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ABSTRACT
Warehouse commissioning is a complex task in which a team
of robots needs to gather and deliver items as fast and effi-
ciently as possible while adhering to the constraint capacity
of the robots. Typical centralised control approaches can
quickly become infeasible when dealing with many robots.
Instead, we tackle this spatial task allocation problem via
distributed planning on each robot in the system. State
of the art distributed planning approaches suffer from a
number of limiting assumptions and ad-hoc approximations.
This paper demonstrates how to use Monte Carlo Tree Search
(MCTS) to overcome these limitations and provide scalabil-
ity in a more principled manner. Our simulation-based eval-
uation demonstrates that this translates to higher task per-
formance, especially when tasks get more complex. More-
over, this higher performance does not come at the cost of
scalability: in fact, the proposed approach scales better than
the previous best approach, demonstrating excellent perfor-
mance on an 8-robot team servicing a warehouse comprised
of over 200 locations.
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1. INTRODUCTION
Multi-robot systems are becoming more common in indus-
try. It is expected that technology will revolutionise the
Factories of the Future (Industry 4.0 ), leading to factories
with networked devices and mobile manipulation platforms.
Particularly important will be a paradigm shift from fixed
robots to more flexible general-purpose mobile robots. An
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important problem in Industry 4.0 is multi-robot warehouse
commissioning, where robots fetch and deliver items.

A crucial aspect of warehouse commissioning is the coor-
dination of which worker delivers and fetches which item.
Currently, with human pickers, this task is tackled using
pre-computed pick lists [14]. These pick lists are generated
centrally by the warehouse management system and then
executed statically, which means that the pickers cannot be
re-assigned when en-route.

In robotics, this problem has been framed as a Multi-Robot
Task Allocation problem (MRTA) [13]. MRTA approaches
assign a set of tasks to the robots, which then execute these
from start to finish. A common solution to MRTA are auc-
tions where each robot bids for the tasks according to its
own evaluation. While well studied [6, 11] and conceptu-
ally clear, these approaches can lead to two shortcomings:
First, in a highly adaptive and changing environment, new
tasks are likely to appear while the robots are on their way.
However, the static assignments mean that the robots can-
not respond accordingly. Second, these approaches typically
require a centralised task allocation component, which may
hinder scalability, flexibility and robustness.

In order to address these drawbacks, a new formal frame-
work of spatial task allocation problems (SPATAPs) was in-
troduced that describes how a team of agents interacts with
a dynamically changing set of tasks, where the tasks are
spatially distributed over a set of locations in the environ-
ment [9]. SPATAPs form a sub-class of Multi-Agent MDP
(MMDP) [4] problems, which themselves are an extension of
Markov Decision Processes (MDP) [20] to multiple agents.
These models have the advantage of providing principled
solutions under uncertainty of action outcomes and provide
clear definitions of optimality. In particular, the SPATAPs
framework is ‘action-based’ in the sense that is treats moving
and working on a task alike, as actions.1. This means that its
reasoning takes place at a much more fine-grained level than
MRTA approaches; the SPATAPS framework facilitates rea-
soning about all such actions in order to maximize expected
utility. For instance, a longer route to a currently targeted

1If desired, the acronym can also be interpreted as spatial
action-based task allocation problems
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task might be preferable if it brings the robot closer to lo-
cations where it is likely that high-priority task appear in
the near future, or robots may position themselves in good
locations even without the presence of any tasks. Even if it
would be possible to extend MRTA approaches to allow for
dynamical reallocation in case that new tasks arrive, they
will be inherently incapable of planning for such contingen-
cies, which is exactly what SPATAPS do allow.

As a SPATAP is an MMDP, it can be solved using MMDP
solution methods. However, such methods are centralised
with mentioned drawbacks. Moreover, these solutions do
not scale well, due to the exponential explosion of state and
action spaces when introducing more agents and tasks. An
alternative approach is to tackle these problems using dis-
tributed online planning. That is, rather than centrally com-
puting an optimal plan for all agents, each agent in parallel
tries to compute a plan for itself. Such a decentralised ap-
proach has the benefits that it is robust against failure since
there is no centralised planner, and flexible in that it allows
to easily introduce more robots if required. An empirical
study showed that such a decentralised approach for SPAT-
APs yields promising results in comparison to solving the
MMDP and other baselines [9]. Still, some limitations re-
main: the approach was demonstrated to scale to 60 nodes,
which —while still resulting in more than 6× 1030 states—
is far from the scalability desired in real-life warehouse com-
missioning tasks. Moreover, it relies on a number of rather
ad-hoc approximations to keep the state space over which is
actually planned small.

Since Monte Carlo Tree Search (MCTS) [17] methods al-
low for an effective treatment of problems with large num-
bers of states, this paper investigates how such methods can
be used to overcome the mentioned limitation. In particu-
lar, we propose a number of computationally cheap rollout
strategies that are specific for SPATAPs, and discuss how
these relate to prior work [25, 6]. We also investigate how
certain domain-specific modifications of MCTS used in the
Scotland Yard game [19] can be transferred to SPATAPs.

Additionally, we extend SPATAPs to facilitate more real-
istic modelling of commissioning warehouse tasks by includ-
ing a drop-off point, i.e tasks have to delivered to a depot
location. We further impose a maximum capacity constraint
on the robots, such that they can only perform a limited
amount of pick-ups before they have to return to the depot
location to drop off their load.

Extensive empirical evaluations show that our MCTS ap-
proach leads to significantly higher task performance, espe-
cially for more complex problems. Moreover, we also show
that the approach scales better than the previous state of
the art, demonstrating excellent performance on an 8-robot
team servicing a warehouse comprised of over 200 locations.

2. RELATED WORK
The work of [14] relates to this research w.r.t. order pick-

ing and batching. Such approaches usually only generate
static pick lists, which are then statically executed. They
do not allow for online re-planning or changing the task al-
locations during execution. Furthermore, they do not run
in a decentralised fashion.

Auction-based approaches can be found in [1, 7]. These do
not address the sequential and changing nature of the tasks,
since they assume tasks to be static. Auctioning also gen-
erally relies heavily on communication, while our approach

only needs the locations of the other agents. Summariz-
ing, [22] found “that the advantages of the best auction-
based methods are much reduced when the robots are phys-
ically dispersed throughout the task space and when the
tasks themselves are allocated over time”.

Another related topic are general resource allocation prob-
lems [26]. The problem we address differs from that line of
work in that we allow re-allocation at every time step and
consider spatially distributed tasks and travel times.

Some related work, that is also using MCTS for solving
task allocation problems is described in [15]. However, they
deal with MRTA problems with time constraints, i.e. a static
task set. A complete plan is computed beforehand in a cen-
tralised fashion and then executed, while with SPATAPs we
are able to recompute the plan online at every change of the
global state.

Generally, most competing approaches based on task al-
location methods suffer from the problem that agents do
not anticipate future tasks, and/or rely on communication
between the agents.

3. PROBLEM DESCRIPTION
In warehouse commissioning, a team of agents needs to

service a set of tasks distributed in the warehouse. These
tasks are single item orders that have to be fetched from
within the warehouse and brought back to the depot. Orders
can be placed at any given time, so that new tasks appear
over time.

A typical warehouse layout is a rope ladder [23], depicted
in Figure 1. In this layout, the items are stored in shelves
that are organised in aisles with some cross aisles. The
shelves can have multiple compartments at different heights.
This environment can be represented as a graph G with a set
of nodes N and edges E as overlaid in Figure 1. Each node
represents a position in the warehouse where the agent can
reach a number of storage compartments, on both sides of
the aisle and at different heights. This limits the planning
complexity without a loss in accuracy, since we assume that
the agent can pick from different sides and heights equally
well. One node is defined for the depot to which the or-
ders have to be brought, marked in red in Figure 1. The
agents have a limited inventory, i.e. they can pick and store
a limited number of items, before they have to return to the
depot to clear their load.

The agents can move along the edges in the graph. Each
edge can have different costs, e.g. edges moving through free
space could be quicker than moving along a shelf. There is
also the possibility that movement is unsuccessful for the
agent, due to wheel slip or other uncertainties.

Orders are mapped to the locations in the graph and ap-
pear as tasks at the corresponding nodes. We assume that
the distribution of the orders is known, e.g. by analyzing
order histories. Therefore, we can model the probabilities
of tasks appearing for each location. More specifically, each
node has a given chance p that a task appears in the next
time step t, and p is known to the agents. The tasks can
have different costs c.

3.1 SPATAPs
The commissioning problem can be modeled as a SPATAP,

which is a special case of factored MMDPs, i.e. the state
space is spanned by a set of state variables. We expand the
model with inventory states, leading to the following defini-
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Figure 1: A rope ladder warehouse, with two blocks of
shelves and a drop off depot. Overlaid is the resulting navi-
gation graph from the warehouse model.

tion of a commissioning SPATAP. For more details, please
refer to [9].

Definition 1. A commissioning SPATAP is defined as a
tuple

〈
D,G, I, T ,S,AM ,AT ,A, PM , PT , RM , RT

〉
, whereD

is the set of n agents, G = 〈N , E〉 is a graph comprised of a
set of nodesN and edges E . Further, I = {Iempty, . . . , Ifull}
describes the set of inventory states per agent and T =
{T0, . . . ,T|T |} is the set of task states per location nx. S de-
fines the set of states s, which can be factored as s = 〈λ, ι, τ〉,
where λ and ι are the respective vectors of the locations and
inventory states of all agents, and τ is the vector of the task
status for all locations. AM and AT are the sets of move-
ment and task actions respectively, i.e. each agent i can
choose an action ai ∈ AM ∪AT and a = a1 . . . an is the com-
bined action for all agents. A is the set of all possible joint
actions. PT = Pr(τ ′, ι′|τ, ι, λ, a) define the task and inven-
tory transition probabilities, and PM = Pr(λ′|λ, a) models
the changes in agent locations. RT (τ, λ, ι, a) and RM (λ, a)
define the rewards for the tasks and the movements.

In our setting, the possible movement actions AM are
either staying or choosing any outgoing edge to go to the
next node. The task related actions are defined as AT =
{PERFORM TASK, CLEAR LOAD}. The task transition
function models the execution of a task, e.g., when an agent
performs a task at a node and the inventory of the agent
is not yet exceeded, then the task state of the node and
the inventory of the agent are updated, and it also models
the exogenous events of new tasks appearing, i.e. by orders
being placed.

3.2 Solving SPATAPs
While using the factored components enables us to rela-

tively easily simulate the environment, already enumerating
all possible states may prove difficult, since the resulting
state space is equal to |S| = |N ||D| · |I||D| · |T ||N|. The
size depends exponentially on the number of agents and the
number of locations.

The approach Empathy by fixed weight discounting
(EFWD) [9] introduces two orthogonal approximations to
enable online planning in the class of SPATAPs.

The first approximation in EFWD is an aggregation of
the effect of other robots in the area by using their locations
as a proxy to predict their future actions. More specifically,
a presence mass is calculated over the locations for each

timestep into the future. This is the probability distribu-
tion of any other agent being at a given location at that
timestep. It is calculated using a self-absorbed (SA) policy,
i.e. planning while ignoring the presence of the other agents.
Thus, we can generate the reward function and transition
functions such that they only depend on the actions of the
planning agent. As a second approximation, the state space
is reduced by a subjective phase myopic approximation, i.e.
the set of nodes where tasks can appear in the planning pro-
cess of each agent is limited to the k-nearest nodes which
already have tasks present.

4. MONTE CARLO TREE SEARCH FOR
SPATAPS

A shortcoming of the previous approach is that limit-
ing the state space can lead to unwanted outcomes. For
instance, using a phase-myopic approach that only consid-
ers the nodes with currently active tasks might lead to the
agents not moving at all if there is currently no task present.
This could lead to large losses in performance compared to
already moving towards the most likely positions where the
next tasks may appear.

In this paper, we adopt the basic principle of distributed
planning, including the need to (approximately) model other
agents, but we seek a more principled way of dealing with
the complexity of the individual planning tasks. In particu-
lar, rather than limiting the size of the state space of these
problems with ad-hoc approximations, we build on princi-
pled methods to deal with large state spaces. We build upon
sample-based planning methods whose performance is inde-
pendent of the size of the state space [16].

4.1 Monte Carlo Tree Search
Monte Carlo Tree Search (MCTS) is a simulation based

search algorithm [17, 10]. It has been very successful, e.g., in
general game playing [5] and computer Go—it is the basis for
AlphaGo [24]. The main intuition behind MCTS is that by
using Monte Carlo simulations to quickly sample thousands
of possible trajectories, we can achieve good approximations
of the values of possible actions. While doing these Monte
Carlo simulations, a search tree, which stores statistics used
to guide the search, is built incrementally starting from just
a root node. When ‘inside’ the search tree, the statistics are
used to select the most promising actions, when ‘outside’ the
tree, action selection is guided by (computationally cheap)
rollout policies.

We base our work on UCT [17], which uses UCB1 [2] to
select actions inside the tree. UCT, however, is not directly
amenable to distributed planning for SPATAPs. There are a
number of challenges that need to be overcome: First, there
is an issue with the extremely large number of states we want
to consider. Second, it turns out that it can be important to
incentivize agents to do tasks themselves, rather than relying
on other agents to do them. Finally, a major difficulty is how
the planning agent can predict the behaviour of other agents.
Previous work based such predictions on full solutions of the
‘self-absorbed’ MDP, but this is not feasible for the problem
sizes we want to consider, and is too slow for application in
a MCTS rollout policy. In the remainder of this section, we
propose a number of techniques addressing these issues.
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4.2 Huge State Spaces: Sparse UCT
While MCTS methods can deal with fairly large state

spaces, huge state spaces are problematic. If the number
of states reachable from a given state by a given action is
very large for example, it can lead to the algorithm always
being ‘outside the tree’ and never building up meaningful
statistics. This is a problem in SPATAPs: due to tasks ap-
pearing at random nodes, it is very unlikely in our problem
setting that choosing the same action from the same state
would ever lead to the same successor state twice.

To deal with this problem, we propose to use Sparse UCT [3]
for SPATAPs, which builds upon ‘Sparse Sampling’, an on-
line planning method whose performance is independent of
the size of the state space [16]. The main idea behind Sparse
Sampling is that it is sufficient to sample, for each visited
node and action, only some constant number w of succes-
sor nodes. We therefore keep track of how many successor
states have already been created for the same state and ac-
tion, and if the sample width w is exceeded, we return a
random existing successor state instead of sampling a new
one.

4.3 Incentivizing Agents: DIY Bonus
Accurately modelling the behaviour of the other agents is

a fundamentally difficult problem (which we treat in the next
sub-section), and it is unlikely that an agent will be able to
make perfect predictions about what tasks will be addressed
by the other agents. However, incorrectly assuming that an
important task will be addressed by a team mate can lead
to high costs. Therefore, in the face of such uncertainties, it
might be good if agents have a slight preference to do tasks
themselves.

The inspiration from this comes from the cooperative game
of Scotland Yard, where it has been shown that the planning
agent sometimes relies too much on other agents fulfilling
their task of catching the ‘hider’ [19]. The authors propose
to discount the value of a successful rollout by r ∈ [0, 1] if
a different agent than the planning agent caught the hider.
This idea cannot be directly translated to our approach,
since we have no definition of ‘successful rollout’. How-
ever, since we also observed the behaviour that the plan-
ning agents were relying too much on the other agents to
perform a task, we propose a do-it-yourself (DIY) bonus
if a task is performed by the planning agent. The action
PERFORM TASK is awarded an additional bonus DIYr ∈
[0, 1] if it is performed by the planning agent. If the bonus is
too small, especially in symmetric configurations, there can
be a tendency for no agent to do the task; if it is too high,
both agents tend to try to perform the task.

4.4 Modelling Other Agents: Greedy Rollout
Policies

Good predictions of team mates are critical for the suc-
cess of any distributed planning approach. For an approach
based on MCTS this is even more difficult, since action pre-
dictions for other agents are needed in every step of every
simulation. This means that the predictions should not only
be sufficiently accurate, but also computationally cheap.

For this purpose we introduce three greedy heuristics for
SPATAPs. We do not only use them to predict the actions
of other agents (both ‘inside’ and ‘outside’ of the tree), we
also use them as the rollout policy for the planning agent
(only ‘outside’ the tree), which performs much better than

Algorithm 1: Reverse Greedy

Input : s: state < λ, ι, τ >
Output: a: actions for all agent

Let V be a vector of size |D|
Assign V [i]←∞ ∀i ∈ D
foreach nx ∈ N do

vbest ← maxi∈DNV(nx, i)
abest ← Index(maxi∈DNV(nx, i))
if vbest > V [abest] then

a[abest]← GoTo(nx, abest)
V [abest]← vbest

return a

a random rollout policy as we show empirically. All three
approaches are based on heuristic valuations of how much
value each agent i can generate for each task location nx.
The evaluation function we use is defined as follows:

NV(nx, i) =

{
−∞ if τnx = Tempty
TV(τnx ,ιi)

dist(λi,nx)
otherwise

(1)

where Tempty means that there is no task present, dist(λi, nx)
is the length of the shortest path from the agent i to the node
nx and TV(τnx , ιi) denotes an evaluation of the task status
at node τnx , given the current inventory status of the agent
ιi. In our case this is the largest sum of the cost values of
the tasks at the node that can still fit in the inventory of
the agent, i.e. we keep adding the task with the highest
available cost until either the inventory is full, or there is
no task left. This function TV can be used to influence the
agents’ behaviours. It could for instance also include other
factors such as the time the task is already active, if older
tasks should be valued higher. As NV is a reward function,
we aim to maximise its value.

For all three heuristics, we assume that if an agent is at its
capacity limit, it will choose the shortest path to the depot
and unload. These agents are also not further considered in
the planning process, until their inventory is empty again.

4.4.1 Greedy with Social Law
A very simple heuristic is for all agents i to always move

towards the node that has the highest evaluation according
to our NV function, i.e. ai = GoTo(maxnx∈N NV(nx, i), i),
where the function GoTo(nx, i) returns the next action on the
shortest path of agent i to node nx. If the agent is already
at that node, it returns the action PERFORM TASK.

In order to overcome symmetries, we can apply a social
law similarly to [9]: If two agents have the same node with
the highest reward, the one with the higher id will go to the
best evaluated node, while the next ranked agents will go to
the next ranked node. This heuristic will be used as baseline
for our evaluation.

4.4.2 Reverse Greedy Allocation
The general idea behind the Reverse Greedy heuristic is

to look at the problem from the perspective of the nodes.
The idea is that each location in the graph is assigned to the
agent that has the best evaluation for this node. This is also
comparable to a partition organization as in [25], since all the
tasks are distributed between the robots according to their
evaluations. However, this approach adaptively changes the
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Algorithm 2: Iterative Greedy

Input : s: state < λ, ι, τ >
Output: a: actions for all agent

Let V be a matrix of size |D||N |
V [i][nx]←NV(nx, i) ∀nx ∈ N ∀ i ∈ D
Aass ← ∅; Nass ← ∅
for iteration i < |D| do

nbest ← None; abest ← −1; vbest ←∞
foreach Agent i ∈ D and i /∈ Aass do

nsel, vsel ← GetBest(V, i)
while nsel ∈ Nass do

V [i] \ nsel
nsel, vsel ← GetBest(V, i)

if vsel > vbest then
vbest = vsel;abest = i; nbest = nx

a[abest]← GoTo(nx, abest)
Aass ∪ abest; Nass ∪ nbest

return a

partition according to the changing locations of the agents
and tasks.

Algorithm 1 shows pseudocode for this policy. The Index

function returns the agent that corresponds to the minimum
node value vbest. This approach intrinsically takes care of a
social law if the agents are always iterated in the same order
by the Index function, e.g. decreasing by id.

4.4.3 Iterative Greedy Allocation
For the final rollout policy that we propose, we can take

inspiration from auctioning approaches (as commonly used
in MRTA, i.e. in [6]). We evaluate all locations for all agents
and iteratively assign the currently best evaluated location
to the highest ranked agent. More specifically, we compute
NV for all agents and all locations. The agent that has the
node with the best evaluation over all agents and locations,
gets the location assigned and both, the agent and location
are removed for the future allocations. In the next iteration,
the agent which has the best evaluation for the remaining
node is selected and so on. Algorithm 2 shows pseudocode
for this approach. The function GetBest(V, i) returns the
currently best evaluated location for agent i and its value.

Using the heuristics.
Note that both Reverse and Iterative Greedy are central-
ized algorithms that suggest actions for all agents for a given
state. However, these algorithms can be run decentralised
on the robots, which is possible, since the global state is
known. During the planning process, each agent needs to
predict actions for all other agents, thus these heuristics are
an efficient way to calculate these estimated actions all at
once. More specifically, during the UCT simulations: when
‘inside’ the tree, the planning agent overrides the action pre-
scribed by these algorithms with the action prescribed by
UCB1. In the rollout phase (i.e., outside the tree) all agents
follow the prescribed actions. Additionally, these heuristics
serve as baselines. In this case, they are used without any
MCTS search. Each agent computes the heuristic until his
action is assigned and acts accordingly.

5. EXPERIMENTS & RESULTS
To empirically evaluate our proposed MCTS approach,

we have implemented a warehouse simulation and our roll-
out policies in ROS [21]. Each agent is simulated inde-
pendently. This is realized by running each agent’s plan-
ning approach in a different process. Only the global state
(λ, ι, τ) is communicated from the simulator to the agents,
and there is no direct communication between agents. The
depot location is marked in red and the normal task nodes
in green. The agents always start at the depot. Movement
actions have a 90% chance of succeeding, which simulates
the uncertainty in the real world, e.g. due to wheel slip
or other sensor noise. The probability of tasks appearing
at a node is drawn randomly from a set of three probabil-
ities (plow = 0.2

|N| , pmid = 0.4
|N| , phigh = 1

|N| ). This simu-

lates that certain areas in the warehouse may store items
that are ordered at a higher frequency and vice-versa. Each
task that appears can have a different priority, i.e. higher
costs of not servicing this task. These are sampled accord-
ing from the set of (c1 = 1, c2 = 2, c3 = 5) with probabilities
(pc1 = 0.8, pc2 = 0.1, pc3 = 0.1).

The seeds for creating the probability distribution and for
tasks appearing are synchronised between the different runs,
such that for all policies, the same number of tasks appear at
the same locations during the run. We run 30 simulations of
100 time steps each, unless reported differently. As a base-
line we use the proposed rollout policy greedy with social law
(GreedySL) without any MCTS search. We compare our
approach against the state-of-the-art approach EFWD with
k = 5 nearest tasks, and additionally, we compare against
using the two heuristics, Reverse Greedy (Greedyrev) and
Iterative Greedy (Greedyit), without any MCTS search. For
this evaluation, each planning agents computes the centralised
policy until its own action is assigned.

For our approach, the MCTS search runs 20,000 simu-
lations up to a depth of 60 steps, while choosing the ac-
tions during the rollouts by one of the rollout policies in-
troduced in the previous section, i.e. Greedy with Social
Law (MCTSSLGreedy), Reverse Greedy (MCTSrevGreedy) and

Iterative Greedy (MCTSitGreedy) or purely random selection
(MCTSrandom). We implemented all rollouts in an ε-greedy
manner, i.e. uniformly random actions are performed with
a probability of ε = 0.05. These settings were determined
empirically.

Fixed allocation vs online re-allocation.
We compared the heuristics using fixed allocation, i.e. the
robots choose their tasks and do not change it until it is per-
formed, against online re-allocation, meaning that the robots
replan at every time step. Thus, the fixed allocation meth-
ods (defined as GreedySLalloc, Greedy

rev
alloc and Greedyitalloc)

simulate behaviour as following the MRTA framework, while
online re-allocation is according to the SPATAPs definition.
The results are presented in Figure 2a, where the whiskers
show 95% confidence intervals. Greedyit outperforms the
baseline GreedySL and all other approaches with up to four
significantly, while with five agents the the fixed allocation
methods, Greedyrevalloc and Greedyitalloc are catching up.

When using fixed allocations, the two proposed heuristic,
Reverse and Iterative Greedy, are almost on par. However,
using Greedyrev with online planning actually decreases its
performance, especially with more agents. The decreasing
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Figure 2: Comparing (a) fixed allocation against online re-allocation, (b) the effect of the DIY bonus and (c) the different
rollout policies using the world warehouse-small with 30 nodes and different number of agents against the baseline. (d)
Comparing the planning time for different policies using the world warehouse-medium with 66 nodes and different number of
agents. The whiskers show the 95% confidence intervals.

performance can be explained by the nature of the sim-
ulation. As the agents all start at the depot, all poten-
tial tasks are allocated only to the highest ranked agent.
Thus the agents will not spread out. When the allocation
is fixed, the agents keep moving out as soon as a task is
assigned, thus they spread more making the partitioning of
the Greedyrev more effective. Additionally, that all methods
(with the exception of Greedyrev) move closer together with
more agents, is the result of having relatively less tasks per
agent. Thus the effect of online planning is smaller. With
larger worlds, thus relatively more tasks, this effect is less.

To summarise, the online re-allocation yields a big ad-
vantage especially for Greedyit and the GreedySL baseline,
while for Greedyrev is actually a disadvantage.

DIY-Bonus.
To evaluate which value for DIYr yields the best perfor-
mance, we run the simulation for different number of agents
and increasing values of DIYr. Figure 2b shows the result-
ing rewards with their 95% confidence intervals. As can
be seen, the value of DIYr has a high influence on the re-

ward, especially for 2 agents. With only 2 agents, there are
more situations in which there is a tie for a certain loca-
tion, so it is better when both head towards it, instead of no
one. With more agents these situations occur less frequently.
For the remaining experiments we set the DIY bonus to 0.7
as a tradeoff, since especially in smaller worlds we experi-
enced suboptimal behaviour due to multiple robots moving
towards the same task location.

Different rollout policies.
When comparing the different rollout policies, the results
in Figure 2c show that the MCTSSLGreedy outperforms the

GreedySL baseline significantly. Thus adding MCTS search
to the heuristics significantly improves the performance. How-
ever, MCTS in itself with using the random rollout policy
(MCTSrandom), performs less than the baseline, showing
that the rollout policies have a large influence on the perfor-
mance.

Using Iterative and Reverse Greedy for the rollouts yields
a significantly higher performance than the other policies,
especially for more agents. Both of these strategies already
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(b) office-world, unlimited capacity
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(c) office-world, limited capacity
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(e) warehouse-small, unlimited capacity
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(f) warehouse-small, limited capacity

Figure 3: Comparing the different approaches in the worlds office (a-c) and warehouse-small (d-f) with infinite capacities and
uniformly distributed task appearances and with limited capacities and distributed task appearances. The whiskers show the
95% confidence intervals.

take care of some task allocation, which helps to improve
the action selection. Therefore, we focus on these two ap-
proaches for further evaluation.

Planning times.
To investigate the planning times, we randomly sampled 200
different states and averaged the time it takes to plan in
these states. We also included the state-of-the-art EFWD
approach. The results are summarised in Figure 2d. We can
see that the search times of all approaches increase roughly
linearly with the number of agents. However, while the
MCTS-based approaches have a very consistent planning
time, the EFWD approach varies greatly. This is due to
the k-nearest task approximation. When there is no task
active, the planning time is nearly 0. However, as soon as
there are one or more tasks active, the planning time in-
creases greatly. We can also see that MCTSrevGreedy is signif-

icantly faster than MCTSitGreedy, since it does not need to
iteratively assign the tasks after the evaluation.

Limited vs unlimited capacities.
We have evaluated the approaches in settings where the
agents have unlimited capacity and the tasks appear uni-
formly distributed over the warehouse. Essentially, when the
agents have unlimited capacities, the depot node is obsolete,
since the agents will never return to unload. Figure 3 shows
the result for the warehouse-small environment and the of-

fice environment (the office is the same as in [9]). In com-
parison, with unlimited capacities (cf. Figure 3e and 3b), the
resulting performances are closer to one another than with
limited capacities (cf. Figure 3f and 3c). The MCTS based
approaches still outperform all other approaches. The pro-
posed heuristics without MCTS (Greedyrev and Greedyit)
perform as good as the EFWD approach. Most signifi-
cantly, the Greedyrev policy performs almost as good as the
Greedyit policy, which is in great contrast to the limited
setting, where it yields even less reward than the GreedySL

baseline. This can be explained by the structure of the
unlimited setting. The adaptive partitioning of Greedyrev

works a lot better, since the agents spread due to the appear-
ing tasks, and do not have to come back to the depot again.
Thus assigning the tasks based on their locations works well.
EFWD performs much better in the office-world in compar-
ison to the warehouse-small. This is most likely due to the
structure of the worlds. The office-world is much more inter-
connected, with almost no dead ends. Since EFWD does no
positioning when there are no tasks present, it helps that the
average shortest path length between nodes is a lot shorter
in office-world.

To conclude, while the presented heuristics work really
well in simple environments already by themselves, adding
MCTS search still improves their performance. EFWD yields
good performance in highly connected worlds.
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(a) warehouse-medium, #nodes=66
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(b) warehouse-large, #nodes=214

Figure 4: Comparing the different approaches in larger warehouse sizes and with different numbers of agents. The whiskers
show the 95% confidence intervals.

Larger warehouses.
Additionally, we compared the different approaches in two
larger sized warehouse models, warehouse-medium with n =
66 (cf. Figure 5) and warehouse-large with n = 214 (cf.
Figure 1). For the large warehouse, we increased the number
of simulated steps to 250 and the number of repetitions was
decreased to 15.

EFWD was not able to complete any run in warehouse-
large due excessive planning times, i.e. more than 1000 sec-
onds for one step. The results are shown in Figure 4. EFWD
shows a generally increasing performance for more agents,
but the relative rewards against the baseline are varying.
Only for larger numbers of agents it can outperform the
baseline and standalone rollout strategies. We can see that
the two MCTS approaches perform nearly identically for
warehouse-small and warehouse-medium. The good perfor-
mance of Greedyit in warehouse-large is due to the high
chance that there are many tasks active in a larger world.
Therefore, iteratively assigning the best tasks yields a very
good result. As soon as the number of agents increases how-
ever, MCTS search improves the result again, since there are
relatively fewer tasks to distribute, and positioning becomes
more important again.

Positioning.
To show the effect of positioning, we let MCTSrevGreedy run
for 50 steps, while we disabled the appearance of new tasks
assumed by the agents’ world model. Figure 5 shows that
the robots are nicely spread out. This is in stark contrast
when using the heuristics without any MCTS search and
also the state-of-the-art EFWD approach. These remain in
the same position if no tasks is present.

6. CONCLUSIONS & FUTURE WORK
In this paper, we introduced a Monte Carlo Tree Search

approach for the problem of multi-robot warehouse commis-
sioning. The problem is modeled as an extended SPATAP
to include the capacity constraints of robots. Our empirical
evaluation shows that we can greatly improve the current
state-of-the-art, while also being able to solve much larger
problems.

Figure 5: Positioning of MCTSrevGreedy in the world
warehouse-medium after 50 steps. All agents started in the
top left corner.

Some possible routes for future work include tuning the
node evaluation function NV. For instance, we can include a
weighted connectivity of the nodes. More specifically, we can
compute a force-field, based on the task appearance proba-
bilities and the locations of the agents. Other possibilities
are to improve the MCTS search, e.g. by introducing node
priors as for instance shown in [12].

Currently, we are working on deploying the approach on
real robots. We are setting up a multi-robot approach that is
inspired by the RoboCup@Work [18] competition. Multiple
robots have to pick up items in the environment and bring
them to a common depot node. A further idea is to use
our work from [8] as a local collision avoidance mechanism
that allows the robots to share the edges and nodes on a
graph. As each node represents various compartments, we
intent to rely on such a local low-level conflict resolution if
multiple robots have to be at the same node. Additionally,
we will investigate to what extent adding large penalties
for occupying the same node will mitigate the problem of
sharing nodes.
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