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ABSTRACT
We are interested in Communicating Finite State Machine
(CFSM) based models of large-scale multi-agent systems and
their emerging behavior. CFSM-based models are suitable
for studying large ensembles of simple reactive agents, and
collective dynamics of such ensembles. In this paper, we fo-
cus on the asymptotic dynamics of a class of the classical
(finite) Cellular Automata (CA) and more general Network
or Graph Automata (GA). We restrict our attention to CA
and GA with Boolean-valued linear threshold functions as
the node update rules, inspired by well-known models of bi-
ological neurons. The linear threshold update rules on which
we focus the most are the Boolean-valued functions that do
not allow for negative weights. We fully characterize the
configuration spaces of such simple threshold CA, with a
focus on the Majority update rule that results in the most
interesting dynamics among the CA in this class. In par-
ticular, we show the combinatorics behind determining the
total number of fixed point configurations for simple thresh-
old CA. Even when the combinatorics is non-trivial, such as
in the case of Majority update rule, the counting problems
of interest are computationally tractable. We then discuss
a stark contrast with respect to intractability of counting
for the related classes of Boolean graph automata with the
same restrictions on the node update rules. The GA with
proven complex dynamics have only slightly more complex
structures when it comes to (i) the underlying interconnec-
tion topologies (“cellular spaces”) and (ii) the diversity of the
node update rules, i.e., whether all the nodes use the same
update rule (as in the classical CA), or just two different
rules from the given class are allowed.

Keywords
Emerging behavior in MAS, mathematical models of MAS,
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1. INTRODUCTION
We study theoretical models of large-scale multi-agent sys-

tems (MAS) and their collective dynamics. In that setting,

Appears in: Proceedings of the 16th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2017), S. Das, E. Durfee, K. Larson, M. Winikoff
(eds.), May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

we have undertaken a qualitative and quantitative analyti-
cal study of emerging behavior and, in particular, asymptotic
dynamics of certain types of network-based dynamical sys-
tems. Researchers across a range of disciplines, from theo-
retical biology to artificial life to statistical physics to cyber-
physical/cyber-secure systems to the “traditional” (large-
scale) multi-agent systems have studied dynamical proper-
ties of various models of discrete complex networks in gen-
eral, and models based on communicating finite state ma-
chines (CFSMs), in particular. Prominent among such net-
work and CFSM models are (finite) cellular automata (CA)
and several of their graph or network automata extensions.
Boolean-valued CA, and some of their generalizations, are
the models on which we focus in this paper.

We investigate various configuration space properties of
cellular and graph automata, as well as the computational
(in)tractability of determining those properties. We are par-
ticularly interested in the counting problems: how many
“fixed point”, temporal cycle, unreachable (“garden of Eden”)
or other types of configurations of interest a discrete dynam-
ical system such as a CA may have, and how hard are the
computational problems of enumerating those various types
of configurations. The motivation for this undertaking is,
that such results provide lower-bounds on the complexity of
“real-world” collective dynamics of large ensembles of simple
interactive agents. In the context of interesting enumera-
tion problems about dynamics of various cellular and graph
automata, it has been demonstrated that both exact and
approximate counting of various types of configurations in
two prominent classes of Boolean network automata, called
Sequential and Synchronous Dynamical Systems (SDSs and
SyDSs, respectively), are in general, demonstrably compu-
tationally intractable. Similar general intractability holds
for Discrete Hopfield Networks (DHNs) [43]. Interestingly
(and less expectedly), the computational intractability holds
even when the structures of the underlying graphs as well
as the node update rules are severely restricted [46, 39, 49].
Moreover, computational intractability of counting stable of
fixed-point configurations has been established to hold even
when the underlying graphs are required to be uniformly
sparse [50].

A broader objective of our research on configuration space
properties of cellular and network automata is to apply these
insights to behavior analysis and deeper understanding of
interesting phenomena in the contexts of large-scale dis-
tributed cyber-physical and computational infrastructures,
distributed AI and multi-agent systems, as well as biologi-
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cal networks (including, but not limited to, those arising in
computational neuroscience). In particular, several classes
of Boolean (or other discrete-valued) network or graph au-
tomata have been proposed as a suitable abstraction of the
classical networked distributed systems, various multi-agent
systems and ad hoc networks, as well as a theoretical model
for the (agent-based) computer simulation of a broad variety
of computational, physical, biological, cyber-physical, and
socio-technical decentralized systems (see, e.g., [3, 30, 41].
There has been a considerable research effort over the past
15-20 years on analytical and simulation-based investigation
of such Boolean cellular, network and graph automata; see,
e.g., [3, 2, 7, 6, 45, 46, 49]. The general approach has been to
study mathematical and computational configuration space
properties of such network or graph automata: what are the
possible global behaviors of the entire system, given the sim-
ple local interactions of its components.

We focus in the present paper on the problem of deter-
mining how many asymptotically stable configurations such
cellular and network automata have, and how hard is the
computational problem of counting those configurations. We
establish that counting FP configurations in classical Sim-
ple Threshold Cellular Automata is actually computation-
ally tractable, and outline combinatorial analysis for this
problem. In contrast, the corresponding counting problems
for seemingly only slightly more complex class of network
automata such as Sequential and Synchronous Dynamical
Systems have been shown computationally intractable (e.g.,
[49, 50, 46]). In other words, for the infrastructures that
can be modeled as networks of interacting finite state ma-
chines (FSMs), how complex their behaviors can get criti-
cally depends on how exactly different simple components
interact with one another, and whether the network is ho-
mogeneous across the nodes, or different nodes are allowed
to behave even slightly differently from each other. The
broader picture of our results is that two interesting phase
transitions in the complexity of dynamics of Boolean Net-
works can be identified. One, for the simple threshold Cellu-
lar Automata (corresponding to homogeneous ensembles of
reactive agents), the number of possible dynamics is small
for all agent update rules other than the Majority function;
and in the latter case, there are exponentially many possible
asymptotic dynamics. Two, predicting asymptotic dynam-
ics of such homogeneous systems is always computationally
feasible. However, we have then established that, when even
the smallest degree of heterogeneity is added to individual
agent behaviors and inter-agent interaction patterns, in sev-
eral such settings the worst-case complexity of predicting
asymptotic dynamics becomes intractable for nontrivial en-
semble sizes. The main conclusion is that even a very modest
differences with respect to MAS (non)uniformity can lead to
a major phase transition from imple collective dynamics that
are “easy in principle” to fully characterize, to very complex
behaviors that are provably computationally intractable to
predict.

The rest of this paper is organized as follows. In the next
section, we elaborate on the motivation behind the problems
we address. Section 3 is devoted to the necessary prelimi-
naries on Boolean networks, cellular automata and graph
automata studied in this paper, and and their configura-
tion space properties of interest. Subsequently, in Section
4 we briefly review some classical work on computational
problems about CA and related models, as well as the most

relevant recent prior art. Our main contributions are pre-
sented after the prior arts review. Finally, we summarize
our results and draw some broader conclusions in Section 6.

2. DYNAMICS OF CELLULAR AUTOMATA
& BOOLEAN NETWORKS

Most of biological, social and socio-technical systems are
inherently decentralized and distributed. An example are
human and other advanced animals’ brains. Fully decentral-
ized large-scale systems are growing in their number and im-
portance among various engineering and other man-designed
infrastructures, as well. In particular, various computational
and communication systems and networks are getting in-
creasingly distributed both logically and physically. The
sophistication and complexity of most such systems does
not stem from the sophistication of their individual com-
ponents, since functioning of those components is typically
well-understood. Rather, the challenges of effective analysis
of and forecasting about the behavior of such systems are
primarily due to nontrivial interactions among the individ-
ual components at the system level.

In order to understand the global behavioral properties
of these and many other computational, physical, socio-
economic, and socio-technical distributed infrastructures, and
to be able to at least sometimes and at least approximately
predict their long-term dynamic behavior patterns, it seems
natural to apply the methodology, tools and paradigms from
the study of discrete dynamical systems. From a compu-
tational perspective, the standard questions posed in the
distributed computing context, such as those related to var-
ious liveness, fairness and safety properties, the problems
of reaching distributed consensus among the computational
agents, and the like, can be appropriately formally phrased
in terms of the basic configuration space properties of the
corresponding formal dynamical system (see, e.g., [16, 40]).

To be able to predict the long-term behavior of various
decentralized systems and infrastructures, one may want to,
first, abstract those infrastructures and translate them into
formal dynamical systems, and, second, answer a kind of
questions like the ones above within the formal framework
of those dynamical systems. The computational hardness of
these idealized configuration space problems would then pro-
vide lower bounds on analyzing the dynamics and emergent
behavior of the actual computational and communication
networks as well as other kinds of distributed infrastruc-
tures, and on how (un)predictable their long-term behavior
can be expected to be. That is, formal computational in-
tractability of an idealized configuration space problem de-
fined for an appropriate class of cellular, graph or network
automata viewed as discrete time, discrete space dynamical
systems would imply that, in general, the long-term behav-
ior of the corresponding actual multi-agent system or other
distributed infrastructure cannot be reliably predicted. For
such systems, under the usual assumptions in computer sci-
ence, such as that P 6= NP and P 6= #P [14], there is no
short-cut to a step-by-step system execution – or, from a
modeling and simulation standpoint, to a step-by-step com-
puter simulation [7, 40].

3. PRELIMINARIES AND DEFINITIONS
We now formally introduce cellular automata and their

configuration space properties. We focus on a restricted,
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yet interesting class of CA, namely, the simple threshold cel-
lular automata [44, 45, 48]. In that context, we study (i)
characterizing what fixed point (FP) configurations of such
CA structurally look like, and (ii) determining how many
FPs simple threshold CA may have. We note, that for the
CA and Hopfield Nets whose nodes updates sequentially one
at a time, and according to any linear threshold function,
the resulting dynamics always eventually ends at a fixed
point, for any initial configuration. For the same class of CA
where the nodes update perfectly synchronously in parallel,
the asymptotic dynamics ends either at a FP, or, in certain
cases, it may end in a temporal cycle; for the parallel lin-
ear threshold CA with memory, only temporal 2-cycles are
possible, there are (for sufficiently large values of the num-
ber of nodes n) only a few such cycles per CA, and those
cycles can be computationally efficiently identified given the
number of nodes, and the update rule type and radius [45,
48]. Therefore, enumerating exactly all the fixed points of a
linear threshold CA gives us either the exact number of all
possible dynamical evolutions of the underlying system (in
scenarios for which it is known, there are no temporal cy-
cles), or else a close approximation to it (in those scenarios
where some 2-cycles may be present).

Definition 1. A Cellular Space Γ is an ordered pair (G,Q),
where G is an undirected regular graph (in general, finite or
infinite), with each node labeled with a distinct integer, and
Q is a finite set of states that has at least two elements, one
of which being the special quiescent state 0. A Cellular Au-
tomaton (CA) is an ordered triple (Γ, N,M) where Γ is the
CA’s cellular space, N is its the fundamental neighborhood,
and M is a finite state machine such that the input alphabet
of M is Q|N|, and the local transition function (update rule)

for each node is of the form δ : Q|N|+1 → Q for CA with
memory, and δ : Q|N| → Q for memoryless CA.

In this paper, we restrict our attention to CA on finite
cellular spaces with memory (and likewise with the GA gen-
eralizations of such CA). The local transition rule δ specifies
how each node updates, based on its current value and that
of its neighbors in N . By composing local transition rules
for all nodes together, we obtain the global map on the set of
(global) configurations of a cellular automaton. Our main
results in this paper are formulated in the context of the
simple threshold CA defined over particularly simple un-
derlying cellular spaces, namely, the one-dimensional (1-D)
CA defined over finite rings (and, in infinite cases, one- or
two-way infinite lines). We note, that these results can be
generalized to other, higher-dimensional Cartesian cellular
space (but the combinatorics details do get trickier with an
increase in cellular space’s dimensionality [42]).

Definition 2. A graph automaton or network automa-
ton generalizes finite CA in one or both of the following
two respects:(i) the underlying graph can be any simple undi-
rected graph (i.e., it need not be regular); and (ii) different
nodes in the graph can be different finite-state machines, i.e.,
may use different local update rules.

Throughout this paper, all update rules will be (restricted
types of) Boolean-valued functions, that is, in all of our CA
and GA models, each node can be in one of two different
states, 0 or 1; and each such node makes state transitions,
as a function of the states of some of its neighboring nodes,
according to a fixed, deterministic local update rule.

Definition 3. A 1-D cellular automaton of radius r ≥ 1
is a CA defined over a one-dimensional string of nodes, such
that each node’s next state depends on the current states
nodes away (and, in case of the CA with memory, on the
current state of that node itself).

Definition 4. A Boolean-valued linear threshold func-
tion of n inputs, x1, ..., xn, is any function of the form

f(x1, ..., xn) =

{
1, if

∑
i wi · xi ≥ θ

0, otherwise
(1)

where θ is an appropriate threshold constant, and wi are
real-valued weights.

Definition 5. Given two arbitrary Boolean vectors, X =
〈x1, x2, . . . , xn〉 and Y = 〈y1, y2, . . . , yn〉, define a binary
relation “�” as follows: X � Y if xi ≤ yi for all i, 1 ≤ i ≤ n.
An n-input Boolean function f is monotone if and only if
X � Y implies that f(X) ≤ f(Y ).

Definition 6. An n-input Boolean function g is called
symmetric if it only depends on how many of its inputs are
equal to 1, but not which particular ones. In other words,
in case of symmetric functions, the ordering in which the
inputs are specified does not matter.

Examples of Boolean-valued threshold functions that are
both monotone and symmetric include the familiar AND,
OR and Majority functions. Linear threshold functions that
are also simultaneously both monotone and symmetric are
called simple threshold functions.

Definition 7. A Threshold Cellular Automaton is a (par-
allel or sequential) cellular automaton such that its node up-
date rule δ is a Boolean-valued linear threshold function. A
simple threshold (S)CA is a CA whose local update rule δ is
a monotone symmetric Boolean (threshold) function.

We refer to the cellular automata whose nodes update ac-
cording to Boolean threshold functions that are both sym-
metric and monotone as to simple threshold CA. Of a partic-
ular interest among simple threshold CA are those with the
Majority function as their local update rule, δ = MAJ . In
the 1-D case, a node of a Boolean-valued CA with memory
that updates according to the MAJ rule will evaluate to 1 if
and only if at least r+1 out of its 2r+1 inputs are currently
in the state 1.

We next define the basic configuration space properties of
cellular and network automata. In those definitions, finite
CA with n nodes are assumed; extending the definitions to
infinite CA is straight-forward. D denotes the set of possible
states (that is, values) that a node of a cellular or network
automaton can be in. We assume D = {0, 1} (i.e.

”
the

Boolean domain) in the rest of the paper.

Definition 8. A configuration of a CA (or other kind of
discrete dynamical system) is a vector (b1, b2, . . . , bn) ∈ Dn.
The function computed by a cellular or network automaton
S, denoted by FS , specifies for each configuration C1, the
next configuration C2 reached by S after carrying out the
updates of all the nodes’ states: FS (C1) = C2. Thus, the
function FS : Dn → Dn is a global map on the set of con-
figurations; this global map defines the dynamics of a cellular
or network automaton.
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Definition 9. The configuration space (also called phase
space) PS of a cellular or network automaton S is a directed
graph whose vertices are configurations and whose directed
edges capture transitions from a configuration to its succes-
sor configuration. That is, there is a vertex in PS for each
global configuration of S; and there is a directed edge from
a vertex representing configuration C′ to that representing
configuration C iff FS (C′) = C.

Since the classes of CA we study in this paper, as well as
the related (Boolean) Network Automata, S(y)DS and (Dis-
crete) Hopfield Network models (see Bibliography), are all
deterministic, each configuration in the phase space of any
of those cellular or network automata necessarily has an out-
degree of 1 and, hence, a unique successor configuration.

Definition 10. Given two configurations C′ and C of a
cellular or network automaton S, configuration C′ is a pre-
decessor of C iff FS (C′) = C, that is, if S moves from C′
to C in one global transition step. Similarly, C′ is an ances-
tor of C if there is an integer t ≥ 1 such that FS

t(C′) = C,
i.e., if S evolves from C′ to C in one or more transitions.

In particular, a predecessor of a given configuration is a spe-
cial case of an ancestor.

Definition 11. A configuration C of a cellular or net-
work automaton S is a fixed point (FP) configuration iff
FS (C) = C, i.e., if the transition out of C is back to C itself.

Thus, a FP is a configuration that is its own predecessor.
The fixed point configurations are also often referred to as
stable configurations (esp. in the Hopfield networks litera-
ture); we use the two terms interchangeably.

Definition 12. A configuration C of a CA or a Network
Automaton is a cycle configuration (CC) if there is
an integer t ≥ 2 such that (i) FS

t(C) = C; and (ii)
FS

q(C) 6= C, for any integer q, 0 < q < t. Integer t above
is called the period or length of the temporal cycle. A
configuration C is a transient configuration (TC) if C
is neither a fixed point nor a cycle configuration.

So, C is a cycle configuration if it is reachable from itself in
two or more transitions; that is, it is its own ancestor, but
not a predecessor. In contrast, a transient configuration can
never be its own ancestor.

4. RELATED WORK
Cellular automata (CA) were originally introduced as a

mathematical model of the behavior of biological systems ca-
pable of self-reproduction [31]. Subsequently, variants of CA
have been extensively studied in a great variety of applica-
tion domains – in particular, for modeling complex physical,
biological and social systems and their collective dynamics
(e.g., [15, 17, 18, 42, 54, 55, 56]). Various computational
aspects of CA, including computational complexity of de-
termining various properties of interest, have been studied
by a number of researchers; see, e.g., [20, 8, 17, 18, 35, 36, 45,
42]. Computational complexity problems about determining
various properties of CA dynamics (for finite cellular spaces)
have been addressed in e.g. [10, 20, 28, 34, 35], and more
recently in e.g. [46, 41, 49, 50].

The first NP-complete problems for finite CA are shown
in [20]; these problems are of a general reachability flavor,

i.e., they address the properties of the forward dynam-
ics of CA. [26] studies the reverse dynamics, more specifi-
cally, the reversibility and surjectivity problems about CA.
CA backward dynamics, such as the problem of an ar-
bitrary configuration’s predecessor existence, and com-
putational complexity of that and other related problems
is addressed in [35]. In [10], Durand solves the injectivity
problem for arbitrary 2-D CA but restricted to the finite
subconfigurations only; that work contains one of the first
results on coNP-completeness of a natural problem about
CA. Further, Durand addresses the reversibility prob-
lem in the same, two-dimensional CA setting in [11].

Insofar as the most relevant prior arts on the GA general-
izations of finite CA, many such models have been proposed
over the past 30-40 years, including discrete Hopfield Nets,
Sequential and Synchronous Dynamical Systems, one-way
automata, and others. The computational complexity of an-
swering questions about the existence [7], the number [46,
49] or the reachability [6] of fixed points of an appropriate
class of graph automata can be argued to provide important
insights into the collective dynamics of multi-agent systems,
as well as of other complex physical, biological, and socio-
technical networks that are abstracted via those formal net-
work automata [7, 30, 40].

Among various proposed models of graph or network au-
tomata of interest, we mention Sequential and Synchronous
Dynamical Systems (SDS and SyDS, respectively). The SDS
and SyDS models were introduced as a formal mathematical
framework for the theory of (agent-based) simulations [27,
40]. These models have been previously applied to model-
ing, for instance, large-scale traffic systems, biological war-
fare and terror attacks, and agent-based models of epidemics
propagation. S(y)DSs are closely related to the graph au-
tomata (GA) models studied in [28, 32] and the one-way
cellular automata studied in [34]. Computational complex-
ity of determining various configuration space properties of
S(y)DSs is investigated in, e.g., [7, 6, 46, 41, 50].

Counting or enumeration problems about various types of
configurations of cellular automata, Hopfield nets and other
discrete dynamical systems have been extensively studied
in the literature, as well. However, overall, counting prob-
lems have received considerably less attention than their,
say, existence or classification counterparts. Moreover, most
of the prior art on counting different types of stable config-
urations and/or other structures of interest in discrete dy-
namical systems are of experimental nature. Namely, most
of those results are (often very loose) numerical estimates
based on statistical sampling and extensive computer sim-
ulations, rather than analytically proven exact or approx-
imate enumerations; some representative examples can be
found in [2, 22, 24, 25]. Among relatively rare interesting
theoretical studies on (in)tractability of counting problems
about CA and more general complex network models, we
single out the work by Floreen and Orponen on the compu-
tational complexity of counting various phase space struc-
tures, including but not limited to the FPs, in the context
of DHNs [12, 13, 33].

5. COUNTING FIXED POINTS IN SIMPLE
THRESHOLD CA AND GA

We now turn to the central problem: enumerating all
fixed points in simple threshold CA. The results are virtually
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identical for parallel and sequential CA, FPs being invari-
ant with respect to the node update ordering, so we won’t
bother making this distinction in the sequel. For simplicity
and clarity, we shall assume the CA with memory through-
out. We first characterize the FP configurations structurally,
and then establish the basic results on how many FPs sim-
ple threshold CA have, when defined on 1-D cellular spaces.
Similar characterizations can be readily provided for higher-
dimensional Cartesian cellular spaces; the details of combi-
natorial argument in higher dimensions get more cumber-
some, but from a fundamental computational complexity
standpoint, this problem, #FP, remains tractable regard-
less of the dimensionality. (As for non-Cartesian cellular
spaces, as far as we know, the problem of counting FPs is
still open.) Among all simple threshold rules, that is, all k-
threshold Boolean-valued functions on 2r + 1 inputs where
k ∈ {0, 1, ..., 2r+2}, arguably the most interesting one is the
Majority (MAJ) rule, for which k = r + 1 [44]. The MAJ
rule is the only among k-threshold rules that treats 0s and
1s equally. Hence, among other interesting properties, we
show that MAJ CA have much more numerous fixed points
than the CA with any other simple k-threshold node update
rule, for k ∈ {0, 1, ...r, r + 2, ..., 2r + 2} .

Lemma 1. Any fixed point configuration C of a 1-D MAJ
CA belongs to one of the following three types of configura-
tions:

(i) global configurations made of all 0s or all 1s; or
(ii) spatially periodic configurations with the spatial period

not exceeding O(r) (where the rule radius r ≥ 1 is a fixed
positive integer); or

(iii) configurations C is made of some positive number of
stable blocks of sufficiently many consecutive 0s and suf-
ficiently many consecutive 1s; i.e., there exist positive in-
tegers l1, l2, l3, ... such that C is either of the type C =
0r+l11r+l20r+l3 ... or of the type C = 1r+l10r+l21r+l3 ....

Claim (i) of the Lemma is obvious. Claim (ii) immediately
follows from the results originally established in [8], whereas
proof of claim (iii) can be found in [17]. Notice that the
configurations of Type (i) are just a special case of Type
(iii) configurations: in Type (i) configurations, there is ex-
actly one stable block of consecutive nodes in the same state
(i.e, either all nodes are in state 0 or all are in state 1). We
remark that the OR CA (where Boolean OR is viewed as “1-
threshold” function) and the AND CA (“(2r+1)-threshold”)
are only capable of fixed points of Type (i), whereas other
k-threshold rules (k 6= r + 1) are, in general, capable of
both types (i) and (ii). For example, spatially periodic con-
figuration on 3m nodes given by (001)m is stable for the
3-threshold function with r = 3 (that is, a node updates its
state to 1 iff at least 3 out of 7 of its inputs are currently in
state 1) and assuming circular boundary conditions. More
on the spatially periodic FP configurations can be found
in[45, 48]. The nontrivial non-spatially-periodic FP config-
urations of Type (iii), with an arbitrary number of stable
blocks (the only restrictions being imposed by the rule ra-
dius r and the total number of nodes n in the underlying
cellular space), however, are unique to the MAJ rule among
the simple threshold 1-D CA [45, 48]. That is, k = r + 1 is
the only one among simple k-threshold rules that allows for
FPs of Type (iii) above.

How many FPs do different simple threshold CA have?
For all the rules other than MAJ, this number of FPs is small

and can be determined by examining a constant number of
“neighborhood” (sub)configurations of at most O(r) nodes,
where we recall that r ≥ 1 is an arbitrary, but fixed positive
integer. For example, for And and Or CA, the only two FPs
are the configuration made of all 0s and the one made of all
1s. For (k, r) = (3, 3) CA, in addition to these two, the only
other FPs are the ones of type (ii); more specifically, the
only such FP configurations are of the general form1 (001)m

where m is a positive integer, or (001)ℵ0 in the infinite at-
least-3-out-of-7 CA case.

In case of the MAJ update rule on 1-D CA, we establish
the following fundamental result:

Theorem 1. (The Main Theorem) Let a MAJ parallel
or sequential CA be given on a finite 1-D cellular space, and
let n be the total number of nodes. Then this MAJ CA has
a number of fixed points that is exponential in n.

The estimation of the total number of Type (iii) FPs in
such MAJ CA is based on a conceptually relatively straight-
forward, combinatorially cumbersome counting argument (see
Appendix). Only a few more FPs are then to be added to
obtain the total FP count – those that are of Type (i) (ex-
actly two of them) and of Type (ii) (still only a few, but the
exact number of Type (ii) FPs in general depends on rule
radius r and the total number of nodes n).

Proof idea: We outline the combinatorial methodology
and the main ideas behind determining the exact number of
FPs of MAJ 1-D CA. Details can be found in Appendix.

First, we note that establishing the exact number of FPs
of types (i) and (ii) in Lemma 1, given the values of pa-
rameters n and r, is fairly straight-forward. Therefore, the
challenge is to determine the number of FPs of Type (iii).
This number can be obtained by the summation over the
number of FPs made of exactly l stable blocks, for l ≥ 2.
To establish an exponential lower bound on #FP of Type
(iii), we show that, for l sufficiently large, there are expo-
nentially many fixed point configurations made of exactly l
stable blocks alone. Mathematical tools used to establish
this lower bound are generating functions and Stirling’s for-
mula; see Appendix for details. Consequently, it then follows
that the total number of FPs, across all possible values of
the number of stable blocks l, also must be exponential as a
function of the number of nodes n.

Proof details: The claim of the Theorem is that |#FP |
is exponential in n. To establish that result, it suffices to
establish an exponential lower bound for |#FP |. Assume a
1-D Boolean Majority CA has a fixed rule radius r ≥ 1 and
n nodes. Since r is fixed, without loss of generality, assume
n � r. For notational convenience, let’s assume circular
boundary conditions and that the number of nodes n is even.
(The analysis for other types of boundary conditions and n
arbitrary is similar.)

Let’s consider all FPs that are made of exactly l stable
blocks, where l ≥ 1 and each block is of length at least r+1.
Recall that by a stable block we mean consecutive nodes
that are either all in state 0 or all in state 1, and so that
none of them can change their state ever in the future, given

1Note: the exact form of the type (ii) FP depends on the
details of the boundary conditions; e.g., 1001001 is a FP
for appropriate fixed boundary conditions but not for the
periodic boundary conditions, and vice versa in case of con-
figuration 001001.
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the node update rule (δ = MAJ in this case) and a fixed
rule radius r ≥ 1. We want to determine the exact number
of FPs made of exactly l blocks. For l = 1, the answer
is two: these are the two configurations of Type (i) above,
0n and 1n. For l = 2, there are exactly n · (n − (2r + 1))
different FPs, each made of exactly two stable blocks. Let’s
consider the number of FPs with a single block of exactly
r + 1 consecutive zeros. We outline how is this number
obtained. Due to the wrap-around effect of the assumed
circular boundary conditions, there are exactly n such FPs
(as the beginning of that block of consecutive zeros can be
at any of the nodes v1, v2, ..., vn). Similarly, under the same
assumptions, there are exactly n FP configurations made of
a stable block of exactly r+ 2 zeros and n− r− 2 ones, etc.

Let’s generalize the above argument to all possible sizes
of the two stable blocks (one block of consecutive 0s and
one block of consecutive 1s). Let bs(0) denote the actual
number of consecutive zeros in a FP. Clearly, bs(0) ranges
from r+1 (the minimum possible number of consecutive 0’s
so that this block of zeros is stable) to n−r−1 (the maximum
number of consecutive zeros, corresponding to the minimum
possible number of consecutive ones, since bs(1) = n−bs(0)).
Therefore, there are exactly n−2r−1 possible distinct values
of bs(0), and for each, there are (under the circular boundary
conditions assumption) exactly n FP configurations with a
single block of bs(0) zeros and a single block of bs(1) =
n− bs(0) ones. This gives the total of n · (n− (2r + 1)) FP
configurations made of exactly two stable blocks (one block
of 0s and one block of 1s).

The above analysis can be generalized to an arbitrary
number of stable blocks l ≥ 2. In doing so, care needs to
be taken not to count certain configurations multiple times.
That can be accomplished by appropriately applying the
inclusion-exclusion principle from classical combinatorics.

Example: should the configuration 0r+31n−2r−70r+4 be con-
sidered as made of two stable blocks, with bs(0) = 2r+7 and
bs(1) = n−2r−7, or of three stable blocks, of lengths r+3,
n−2r−7 and r+4, respectively? If we count this configura-
tion among the two-block FPs (per analysis above), then we
need to apply an appropriate exclusion principle to ensure
that we don’t also count it among the FPs with l = 3.

However, the details of these combinatorial considerations
do not change the fact that, for each l, determining the
number of FPs made of exactly l stable blocks can be done
computationally efficiently. The total number of FP config-
urations of Type (iii), then, is obtained by summing over
all “eligible” values of l. Most importantly from a computa-
tional standpoint, this process can be completed in time that
is (low-degree) polynomial in n, and hence, by the previous
discussion, the total number of FPs of the 1-D Majority CA
(defined on finite lines or rings) can be determined efficiently.

Applying the combinatorial technique of generating func-
tions to the expression for the number of FPs made of ex-
actly l stable blocks, it follows that, given an l ≥ 2, there
are at least

|#FP (l)| ≥ 2
(n− rl − 1)!

(l − 1)! · (n− rl − l)! (2)

fixed points made of exactly l stable blocks (where the mul-
tiplicative factor of 2 comes from “flipping zeros and ones”
and, being constant, will be ignored in the derivations that
follow to simplify the notation).

A lower bound on the total number of FPs of Type (iii)

can then be obtained by summing over all l, for 2 ≤ l ≤ n
r+1

.
Therefore, the total number of FPs of all three possible types
satisfies the lower bound

|#FP | ≥ 2

n
r+1∑
l=1

(n− rl − 1)!

(l − 1)! · (n− rl − l)! (3)

(Note: generating functions are the standard tool com-
monly employed in the context of enumerating various types
of integer partitions. Due to space constraints, we intention-
ally omit discussing the relationship between an old math-
ematical problem of integer partitioning, and our problem
of enumerating FPs on a 1-D Majority CA. We will discuss
the relationship between the number of distinct partitions
of a positive integer n and the number of FPs of types (i)
and (iii) of a 1-D CA defined on a ring of n nodes and with
δ = MAJ in the expanded, journal version of this paper.)

To establish the claim that |#FP | grows exponentially
with n, it suffices to show that there are exponentially many
FPs made of exactly l′ stable blocks for a particular, care-
fully selected value of l′ ∈ {2, ..., n

r+1
}. We observe that

the number of FPs of type (iii), in general, decreases as the
rule radius r increases, simply because the size of the small-
est stable block of consecutive 0s or consecutive 1s increases
with r. Without loss of generality, assume r ≥ 2 and let’s
consider l′ = n

2r
. We will show that there are exponentially

many FPs made of exactly l′ stable blocks; the claim of the
Theorem will then immediately follow, as the total number
of FPs across all permissible values of parameter l will surely
be greater than |#FP (l′)| for a single value of l′.

Substituting l = n
2r

in Eqn. (2), and ignoring the multi-
plicative constant 2, we obtain

(n− r · n
2r
− 1)!

(n− r · n
2r
− n

2r
)! · ( n

2r
− 1)!

=
(n
2
− 1)!

(n
2
− n

2r
)! · ( n

2r
− 1)!

(4)

To simplify the notation, let m = n
2

. Applying Stirling’s
formula to the expression in Eqn. (4), and simplifying the
numerator and the denominator, we obtain

α(m) · (1 +
m− r
m(r − 1)

)m(1−1/r) · ( m− 1

m/r − 1
)
m
r
−1 =

α(m) · (1 + β(m, r))m(1− 1
r
) · (1 + γ(m, r))

m
r
−1 (5)

where α(m) ∼ 1√
m

, and β(m, r) and γ(m, r) are strictly

greater than 1. Moreover, under the assumption that m =
n/2� r, β will be bounded away from 1; in particular, when
r < m/2, we have m−r > m/2, and hence β(m, r) > 1

2(r−1)

for all such m = n/2. Lastly, γ(m, r) can be simplified to
m(r−1)
m−r

> (m−r)(r−1)
m−r

= r− 1, implying that for all values of

m and r, 1+γ(m, r) ≥ r ≥ 2. Therefore, the crude estimate
for |#FP (l′)| in equation (5) satisfies

α(m) · (1 + β(m, r))m(1− 1
r
) · (1 + γ(m, r))

m
r
−1 >

>
C√
m
· (1 +

1

2(r − 1)
)m(1− 1

r
) · 2

m
r
−1 (6)

for some positive constant C. Consequently,

|#FP (l′)| ∼ α(m) · (1+β(m, r))m(1− 1
r
) · (1+γ(m, r))

m
r
−1

is exponential in m and therefore also in n = 2m, and there-
fore the claim of Theorem 1 immediately follows.
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Corollary 1. The exact number of FPs of a 1-D MAJ
(parallel or sequential) CA on n nodes is an exponential
function of the number of nodes that can be evaluated com-
putationally efficiently.

With the above results, we can now fully characterize the
number of FPs of 1-D CA for all possible simple threshold
update rules:

Lemma 2. Given a radius r ≥ 1, for every integer k such
that 0 ≤ k ≤ 2r+ 2, the exact number of fixed point configu-
rations |#FP | of a 1-D CA on n nodes with the k-threshold
node update rules can be efficiently determined (i.e., this
problem is in the complexity class P.)

• In general, |#FP | depends on r, k, n and the boundary
conditions.

• For k 6= r + 1 (that is, for all simple threshold rules
other than MAJ), |#FP | = O(n) (where n is the total
number of nodes).

• In contrast, for k = r + 1 (that is, the MAJ update
rule), we have |#FP | = Ω((1 + β)n) for some positive
real number β.

Proof idea: Finite 1-D CA with any simple threshold
update rule that isn’t the Majority function can only have
FPs of Type (i) and Type (ii) in Lemma 1. There are only
O(n) possible fixed points of Type (ii), hence the second
claim of this Lemma; see e.g. [45] for details. That #FP
is exponential for the Majority CA follows from Theorem 1;
the proof of our main result also outlines the combinatorics
via which one can establish the number of FPs of Type (iii);
and we have argued elsewhere, that the number of FPs of
Types (i) and (ii) can be effectively determined for all simple
threshold functions, including the Majority rule [45].

We note that our main results above also hold for the
higher-dimensional Cartesian grids; for example, in 2-D, we
have established that #FP for the Majority rule is expo-
nential in the number of nodes n on the square/rectangular
grids, as well as on the tori (as 2-D Cartesian grids with
“wrap-around”, that is, circular boundary conditions). While
combinatorics is somewhat more involved in Cartesian grids
of dimensionality 2 or higher, the crux of the argument is
the same as what we have shown for 1-dimensional lines and
rings. Likewise, the number #FP for simple threshold rules
other than Majority, on higher-dimensional cellular spaces
such as rectangular grids and tori (for 2-D), remains rela-
tively low (in particular, O(n)), and can be efficiently de-
termined. We leave out details due to space constraints.
Instead, we shift our focus to the Boolean Networks and
Graph Automata with simple threshold update rules that
only slightly generalize the classical CA with those same up-
date rules we have been discussing so far.

We recall, that CA as an abstract model for large MAS
is appropriate only in those situations where i) the under-
lying multi-agent system is highly homogeneous, that is, in
a given environment, all agents behave the same way; and
ii) the pattern of inter-agent interactions is also highly ho-
mogeneous or regular. So the natural question arises: what
are the implications for the asymptotic dynamics in general,
and the problem of enumerating #FP and other types of
configurations in particular, when the general type of the

local behaviors (that is, linear threshold update rules) are
kept the same as before, but we allow for some amount of
heterogeneity in local interactions and/or in the underly-
ing “network topology”? In particular, can provably more
complex asymptotic behavior be obtained, if one or both
among the network structure (i.e., “cellular space”) and the
local interactions (that is, node update rules) are made only
slightly more general than what has been the case with the
finite Simple Threshold CA discussed so far? Justifying
such ‘slight generalizations” from a MAS standpoint is easy:
whether we are modeling a cyber-physical, socio-technical or
biological multi-agent system, completely uniform behaviors
across all agents in the ensemble, as well as complete unifor-
mity of the underlying network topology, are an exception,
not the rule. Now, that sufficiently complex local behaviors
and/or inter-agent interaction patterns can lead to a highly
complex collective dynamics, would not come as a surprise.
However, we have been particularly interested in the situ-
ations where the MAS network’s structural complexity (in
terms of the underlying cellular spaces or graphs) as well
as heterogeneity in terms of local behaviors are only rather
slightly more general, or complex, than those found in the
Simple Threshold CA – yet whose dynamics are much more
complex and in particular harder to predict, than what we
have seen insofar as Simple Threshold CA dynamics.

It turns out, that it does not take much of “making Sim-
ple Threshold CA more general” with respect to either the
network structure or the non-uniformity in local behaviors,
to obtain provably very complex dynamics. In particular,
our next result shows that, when a Simple Threshold CA
is only slightly generalized, a major phase transition in the
complexity of predicting the resulting model’s dynamics in
general, and to enumerate its FPs in particular, takes place
almost immediately. We recall that, under the usual as-
sumptions in computational complexity theory, if a counting
or enumeration problem is #P-complete, that means that
exactly enumerating the combinatorial objects of interest (in
our case, Fixed Points of a Boolean Network or Graph Au-
tomaton) is intractable except for the very small values of
the problem parameters (in our case, the number of nodes
in a CA, GA or Boolean Network).

Theorem 2. Consider a graph automaton defined over a
uniformly sparse graph, and with all local update rules being
simple threshold Boolean-valued functions. Enumerating all
FPs of such a GA is #P-complete, even when the following
restrictions are simultaneously imposed: i) each node in the
graph has at most 3 neighbors (in particular, the result holds
for 3-regular underlying graphs); ii) the heterogeneity in local
behaviors is minimal, i.e., each node “gets to choose” from
just two given simple threshold update rules.

Proof sketch: The original variant of this fundamental re-
sult was originally established by us for the aforementioned
Sequential and Syncrhonous Dynamical Systems in [50]; sub-
sequently, in [43], we have also established another variation
of this hardness-of-counting result for uniformly sparse dis-
crete Hopfield Nets, as well. The approach to establishing
these hardness of counting results is to construct a weakly
parsimonious reduction, that is, a polynomially-computable
reduction that (approximately) preserves the number of so-
lutions, from a known #P-hard counting problem to our
problem. To that end, we have taken advantage of the re-
sults about the hardness of counting all satisfying truth as-
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signments to a Monotone 2CNF Boolean formula (2-Mon-
CNF). Moreover, since this hardness of counting still holds
when the underlying 2-Mon-CNF is a sparse formula, that is,
one in which each literal (a Boolean variable or its negation)
occurs in only O(1) clauses [21, 51], the weakly parsimonious
reductions from #2-Mon-CNF to #FP of various GA and
DHN models establish the #P-hardness of the problem of
enumerating #FPs for several types of those Boolean Net-
work, DHN and Graph Automata models. (Note, that it
is immediate that this counting problem, for all finite un-
derlying GA, CA and Boolean Network models, belongs to
the class #P; so, once the hardness part is established via
the weakly parsimonious reductions as elaborated upon in
our prior work [50, 43], the claimed #P-completeness of
counting FPs of the Boolean Networks and other models of
interest follows immediately.)

To summarize, the FP configurations of simple threshold
CA on finite cellular spaces can be very few (such as, in most
extreme cases, only two for AND and OR rules) or exponen-
tially many (for the MAJ rule); yet, either way, their exact
number can be computationally efficiently determined. This
is in stark contrast with respect to other, slightly more gen-
eral types of binary-valued network automata such as the
aforementioned SDSs and SyDSs, as well as discrete Hop-
field networks, whose nodes update according to (possibly
different) simple threshold update rules. In fact, in case
of the S(y)DS network automata, for many classes of re-
stricted update rules and underlying graphs, even approxi-
mate counting of their FPs is, under the usual assumptions
in computational complexity theory, provably computation-
ally hard [49, 46, 50].

6. CONCLUSIONS
As a step toward understanding the collective behavior

of various large-scale multi-agent and other decentralized
systems, we adopt a formal dynamical system approach to
abstracting and then mathematically analyzing those sys-
tems and their formal dynamics. The primary methodolog-
ical approach to studying properties of a dynamical system
is to study its configuration space. In this paper, we con-
sider a restricted class of cellular and graph automata mod-
els of large multi-agent ensembles viewed as discrete-time,
discrete-state dynamical systems.

We have specifically focused on the problem of counting
how many fixed point configurations such dynamical systems
have, when each of their nodes has only two different states,
and each such node updates according to a simple threshold
Boolean function. In the case of classical (finite) CA, where
every node updates according to the same rule, the counting
problem of our interest can be shown to be computation-
ally tractable and therefore easy to solve explicitly, at least
in principle. In contrast, when different nodes are allowed
to compute according to different simple threshold update
rules, and the underlying network topology is (slightly) more
general than that of CA defined on Cartesian cellular spaces,
a phase transition in the complexity of determining the num-
ber of fixed points occurs. This has been demonstrated for
binary-valued SDS, SyDS and DHN models, where it’s been
established that the corresponding counting problems are,
in general, computationally intractable [50]. Therefore, an
agent ensemble that can be abstracted as a deterministic cel-
lular or graph automaton may display a straight-forward to
predict behavior, or a provably complex behavior, depending

on the specifics of the inter-agent local interactions, that is,
how exactly the network’s nodes interconnect and interact
with one another, and how homogeneous is this network of
agents in terms of possible different types of local behaviors
– even when the allowable local behaviors are restricted to
Boolean simple threshold functions (inspired by the simplest
models of neurons and other biological networks).

In summary, we have identified two interesting phase tran-
sitions when it comes to (un)predictability of the asymptotic
dynamics of a restricted class of CA and GA abstractions of
large-scale MAS. First, among homogeneous MAS (in which
all reactive agents change their local states according to the
same deterministic Boolean-valued function), if local behav-
iors are restricted to simple threshold update rules, then
the total number of stable configurations (and consequently,
the total number of possible dynamic trajectories) is fairly
small (at most linear in the number of agents), for all rules
but one. The ”exception” rule is the MAJORITY rule, for
which there are exponentially many Fixed Points and there-
fore possible dynamic trajectories. Second, once we allow
for modest heterogeneity in local behaviors, the complexity
threshold is immediately crossed: a MAS where each agent
still updates according to a simple threshold rule, but not
all agents have to use the exact same rule, in general have
unpredictable dynamics. Moreover, presence of just two dif-
ferent local behaviors is sufficient is sufficient for this phase
transition in dynamics complexity. In particular, enumerat-
ing all fixed points (and, by extension, all possible dynamic
trajectories) of such a simple network of agents is provably
computationally intractable, even when each agent has at
most (or exactly) three neighbors, and a choice of only two
simple threshold update rules.
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