given that relation, Ai
has to make a specific decision for the option to be chosen
to perform its own tasks, w.r.t (known) compatibility re-
strictions, contributing also to the coordinated performance
of tasks. This choice of Ai, among the available options in
Oi:k, is the strategy of the agent to perform the task Tk.
This strategy is denoted by str(i:k ).

As already said, each task assigned to an agent Ai is
an own task which must be performed jointly with peers.
Therefore, given a pair of incompatible tasks Tk, Tl assigned
to Ai, the following validity constraint holds:

str(Ai:Tk) �kl str(Ai:Tl),

In other words, strategies chosen for incompatible tasks must
be compatible. Of course, considering that these tasks are
performed jointly with other tasks in the social context of
agents, they must also respect consistency constraints. Given
this validity constraint among strategies, as well as the com-
patibility relation � among own tasks, the utility U(i:k,o) of
choosing the option o ∈ Oi:k in case it holds that Ai : Tk is

U(i:k, oi:k) = γi:k(o) + f(i:k, o),

where γi:k(o) is the preference of agent Ai for the option o
towards performing Tk, and
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f(i:k, o) = Profit ∗ SatisfiedConstraints(i:k, o) +
Penalty ∗ V iolatedConstraints(i:k, o)

Profit is a positive number representing the reward of any
satisfied operational constraint in the social context of agent
Ai and Penalty is a negative number that represents the
cost of violating a constraint. SatisfiedConstraints(i:k, o)
(resp. V iolatedConstraints(i:k, o)) is the number of satis-
fied (resp. violated) compatibility constraints for the tasks
performed by the agent Ai.

3.1 The MDP framework.
Using the model of collaborative multiagent MDP frame-

work [14], [10] we assume:

-The society of agents S = (T ,A, E).
-A time step t = 0, 1, 2, 3, ...
-A set of state variables per agent-task Ai:Tk performed
jointly with task Tl in SocialContext(Ai) at time t, denoted
by st(i:k ./·:l)

2. Each state variable corresponds to the combi-
nation of tasks and ranges to the sets of subjective consis-
tent options for tasks Tk, Tl assumed by Ai, i.e. st(i:k ./·:l) ∈
2O·:k×O·:l , s.t. st(i:k ./·:l) ⊆∼i. The local state sti of agent
Ai at time t is the tuple of the state variables for all tasks
assigned to Ai in combination with any task in its social con-
text. A global state st at time t is the tuple of all agents’
local states.
-A strategy per agent-task Ai:Tk at time t is denoted by
strti:k. The local strategy for agent Ai at time t, denoted
by strti is a tuple of strategies, each for any task that Ai
performs. The joint strategy of a subset of agents A
of A accomplishing their tasks (for instance of N(Ai)) at
time t, is a tuple of local strategies, denoted by strtA (e.g.
strtN(Ai)

). The set of all joint strategies for A ⊂ A is de-
noted StrategyA. The joint strategy for all agents A at
time t is denoted strt.
-The state transition function gives the transition to the
joint state st+1 based on the joint strategy strt taken in joint
state st. Formally Tr : State × Strategy → State. It must
be noticed that although this transition function may be de-
terministic in settings with perfect knowledge about society
dynamics, the state transition per agent is stochastic, given
that no agent has a global view of the society (and as it will
be discussed, under limited monitoring abilities it does not
have a complete view of its neighbourhood), and thus no
agent can predict how the joint state can be affected in the
next time step. Thus, for agent Ai this transition function
is actually Tr : Statei × Strategy{Ai} × Statei → [0, 1], de-

noting the transition probability p(st+1
i |s

t
i, str

t
i).

-A joint reward denoted by Rwd[i:k ./·:l], specifies the re-
ward received by Ai performing the task Tk jointly with
agents performing the task Tl in SocialContext(Ai). The
task-specific reward for Ai:Tk, denoted by Rwdi:k, spec-
ifies the individual reward provided to agent Ai performing
the task Tk, based on the joint strategies of agents in N(Ai).
This is the sum ofRwd[i:k ./·:l], for any Tl ∈ SocialContextAi.
The local reward of agent Ai, denoted Rwdi, is the sum
of its rewards for all the tasks that it performs.

It must be noticed that states represent agents’ assumptions

2The notation (·:l) means “any agent performing the task
Tl”. When it appears in (i:k ./ ·:l) means “any agent in
N(Ai) performing the task Tl”.

about options’ consistency, while agents’ strategies concern
the specific options chosen for performing tasks w.r.t. these
assumptions and the compatibility relation.

Given that agents do not have prior knowledge about the
consistency relation among options, they do not know about
the joint effects of strategies chosen. This information has to
be learned based on the rewards received (including feedback
from others).

The joint reward Rwd[i:k ./·:l] depends on the utility of
agents’ options while accomplishing specific tasks, as defined
above, on feedback received from peers concerning agents’
strategy, and on the payoff received after performing the
chosen strategy as part of a joint strategy. Formally:

Rwd[i:k ./·:l](s
t, strti:k) = a ∗ U(i:k, strti:k)

+ b ∗ Feedback(st, strti:k)

+ Payoff(strti:k).

(1)

Feedback(st, strti:k) = Profit ∗ Feedback+(st, strti:k))

+ Penalty ∗ Feedback−(st, strti:k)).

(2)

where st = st[i:k ./·:l], i.e. the state variable for [i:k ./ ·:l] and

strti:k is the option deliberatively selected as strategy for i:k
at time t. Feedback+(sti, str

t)), Feedback−(sti, str
t)) are

the numbers of positive and negative feedbacks received, re-
spectively, from peers given the strategy selected and the as-
sumptions about options’ consistency formed by Ai, i.e. ∼i.
The way feedback is received and counted will be presented
in detail in subsequent paragraphs. Profit and Penalty are
the numbers specifying the profit and cost for each posi-
tive and negative feedback, respectively (being equal to the
corresponding utility parameters). The parameters a and
b have been used for balancing between own utility and
feedback received by others: As previous works have shown
[22], although the role of both is crucial for agents to reach
agreements, the method is tolerant to different values of
these parameters. Here we consider that a

b
= 1

10
. Finally,

Payoff(strti:k) is the payoff received by the agent Ai when it
performs Tk according to the strategy chosen at time t.

Thus, the reward received by any agent depends on (a) the
operational constraints w.r.t the assumptions made on con-
sistency constraints, and (b) the agreement between peers
on the means to be used for performing tasks jointly. As
far as the operational constraints are concerned, compati-
bility between own options for performing tasks affect the
utility of the agent, while consistency of options for joint
tasks is provided via the payoff received. Thus, it is ex-
pected that the payoffs received should steer agents towards
deciding consistent strategies. Feedback received from peers
show whether agents have reached agreement on the consis-
tency of options to be used. Since agents do not know the
relation ∼, feedback supports them to check whether their
peers agree on their subjective assumptions ∼i. This (in
conjunction to payoffs received) allows more knowledgeable
/ informative agents to help on discovering the relation ∼.

A (local) policy of an agent Ai in its social context is
a function πi : Statei → Strategy{Ai} that returns local
strategies for any given local state, for all the tasks assigned
to Ai. The objective for any agent in the society is to find an
optimal policy π∗ that maximizes the expected discounted

future return V ∗i (s) = maxπiE[
∞∑
t=0

δtRwdi(πi(s
t
i), s

t
i)|πi)]
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for each state si, while performing its tasks. δ ∈ [0, 1] is
the discount factor.

This model assumes the Markov property, assuming also
that rewards and transition probabilities are independent of
time. Thus, the state next to state s is denoted by s′ and it
is independent of time.

3.2 Computing contextual agreements
The subjective assumptions on the consistency of avail-

able options (i.e. their state) for any tasks agents jointly
perform may not agree. More importantly, the strategies
chosen for the joint performance of tasks may be inconsis-
tent to those chosen by peers. Towards reaching agreements
on the consistency between available options (which is im-
portant for agents to select valid joint strategies), agents
consider the feedback received from their peers. From now
on, we use the term decision to indicate the combination of
agent state and strategy chosen: Thus when agents revise
their decisions they may revise their subjective assumptions
on the consistency between options, or their strategies for
performing tasks, or both.

According to this communication-based learning approach,
given an agent Ai performing the task Tk, and a task Tl ∈
SocialContext(Ai), i.e. [Ai:Tk ./ ·:Tl], to get feedback on
decisions about the performance of Tk, the agent Ai prop-
agates its decision to its peers performing Tl. Actually, it
forwards its strategy for performing Tk, i.e. oi:k = strti:k and
the3 assumed consistent option for others to perform Tl, i.e.
o·:l s.t. 〈oi:k, oj:l〉) ∈∼i. It must be noticed that Ai forwards
its decision to all agents in N(Ai) that have been assigned
Tl. This happens for any such pair of tasks.

The decision propagated to a specific Aj ∈ N(Ai) at any
t is of the form (Ai:Tk, Aj:Tl, 〈oi:k, oj:l〉), indicating the
peers involved, the strategy chosen, and the subjective view
of the sender for the consistent option of the recipient Aj to
perform Tl.

Agents propagate their decisions to their acquaintances in
the network iteratively and in a cooperative manner, aim-
ing to exploit the transitive closure of correspondences in
cyclic paths. This is similar to the technique reported in
[22]. Agents propagate what we call c−histories, which are
ordered lists of decisions made by agents along the paths in
the network. Each propagated decision heads such a history.
For instance the c-history propagated by Ai to any agent in
N(Ai) that performs Tl is a list of the form [ (Ai:Tk, Aj:Tl,
〈oi:k, oj:l〉) |L ], where L is either an empty c-history or the
c-history that has been propagated to Ai concerning Tk. By
propagating c-histories, agents can detect cycles and take
advantage of the transitivity of options’ consistency, detect-
ing positive/negative feedback to their decisions.

Specifically, an agent Ai detects a cycle by inspecting in
a received c-history the most recent item originated by it-
self: Given a cycle (A1 → A2 → ...A(n−1) → A1), then for
each decision (A1:Tk, A2:Tl, 〈o1:k, o2:l〉) for the tasks Tk and
Tl heading a c-history from A1 to A2, the originator must
get a decision (A(n−1):Tl, A1:Tk, 〈o(n−1):k, o1:k〉) from the
last agent A(n−1) in the cycle, s.t. o(n−1):k and o1:k are as-
sumed by A1 to be consistent, i.e. (o(n−1):k, o1:k) ∈∼i. In
such a case the agent A1 counts a positive feedback for its

3It must be noticed that only one consistent option may be
suggested per strategy. This may seem a restriction, but al-
lows agents to receive precise suggestions w.r.t the strategies
chosen.

decision. In case there is a cycle but the forwarded decision
is not assumed (according to Ai) consistent to o1:k, , then
there are one or more correspondences or decisions through
the path that result to disagreements. In this case, the agent
A1 counts a negative feedback for its decision. It must be no-
ticed that disagreements may still exist along a path when
the agent A1 gets positive feedback, but several decisions
along the path compensate “errors”. These cases are de-
tected by the other agents, as the c-history propagates in
the network. To make the computations more efficient and
in order to synchronise agents’ decision making, we consider
that c-histories can be propagated up to 3 hops with rep-
etitions: This means that given two peers Ai and Aj , any
c-history starting from Ai (1st hop) shall be returned to
this agent with the decision of Aj (2nd hop), and will return
later to Aj with the new decision of Ai (3rd hop). In the last
hop the agent Ai may revise its decision by considering also
the feedback received from Aj , in conjunction with feedback
from any other peer.

3.3 Social Q-learning methods
Q−functions, or action-value functions, represent the fu-

ture discounted reward for a state s when deciding on a spe-
cific strategy str for that state and behaving optimally from
then on. The optimal policy for the agents in state s is to
jointly make the choice argmaxcQ

∗(s, str) that maximizes
the expected future discounted reward.

The next paragraphs describe three distributed Q-learning
methods considering that agents do not know the transi-
tion and reward model (model-free methods) and interact
concurrently with all their peers. All variants assume that
agents propagate their decisions to peers, as explained in
section 3.2.

Collaborative Reinforcement Learners (Colab-RL): This is
the agent-based update sparse cooperative edge-based Q-
learning method proposed in [12]. Given two peer agents
performing their tasks,[Ai:Tk ./ Aj :Tl], the Q−function is
denoted succinctly Q([i:k ./ j:l],s,str), where s denotes the
state variables related to the two agents performing their
corresponding tasks (i.e. s[i:k ./·:l] and s[j:l ./·:k]), and str de-
notes the strategies chosen by the two agents (i.e. stri:k
and strj:l). The sum of all these edge-specific Q−functions
defines the global Q−function.

The update function is as follows:

Q([i:k ./ j:l], s, str) = Q([i:k ./ j:l], s, str) +

α
∑ (Rwd[x:y ./·:z](svx,strx:y)+δQx:y(sv

′
x,str∗x:y)−Qx:y(svx,strx:y))

|N(Ax)|

where, the summation is for any x : y ∈ {i:k, j:m}. In case
x:y is i:k, then z = l, else z = k. Also, svx is the state
variable s[x:y ./·:z].

The local Q-function for Ai:Tk is defined to be the sum-
mation of half the value of all local functions Q(i:k ./ j:l, s,
str) for any Aj ∈ N(Ai) performing task
Tl ∈ SocialContext(Ai): This is so, give that each local
function considers two agents. Formally,

Qi:k(si, stri:k) = 1
2

∑
j:l,Aj∈N(Ai)

Q([i:k ./ j:l], s, str).

Independent Reinforcement Learners:The local function
Qi for an independent learner Ai is defined as a linear com-
bination of all contributions from its neighbourhood, for any
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task Tk assigned to Ai and performed jointly to tasks Tl:
Qi(si, stri) =

∑
Tk

∑
j:l,Aj∈N(Ai)

Q([i:k ./ j:l], si, stri:k),

where si is the local state of agent Ai and stri its local strat-
egy.
Each Q([i:k ./ j:l], si, stri:k) is updated as follows:

Q([i:k ./ j:l], si, stri:k) =
Q([i:k ./ j:l], si, stri:k) +
α[Rwd(si, stri:k) + δ ∗maxstr′

i:k
Q([i:k ./ j:l], s′i, str

′
i:k)−

Q([i:k ./ j:l], si, stri:k)]

Rwd(si, stri:k) does not follow the notation introduced,
since we consider alternative ways of computing it. This
method is in contrast to the collaborative approach intro-
duced earlier since it computes values for strategies and
states of individuals, considering only local states and strate-
gies, This is also in contrast to the approach of Coordinated
Reinforcement Learning model proposed in [11] since that
model needs to know the maximising joint action in the next
state, the associated maximal expected future return, and
needs to estimate the global Q-value in the global state. It
also considers society’s global reward.

Focusing on agents’ social context, we compute the local
reward of agents based on their knowledge about the strate-
gies proposed by acquaintances, as already specified above.
Thus, in this case
Rwd(si, stri:k) = Rwd[i:k ./·:l](svi, stri:k),

where svi is again the state variable s[i:k ./·:l].
This model is also in contrast to the independent learners

proposed in [6], since update functions consider agents’ local
states’ only. This is a social learning method since agents
consider the feedback received by others and it assumes that
agents get their own payoff depending on the joint strategy
chosen. We call this “individual & local learner model” and
indicated as Indl-RL.

As an alternative to Indl-RL, the reward can be affected
by the likelihood of peers to select any strategy. In this case
the feedback is not computed as specified in formula (2).
Actually, in this alternative an agent Ai does not consider
the last messages received from peers to count the posi-
tive/negative decisions of peers (which may be myopic in
some cases), but counts the likelihood to get a positive or a
negative feedback from any peer based on the decisions re-
ported by that peer: The strategy with the higher likelihood
per peer is considered to be the most probable decision of
that peer. In highly dynamic settings with many options
per task (assuming that agents need to update their deci-
sions frequently) this may not be a proper method, since the
likelihood estimation may need a large number of samples
to change, while agents may need to be more reactive. It
must be noticed that agents may compute the likelihood of
other strategies incrementally, requiring no memory. We re-
fer to this last method as“independent likelihood estimation
model” and indicated as Indep-RL, .

4. EXPERIMENTAL RESULTS
We have performed simulations using the three social le-

arning methods presented in small-world networks that have
been constructed using the Watts-Strogatz model (W) [25],
and scale-free networks constructed using the Albert Bar-
abási (B) model [2]. Given that results in both types of
networks have not significant differences, and given that we

are interested on operational complexity, we present results
only for scale-free networks, varying the average number of
neighbours (ANN) per agent in {4, 10, 20} and the num-
ber of options per task in {2, 3, 4}. Each case is denoted by
X |N | ANN O, where X is the network construction model
(e.g. B 100 10 2 for a scale-free network of 100 agents, with
10 neighbours per peer in average, and with 2 options per
task). The society tasks T are 4 (e.g a,b,c,d) and each agent
is randomly assigned 2 tasks in average satisfying the follow-
ing constraints. One of these tasks (e.g. a) has been assigned
in 10% of the population, while one of the other tasks (e.g.
b) is assigned to an extra agent (e.g. the 101st agent in a
network of 100 agents) and it is connected to agents per-
forming a specific task (e.g. c). This models settings where
only few in the population are able to perform specific tasks,
while there are social tasks that need the coordination of nu-
merous agents. In all methods the payoff Profit for positive
feedback and satisfaction of constraints is equal to 3, while
the penalty Penalty is equal to -5. Considering the reward,
as already said, the feedback factor b is 10 times greater
that the utility factor a, i.e. b = 10a. The reason for this is
that, for agents to reach agreements, they need to consider
peers’ feedback to be very important, while also they con-
sider compatibility constraints among their strategies. In
cases where there are two options per task (e.g. p and np),
each combination of tasks x, y may be associated with any
of the following 2× 2 payoff matrices given below.

p·:x np·:x
p·:y -1,-1 3,2
np·:y 2,3 -1,-1

p·:x np·:x
p·:y 3,3 -1,-1
np·:y -1,-1 3,3

In cases with more options, matrices are extended result-
ing to games of similar form: It must be noticed that agents
play different types of games while performing joint tasks.

Learning methods use an exploration function, counting
the number of times each decision has been made. An epoch
comprises an exploration followed by a pure exploitation
period. Aiming at effectiveness, we present results for 12
epochs (i.e. 2000 rounds) and measure the efficacy of the
methods to converge until epoch 12. We measure conver-
gence for 100% and for 90% of the agents. The convergence
rule is that the required percentage of agents has reached
agreement without violating any constraint in 10 subsequent
rounds during an exploitation period. Each experiment has
been performed 20 independent times and we present results
by averaging the results recorded by these independent ex-
periments.

Table 1 shows the results of methods in different settings
and for different percentages of converging agents. The x-
axis shows the epoch numbers and the y-axis in the line
charts shows the total payoff received by the agents: The
first (respectively, second) raw shows results for different
number of options in B 100 10 networks with an unknown
consistency relation (ua) (respectively, ka when it is known),
according to the problem specification (respectively, con-
trary to the problem specification). The third raw shows
how different methods are affected when the average num-
ber of peers per agent varies. These are again B 100 10
networks with two choices per task. The last column chart
in each row shows the average convergence round (y-axis)
per method, for the different cases considered in the corre-
sponding raw, both for 100% and for 90% convergence, also
with the standard deviation of the convergence rounds (de-
noted StDev) recorded. When the average round recored

460



Table 1: Experimental results for all methods

Colab-RL(ua) Indep-RL(ua) Indl-RL(ua) All(ua)

Colab-RL(ka) Indep-RL(ka) Indl-RL(ka) All(ka)

Colab-RL(ua) Indep-RL(ua) Indl-RL(ua) All

is 2000, this means that the corresponding method did not
manage to converge until epoch 12.

Results show that the problem considered in this arti-
cle is harder than in the case where the consistency rela-
tion between options is known to agents: As shown in the
second raw of Table 1, all methods manage to converge to
agreed conversions until epoch 12. Methods converge in an
early epoch, especially when agents have a small number
of options to consider per task. Among them the Colab-RL
method is more effective, even in cases of increased complex-
ity, for 100% of the agents with low standard deviation. The
Indep-RL method converges very effectively for 90% of the
agents, but not that effectively for 100% of the agents, since
the standard deviation for Indep-RL is high. The second
column of Table 2 shows that indeed, Indep-RL manages
to “climb” very fast to a maximum payoff for the society in
all cases. However, as we will show, Indep-RL reaches a lo-
cal maximum early enough. In contrast to that, when the
consistency relation among options is unknown to agents,
and as the complexity of the social setting increases (by in-
creasing the number of options available per task), as shown
in the first raw of Table 1, all methods fail to reach 100%
convergence until epoch 12. Indl-RL fails to converge in
case agents have 4 options per task. Indep-RL either fails
to converge, or in cases where it can converge the standard
deviation is high. Colab-RL on the other hand does not con-
verge as effectively as Indl-RL for 2 options per task, but its
effectiveness increases as the complexity increases, especially
for 90% of the agents with 4 options. The last raw of table 1
shows the convergence of the methods in cases where agents
have 2 options per task, but the number of acquaintances
increase: Recall that any agent has to perform every task
jointly with its peers. In this case Indep-RL has very high
standard deviation in all cases, or it fails to achieve conver-
gence, while Colab-RL is slightly better than Indl-RL as the
complexity increases.

Table 2: Efficacy of Colab-RL

colab-00 colab-02

colab-04 colab-06

Delving into the details of methods’ efficacy, we classify
the states of agents depending on the feedback received from
peers, into efficient (denoted by “Eff”), scrambled (denoted
by “Scr”) and transient (denoted by “Trans”), similarly to
[19]. In efficient states agents receive positive feedback mes-
sages that are are at least 5 times more than the the negative
ones. This means that in networks of 10 acquaintances per
agent in average, an agent gets in average 2 negative feed-
back messages, and thus may be close to reaching agree-
ment. In scrambled states the number of positive messages
are more or less equal to the negative ones. Precisely, posi-
tives are ±1.5 times as many as the negatives. The rest of
the states are classified as transient. Furthermore, since all
methods require communication between peers for monitor-
ing peers’ strategies, to test the tolerance of the methods
in settings where agents have limited monitoring abilities,
we consider that messages are received with a probability,
which varies in {0, 0.2, 0.4, 0.6}. Average results from 20
independent experiments are reported in Tables 2, 3 and 4.

Each agent has 2 options per task. As it seems, Colab-
RL manages to decrease the scrambled and transient states
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Table 3: Efficacy of Indep-RL

indep-00 indep-02

indep-04 indep-06

Table 4: Efficacy of Indl-RL

indl-00 indl-02

indl-04 indl-06

very effectively, even when the probability is 0.4. Even for
probability 0.2 the number of these states is near to zero
(in average below 1). On the other hand, Indep-RL has a
stable behaviour for different probabilities, but it fails to re-
duce transient states, and scrambled ones are very low (near
to 5 in average). Again, Indep-RL shows steep increase of
efficient states early enough, but clearly now we see that it
reaches local maxima. This however may serve as a good
solution if we require a percentage of agents less or equal
than 90% to converge. Indl-RL fails as well to reduce tran-
sient states effectively. Surprisingly, when the probability is
0.2 it demonstrates an effective reduction of scrambled and
transient states before epoch 12, but this does not happen
in other cases.

5. RELATED WORK
Early approaches towards learning norms or conventions

either involve two agents iteratively playing a stage game to-
wards reaching a preferred equilibrium, or models where the
reward of each individual agent depends on the joint action
of all the other agents in the population. Other approaches
consider that agents learn by iteratively interacting with a
single opponent from the population [17] [19], also consid-
ering the distance between agents [13], or by interactive re-
peatedly with randomly chosen neighbours [1]. In contrast
to this, in [26] the communication between agents is physi-
cally constrained and agents interact and learn with all their
neighbors. In these works agents play a single role at each
time step. We rather consider cases where agents perform
multiple tasks jointly with peers, simultaneously.

Concerning the effectiveness of reinforcement learning me-
thods, Shoham and Tennenholtz [18] proposed a reinforce-
ment learning approach using the Highest Cumulative Re-
ward rule which depends on the memory size of agents. The

effects of memory and history of agents’ past actions have
also been considered by Villatoro et al [20], [21]. Sen et al
[17] [1] studied the effectiveness of reinforcement methods
also considering the influence of the population size, of the
possible actions, the existence of different types of learners
in the population, as well as the underlying network topol-
ogy of agents [16]. In [26] authors have proposed a learning
method where each agent, at each time step interacts with
all its acquaintances simultaneously and use ensemble learn-
ing methods to compute a final strategy.

Studies (e.g. [13], [17], [26]), have shown that Q-learners
are competent to learners using for instance WoLF [5], Ficti-
tious Play [9], Highest Cumulative Reward -based [18] mod-
els. Based on these conclusions and going beyond the state
of the art, this work proposes social Q-learning methods,
according to which agents interact with all of their acquain-
tances, considering their tasks in their social contexts, w.r.t.
operational constraints. Similarly to [24], in this work agents
have to learn the structure of a coordination game. Also,
while [24] considers noisy payoffs and cases where agents
have either perfect or limited monitoring abilities, this arti-
cle considers that agents have limited interaction and mon-
itoring abilities. Similarly, the approach described in [4] as-
sumes that agents’ actions are not directly observable by
others and generalise fictitious play using likelihood esti-
mates. In our case, we use likelihood estimates in the prob-
lem proposed as an alternative for estimating feedback.

6. CONCLUSIONS AND FURTHER WORK
This article investigates the effectiveness of computing

conventions using social, distributed reinforcement learning
methods in settings of increased complexity. The compu-
tation of conventions is done via reaching agreements in
agents’ social context, via interactions with acquaintances.
The formulated methods support agents to reconcile and
decide on the simultaneous performance of multiple tasks in
their social contexts, jointly with peers with limited knowl-
edge on options available and with limited monitoring abil-
ities. The article formalises the generic problem where col-
laborative agents aim to coordinate with peers in settings
with such an increased operational complexity, considering
different types of constraints for the performance of tasks.

Experimental results show that Col-RL and Indl-RL are
more effective than Indep-RL as the operational complexity
of the setting increases. Furthermore, their effectiveness de-
creases as the complexity of the options available to agents
increase, while it increases when the average number of ac-
quaintances per agent increases. This is due to the exploita-
tion of decision lists propagated among peers. Col-RL also
proves to be tolerant in settings where agents have limited
monitoring abilities.

Further work concerns investigating (a) the effectiveness
of hierarchical reinforcement learning techniques [3] for com-
puting hierarchical policies in cases where hierarchical tasks
have to be performed; (b) the tolerance of the methods to
different payoffs of performing joined tasks, as well as to
different exploration-exploitation schemes, and (c) societies
with different types of learners.
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