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ABSTRACT

For the past 17 years, much of the work on combinatorial auctions
(CAs) has used the Combinatorial Auction Test Suite (CATS) by
Leyton-Brown et al. [24]. However, CATS does not include a good
model for spectrum auctions, which have become the most impor-
tant application of CAs. In this paper, we make four contributions.
First, we propose the Multi-Region Value Model (MRVM) which
captures the difficult to model geographic complementaries of large
US and Canadian auctions. Second, we also encode our model as a
MIP, making the auction’s winner determination problem tractable.
Third, we introduce a new spectrum auction test suite (SATS), and
release it to the public under an open-source license. SATS includes
our new MRVM model, as well as six previously introduced value
models from the literature. Fourth, using SATS, we evaluate our
MRVM model experimentally: after fitting the model parameters
to the bidding data from the 2014 Canadian auction, we show that
the MRVM model can represent this auction well.

1. INTRODUCTION

Combinatorial auctions (CAs) allow bidders to submit bids for
packages of items. They are one of the must successful applications
of market design, with practical uses in many areas. For example,
they have been used for the procurement of bus routes [8] and in-
dustrial goods [29], as well as for selling TV-ad slots [17]. The most
important application of CAs has been to spectrum auctions [10].

Since 1994, many governments have used spectrum auctions to
sell licenses for radio frequencies (i.e., spectrum). Original designs
required bidders to submit bids on individual licenses. By contrast,
the combinatorial clock auction (CCA) [4], which allows for pack-
age bidding, has gained momentum in recent years. Between 2012
and 2014 alone, ten countries have used the CCA, raising approxi-
mately $20 billion in revenues, with the 2014 Canadian 700 MHZ
auction being the largest auction, raising more than $5 billion [3].

1.1 Research on better Auction Designs

Economists, operations researchers, and computer scientists
have all contributed to the study of CAs in recent decades. Impor-
tant contributions have included the study of winner determination
algorithms [28], bidding languages [26], payment rules [27], and
preference elicitation algorithms [23]. In practice, additional im-
plementation details like reserve prices and activity rules also need
to be carefully considered [3]. Together, these aspects of an auc-
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tion’s design determine how well bidders can express their prefer-
ences, the extent to which bidders can and need to strategize, the
computational complexity of the winner determination and pricing
problems, and the auction’s efficiency and revenue in equilibrium.

Obtaining better CA designs is difficult for multiple reasons.
First, deriving analytic results for CAs is very challenging. Sec-
ond, insights from small, stylized models often do not translate to
practical, real-world problems. Unfortunately, using data from real
spectrum auctions also has its limitations. Many governments do
not make the bidding data publicly available. Further, even when
they do, the data only provides a few individual auction instances,
while a researcher typically needs many thousand instances to test
the performance of different auction designs.

An alternative approach is to use a value model, i.e., an ana-
lytic or algorithmic description of a bidder’s value function. Given
a value model, one can develop an auction instance generator, i.e.,
a piece of software that can produce an arbitrary number of different
auction instances upon request. When a new instance is requested,
the generator then draws some or all parameters of the underly-
ing value model from a pre-specified probability distribution. Thus,
each use of the generator generally produces a different instance,
enabling the creation of a distribution of auction instances.'

Many researchers have used value models/auction generators in
their work, for example to evaluate the run-time of core pricing
algorithms [7, 14], to evaluate different reserve prices [13], or to
evaluate the performance of different payment rules [25].

1.2 CATS and other Spectrum Value Models

For the past 17 years, the majority of this simulation-based work
has used the Combinatorial Auction Test Suite (CATS) by Leyton-
Brown et al. [24], making it the de-facto standard for running CA
experiments. CATS contains five main CA value models, and cor-
responding software for realizing them as auction instance gener-
ators. While CATS has provided immense value to the research
community, it has two main shortcomings. First, the value mod-
els included in CATS cannot model spectrum auctions particularly
well. This severely limits the utility of CATS in research on spec-
trum auctions. Second, CATS does not have a number of features
that are often needed in CA simulations (e.g., providing a value for
a specific bundle); and its C-based code is hard to extend.

Consequently, researchers have developed new value models
specifically for spectrum auctions. This includes models capturing
the separation of licenses into different bands [6], as well as mod-

'Note that it is essential for some model parameters to be drawn
from a distribution. Without this, each program execution would
produce the same auction instance.

2 Already its authors wrote: “Clearly the problem of realistic test
data for spectrum auctions remains an area for future work.” [24]



Value Models |

Model Description

| Example/Motivating Auctions

1. Base Two bands: In band A bidders have very high intra-band synergies for having up to e.0.. Buropean 2.6 GHz auctions
Value Model [6] 4 blocks; in band B values are additive. Single-region market with one bidder type. & P ’ )
2. Multi-Band Similar to the Base Value Model, but different bands and synergies: 24 licenses | e.g., multi-band auctions in the UK,
Value Model [6] divided into 4 bands containing 6 blocks each. One band has higher value. Austria, etc.
Stylized 3. Global Synergy A_bstract geographlcimodelz regions arranged on two _c14rcles; adjacency mode}ed as _
Models Value Model [16] filstances on }hese circles. N.on—hnear complementantles for packages of adjacent | No specific market
items. Two bidder types: national and regional. No model of bands or frequency.
4. Local Synergy Similar to the Global Synergy VM, but the regions are arranged on a grid and .
Value Model [30] | adjacency is modeled by Manhattan distance. No specific market
5. CATS Regions Regions are connected on a planar graph; complementarities for adjacent bundles. No specific market
Generator [24] Bidders have both a common and a private value for each region. sP
6. Single-Region Has three bidder types with distinct preference profiles over bands which capture .
Realistic Value Model [22] | both inter- and intra- band synergies. Does not model geography/regions. UK 4G Auction (2013)
Models 7. Multi-Region Highly parameterizable model of both geography and frequency dimensions, with . .
Value Model multiple regions and bands. Three bidder types: local, regional and national. Canadian 4G Auction (2014)

Table 1: Overview of value models from the literature, and our new Multi-Region Value Model (MRVM)

els capturing geographic division, where individual licenses cover
only part of a country [16, 30]. However, these models only focus
on individual aspects of the spectrum auction design problem, and
most of them are highly stylized. It is not surprising that none of the
prior models has captured the separation of licenses into different
bands as well as geographic division, because modeling the inter-
action between band division and geographic separation is highly
complex, and especially so when the goal is to create realistic (as
opposed to stylized) auction instances.

1.3 Overview of Contributions

In this paper, our goal is to develop a new value model and soft-
ware suite for research on combinatorial and spectrum auctions. To
this end, we make four main contributions:

1. We present the Multi-Region Value Model (MRVM). This
model is specifically designed to capture the complex ways
in which multiple frequency bands as well as geographic
complementarities determine the bidders’ values in large
real-world auctions such as in the US and Canada.

2. We also present a concise mixed integer programming (MIP)
formulation for solving the winner determination (WD)
problem (i.e., finding the efficient allocation) for our MRVM
model. The MIP formulation encodes the values for all bun-
dles in a succinct way by only using the model parameters.
This lets us find the efficient allocation or compute VCG pay-
ments without exponential bundle enumeration. Using our
MIP formulation, the median run-time for solving the WD
problem for instances of the size of the 2014 Canadian auc-
tion (10 bidders, 98 licenses, 14 regions) is 12 seconds.

3. We introduce a new Spectrum Auction Test Suite (SATS)
and release it to the public (under an open-source license)
at: www.spectrumauctions.org. SATS includes our
own MRVM model as well as six previously introduced value
models. We describe how researchers can use SATS via three
different interfaces: a simple web interface, a command-line
tool, and a Java API that offers full access to the software.

4. We evaluate the MRVM model experimentally. We first fit
the model parameters to real-world data from the 2014 Cana-
dian auction. We then use SATS to generate 1,000 different
MRVM auction instances and compare various statistics of
our simulated auctions with the Canadian auction. The re-
sults show a close match between the statistics, demonstrat-
ing that our model can capture the Canadian auction well.
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2. PRELIMINARIES

We consider a spectrum auction of the type conducted by many
governments. A range of spectrum frequencies is called a band
(e.g., in the 2014 Canadian auction, the “Lower 700 Mhz band”
consisted of the frequencies between 698 MHz and 746 MHz). A
band is divided into multiple blocks (e.g., the D-block in the Cana-
dian auction, ranging from 716-722 MHZ). The government sells
licenses for each block to mobile network operators (MNOs). In
most smaller countries (which we call single-region markets), a li-
cense gives the MNO the right to use the corresponding block in
the whole country. In large countries (which we call multi-region
markets), the government sub-divides the country into regions, and
with each license, the MNO only obtains the right to use the cor-
responding block in a particular region (e.g., in the 2014 Canadian
auction, separate licenses were sold in each of 14 regions [11, 20]).

Generally, licenses in lower frequency bands (between 700 and
900 MHz) are more valuable than licenses from bands covering
higher frequencies, due to their physical properties (low frequen-
cies carry signals further and have a better ability to penetrate build-
ings). Obtaining multiple licenses for blocks in the same band can
induce intra-band synergies. For example, four 5-MHz blocks in
the 2.6 GHz band enable peak performance using LTE [6].

A block can be paired (i.e., two blocks are sold as a pair: one for
uplinking, one for downlinking) or unpaired. Due to the technology
used by today’s smartphones, paired licenses are significantly more
valuable than unpaired licenses. Sometimes, blocks within a band
are assumed to be generic, i.e., to have roughly the same value.
This allows a more compact bidding language, because bidders can
then place their bids, not for specific licenses, but for a quantity of
licenses of a particular generic band (see [9] for details).

In multi-region markets, the MNO’s value function becomes
more complex to model and depends on the type of the buyer. Na-
tional MNOs have large synergies if they acquire licenses for all or
almost all regions of a country, but their value may fall drastically
if they have large holes in their coverage area. In contrast, regional
or local MNOs only have value for specific regions of the country.

3. PREVIOUS VALUE MODELS

Table 1 provides an overview of seven value models for spec-
trum auctions (six that have been introduced in the literature, and
our new MRVM model). For each model, we provide the citation
to the original paper, a brief description of the model, and an ex-
ample/motivating real-world auction that is well captured by the
model (if any). All seven value models are included in SATS.

Models 1-5 are relatively stylized, often focusing on a particu-
lar aspect of spectrum auctions. They have mostly been used in lab



experiments to study bidding behavior of human players, which
explains why they do not aim to capture the full complexity of real-
world auctions. In contrast, models 6 and 7 are quite realistic, cap-
turing specific real-world auctions. As a researcher, one might use a
stylized model if one is only interested in studying a specific aspect
of an auction/setting. If one is striving for external validity, then
one might instead want to use one of the realistic models.

4. MULTI-REGION VALUE MODEL

In this section, we present our Multi-Region Value Model
(MRVM) — a new value model that is significantly more realistic
than any of the previously introduced models. The MRVM model
is motivated by the 2014 Canadian 700MHz auction [20]. Note that
our modeling goal was not to capture many different real-world
auctions in one model, but rather to capture a single important auc-
tion well. Nevertheless, the model also captures key features of
other large-scale auctions with geographical division as conducted
in the US (including the Forward phase of the Incentive Auction
[15]) and Australia (1.3

We first conducted an in-depth study of the physics and engi-
neering behind the technology deployed to use the spectrum (e.g.,
[2] and [5]), identifying a long list of influences on spectrum value,
called value drivers. Using this domain knowledge, we then mod-
eled the value drivers essential for fidelity, while also targeting un-
derstandability and tractability of the model. The resulting model is
designed to be rich enough to capture the complexities of large real-
world spectrum auctions (like the Canadian one), while at the same
time being succinct enough to be formalized as a concise MIP.

At a high level, for large countries like the US and Canada, ge-
ographical division and frequency band division emerged as the
most essential value drivers. We aggregated multiple low-level
value drivers into a single modeling parameter whenever this was
warranted, to keep complexity manageable.* We now first build
some intuition for how the bidders’ value functions are constructed
in the MVRM model in three steps (also see Figure 1), before pro-
viding the formal definition of the model in the next section.

e Step 1: Bands/Licenses — Bandwidth: We model different
bands with different valuations, and bands have intra-band
synergies. The number and kind of licenses an MNO acquires
in each region determines his fotal bandwidth.

e Step 2: Bandwidth — Regional Value: We transform the
total bandwidth the MNO has acquired into a regional value.
The more spectrum a bidder buys in a particular region (each

3We currently include the region map (adjacency graph) for the
Canadian regions, and users can also supply their own maps. In the
future, we plan to include a synthetic map generator in SATS.

*For example, while in practice, multiple factors influence the
quality of a band, we capture this in a single parameter.

of which has a particular number of subscribers), the higher
the quality of service (QoS) will be, and thus the higher the
value per subscriber. A bidder’s monetary value for a region
is calculated as a function dependent on his bandwidth, the
share of the population he intends to serve, the size of the
population of that region, the bandwidth required to provide
a good QoS, as well as his maximum value per subscriber.

e Step 3: Regional Discounting: The bidder’s final value for
the whole bundle is calculated as the sum over his regional
values, discounted by a bidder-specific term (that depends
on which exact regions the bidder covers). National players
have large synergies for covering the whole country; regional
players have synergies between regions close to their head-
quarters; local players have no synergies between regions.

4.1 Formal Definition of MRVM

We now provide the mathematical definition of the MRVM
model. Here, we provide the most natural (but sometimes non-
linear) description. For the MIP formulation (provided in Appendix
A) we spent considerable effort to linearize all functions. Note that
five of our model parameters are not fixed, but are assumed to be
drawn from non-degenerate distributions. Whenever we introduce
one of those parameters, we denote this by . See Appendix B for
the distributions we used.

World Setup.
We first define the world, i.e., everything independent of bidders.

e R denotes a set of regions. For each r € R, let p, € N
denote the population of that region. The elements of R are
embedded in a planar adjacency graph, where two regions
(nodes) are connected if they share a border.

e B denotes a set of bands. For each b € B let ny, € N denote
the number of blocks in b. We let ¢, € Ry denote the base
capacity of b.1 ¢, captures the amount of bandwidth an MNO
obtains when buying one license (for one block) in band b.
This allows us to encode different values for different bands,
e.g., due to their frequency, the number of MHz a block cov-
ers, and whether the blocks are paired/unpaired.

e Atuple ! = (r,b,5) € Rx B x {1,...,np}, is called a
license and L is the set of all licenses. For all licenses | =
(r,b,4), let r(I) denote r and b(l) denote b. We use z C L
to denote a bundle, i.e., a set of licenses.

e For all bands b € B, the intra-band synergies are captured
by a function syn, : N — R>; , where syn, (n) denotes the
synergy for having n licenses of b in the same region.’

This parameter is assumed to be drawn from a non-degenerate
distribution. See Appendix B for the distribution we use.

3syn, (n) has to be defined in a way that ensures free disposal of
licenses. Furthermore, syn, (1) should be set to 1 for consistency.

$
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Figure 1: Flow chart for the Multi-Region Value Model (MRVM). Sources for (a) and (c): [18]
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Bidder-specific Parameters.

We let N denote the set of bidders. Each bidder ¢ € A has the
following parameters:

e A bidder type t; € {local, regional, national’}, which is used
to differentiate bidders by their business plan.

o A maximum value per subscriber o; € R>q. o; specifies the
relative bidder strength, distinguishing stronger from weaker
(otherwise identical) bidders.

e A market share (3; » € [0,1], i.e., the share of the population
that bidder ¢ serves in region r.

e Quality function parameters zf-’r and zfﬁr, indicating the
amount of bandwidth below (respectively above) which
per-subscriber quality of service is low (respectively high)
in region 7.

Overall Value Function.

Each bidder ¢ € N has a value function v; : P(L) — Rxq,
defining the bidder’s value for any bundle x C L as follows:

T) = Z Bir - Dr - SVi,r(ai7 Birs prs c(r, ) ) T(i,r, x)

TER . .
(1) Bandwidth  (3) Regional

Discounting

(2) Monetary Value per Region
As described in the introduction to this section, the value function
is constructed in three steps, which we describe next in detail.

Step 1: Bands/Licenses — Bandwidth

We first define an auxiliary function ¢(r, ) : RXxP(L) — [0, 1],
which calculates the bandwidth in region r which a bidder obtains
when purchasing bundle z

x) = Z cap(b,r, x)

beB

&)

where cap : B X R x P(L) — Rx( is a function that obtains the
capacity for band b in region r for bundle x, defined as:

Cap(b7 T, $) =Cp -

@)

where ¢ is the base capacity, |zy,-| = |{l € z|r(l) = r Ab(l) =
b}|, and syn, (n) is the intra-band synergy for having n licenses in
band b.

- syny ([2s,r)

Step 2: Bandwidth — Regional Value

Next, we transform the total bandwidth held by a bidder in a par-
ticular region, c(r, z), into a dollar-denominated monetary value
per region (i.e. component (2) of the overall value function) ac-
cording to:

©))

The first two factors are straightforward: The product of the mar-
ket share (3; , and the population in the region p, is the number of
subscribers in region . This is then multiplied by the value the bid-
der (MNO) can obtain from a single subscriber to obtain an overall
value for the region. We denote this latter quantity the subscriber
value, sv; -(-), which is itself a non-linear function that accounts
for the quality of service that can be provided to a subscriber in
the region. We illustrate such a function in Figure 1 (b). When
the available bandwidth, c(r, x), is small (for the population being
served), then an individual subscriber will obtain poor quality of
service. Consequently, the subscriber will have low value, which,
when monetized by the MNO, will likewise yield a low monetary
value for the MNO. By contrast, if the MNO obtains a large amount

Bi,r - Pr - SVip (O‘iv Bi,r, Dr, (7, JJ))
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of bandwidth then the quality a subscriber obtains will be high, her
value will be high, and thus the monetized value to the MNO will
be high; as additional bandwidth is obtained past this point, though,
the value only rises slowly. The thresholds in this sigmoid shape are
governed by the constants zir and zlhr And the maximum dollar
value per subscriber that can be obtained is controlled by the con-

stant o;. Formally, we define the function sv; (- ,¢(r,z)) to be
piecewise linear with the following control points:
(0, 0) @

(Zz L4 pT /B’L Ty O 27 al)
( Zir " Dr Bi,r, 0.73 - al)
(c(r, L), o)

Step 3: Regional Discounting

In the last step, the bidder’s total value is calculated as the sum of
his regional values when discounted (by I") according to his type:

e Every local bidder i € A has a set I; C R of regions of in-
terest.” A local bidder has zero value for all licenses outside
of I; and full value otherwise.

e Every regional bidder i € A has a headquarters h; € R.|
Furthermore, the bidder has a discount factor A\; € (0, 1].
This bidder type models bidders that are particularly strong
in one specific region but also plan to provide service in
nearby regions.

e Every national bidder i € A has discount factors v; , €
[0,1] Vk € {0, ..., kmax }, where k indicates the number of
regions for which bidder ¢ does not have any license, which
we cap at a constant kmax € N (i.e., we winsorize the number
of missing regions to kmax). Such bidders attempt to cover
every region, and incur an increasing utility loss for every
region (up to kmax) in which they do not provide coverage.

Formally, we have

lrer,, if t; = local,

1"(2’ r x) — )\(i]istance(h,i,r)7 (5)

if t; = regional,

Yi,k(x)» if t; = national,

where distance(ri, 72) is the shortest path distance of 71,72 € R
in the adjacency graph of the regions, k(z) = min{kmax, |Rz|}.
and where R, C R is the set of regions for which at least one
license is in ; thus, | R,;| is the number of regions without a license.

4.2 Discussion & Limitations

MRVM includes many value drivers, the most important include:
(1) geographical division, (2) frequency band division, (3) intra-
band synergies, (4) higher values for licenses in high density re-
gions, (5) the match between a bidder’s targeted market share and
obtained bandwidth, (6) the distinction between local, regional and
national bidders in terms of their different preferences for different
regions (i.e., geographical division). To the best of our knowledge,
there does not exist another spectrum value model for multi-region
markets of similar accurateness.

However, our model also has its limitations. Most importantly,
it currently does not include a notion of spectrum endowment for
the MNOs; thus, it could not model well a situation where an MNO
wants to “fill up” holes in a frequency band for which it already has
some licenses. Second, the model does not capture inter-band syn-
ergies, i.e., combinatorial effects on value between different bands
(e.g., an MNO may want licenses for low-frequency and high-
frequency bands simultaneously). In principle, the model could be
extended to include both of these aspects.
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Figure 2: Run-time results for finding the efficient allocation
using our MIP formulation for differently-sized problems. The
box plot provides the first, second and third quartiles; the
whiskers are at the 10th and 90th percentile.

S. MIP FORMULATION

For the formulation of the MRVM model described in the
last section, we presented the mathematically most natural (and
sometimes non-linear) formulation. However, when designing the
model, we were careful to make sure that it can also be represented
as a concise mixed integer program (MIP), which we provide in
Appendix A; this MIP is also included in the SATS software suite.
But why is this MIP formulation so essential?

Researchers conducting auction simulations typically need to
compute the social-welfare maximizing allocation of an auction;
for example, to evaluate the efficiency of different mechansims, or
to compute VCG prices. Standard algorithms for solving CAs use
bidding languages like XOR or OR™, but bidders are restricted to
a few bids (e.g., 500). However, computing the true efficient allo-
cation requires access to the bidders’ full value functions, and not
just a sample of XOR bids. Reporting a bidder’s full value func-
tion in the MRVM/Canadian model would require 2°% XOR bids
— obviously, even generating that many XOR bids is infeasible. By
contrast, our MIP formulation encodes the values for all bundles in
a succinct way by only using the model parameters (i.e., there is
a one-to-one mapping between the model’s value function and the
MIP objective). This lets us find the efficient allocation without ex-
ponential bundle enumeration, something that has been impossible
(and was therefore often glossed) in existing work based on CATS.

To evaluate our MIP formulation in terms of computational
tractability, we conducted run-time experiments with varying prob-
lem sizes. The experiments were run on a PC with a 1.8 GHZ Intel
Core i7 CPU and 8 GB of RAM. All mathematical programs were
solved using CPLEX 12.6. Figure 2 shows the results. For each of
the four domains (listed on the x-axis) we generated 500 auction
instances and computed the efficient allocation. On the y-axis, we
show the CPU time it took to compute the efficient allocation. The
third domain from the left (10 buyers, 98 licenses) corresponds ex-
actly to the 2014 Canadian auction. For the other three domains,
we scaled the number of bidders and licenses up/down, to create
more/less difficult domains. Clearly, run-time increases with prob-
lem size. However, even for large problem sizes, the WD problem
can be solved quickly. Specifically, the median run-time to solve
auction instances of the same size as the 2014 Canadian auction (10
bidders, 98 licenses) was 12 seconds. We emphasize that this do-
main has 2°% bundles, and our MIP formulation is finding the fully
efficient allocation by implicitly representing this entire space.

6. THE SATS SOFTWARE SUITE

In this section, we describe the SATS software suite, which we
released to the public in May 2017 under an open-source license
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at www.spectrumauctions.org. SATS includes all value
models listed in Table 1: our new MRVM model as well as six mod-
els previously introduced in the literature (i.e., the Base and Multi-
Band Value Models, the Global and Local Synergy Value Models,
CATS Regions, and the Single-Region Value Model).

6.1 Accessing/Using SATS

SATS can be accessed in three different ways, to ensure it can be
used for very basic and very sophisticated use cases.

A Simple to Use Web Interface. Via the web interface, users can
quickly access the most commonly-used features of SATS. Us-
ing the website (see Figure 3) is straightforward: the desired value
model can be selected, a few parameters can be modified, then the
model is run on the server, and finally the resulting value files can
be downloaded in the browser. This simple access method is meant
for students, or for researchers who want to get a quick first impres-
sion about a value model.

Value Model

Multi Region Value Model (MRVM) - Weiss etal., 2017] T

File Creation Type

® CATS
JSON

# All Bidders in One File
Bidding Language

® XCR
XOR with Quantities

Domain-specific
Bid Ordering

® Random Distribution
Size Decreasing

Size Increasing
User-Defined Seed
None v
Number of XOR bids per Bidder?
100
I want to set model-specific seftings

Submit Reload Defaults

Figure 3: Part of the web interface to generate value files

The Command-Line Tool. The SATS command-line tool provides
an efficient way to generate a large number of value functions, with-
out writing any code. It is designed to be similar in its use to CATS.
Listing 1 shows an example command, illustrating the creation of
valuation data using the MRVM'’s default configuration, with 60
bids per bidder.

java —-jar sats.jar —--model MRVM --bidsPerBidder 60

Listing 1: Simple Example of SATS on the command line

The Java API. SATS is written in Java, and by directly accessing
its API, one gains access to its full feature set, including the winner
determination solver, value queries for user-specified bundles, and
the ability to specify all model parameters and distributions.’ The
classes have been designed to enable simple use and easy exten-
sion. Listing 2 illustrates this, showing the snippet of code used to

For example, a user could set the number of bands in the
MRVM to 1, if he only wanted to study geographic division.



// Choose a value model with default settings
DefaultModel<?, ?> model = new MultiRegionModel () ;
// Create a new set of bidders of this model
for (Bidder<?> bidder : model.createNewPopulation()) {
/I Choose a way to access the value function
/I We choose XOR—Bids, ordered by bundle size
XORLanguage<?> xorBids =
bidder.getValueFunction (SizeOrderedXOR.class) ;
/I Pass the generated values to your code, e.g.,
yourSimulator.addXorBids (xorBids.iterator());

Listing 2: Simple Example of the SATS Java API

create a new set of value functions. The code is easily modified: as
shown, the code will produce MRVM instances. Simply replacing
new MultiRegionModel() with new BaseValueModel() causes BVM
model instances to be created instead.

SATS was designed for both basic and sophisticated usage. Be-
cause we support full API access, new ways of doing large-scale
simulations are now possible, as we detail in the next section.

6.2 The Features of SATS

SATS provides a number of useful features:

1. SATS supports two output file formats. First, it supports the
standard CATS format, enabling drop-in use of its output in
experiments that are already coded for CATS. Second, SATS
supports a simple JSON-based native file format, which is
easily read by existing libraries, and enables human intro-
spection for debugging purposes.’

2. A user can select whether to receive bids in XOR, XOR-
Quantity, or Domain-Specific bidding languages. The XOR-
Quantity language matches the bids used in most CCA auc-
tions, where bidders place bids not for specific licenses but
for a quantity of licenses in a particular band. This increases
the number of bids that can be expressed concisely. The
domain-specific language directly outputs the drawn model
parameters, allowing for the exact specification of the full
value function. For models, such as MRVM, that can be en-
coded into the objective of a winner determination formula-
tion, the domain-specific language concisely provides all the
information needed for fully expressive bidding.

3. A user can choose in which order XOR or XOR-Quantity
bids are generated by the system, including options for (1)
random, (2) size-increasing, and (3) size-decreasing.

4. The value models encoded in SATS specify the bidders’ com-
plete preferences, and users of the suite can, for any given
instance, request the value for any given bundle. In multi-
round auction simulations, the value for bundles can also be
requested “on-the-fly,” i.e., during the process of the auction,
rather than generating all bids beforehand.®

5. The API also supports even more sophisticated use cases,
where a user can specify a world (domain), and then, during
a simulation, can dynamically request new value functions
that are consistent with this world. This is essential for ap-
plications such as the search for equilibria in large auctions
when payoffs are only available as outputs from a simulation.

6. SATS also includes MIP formulations of the winner deter-
mination problem for the two realistic value models, SRVM

"This format is required for the domain-specific bidding lan-
guages which cannot be represented in the CATS file format.

8Simple XOR file formats can only represent a small fraction of
all bundles. Thus, to access all bundles, use of either the domain-
specific bidding language or the API is required.
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and MRVM.? This allows SATS users to compute the effi-
cient allocation over the full value space even for very large
SRVM and MRVM auction instances using a MIP solver.!®
This is impossible when using value generators like CATS
which use non-compact bidding languages like XOR.

EVALUATION

In this section, we show that our MRVM model is capable of gen-
erating bidding data that matches large-scale real-world auctions.

7.

Background and Setup. To perform our analysis, we must first fit
our model to real-world data. Recall that our generator is random-
ized such that even after being fitted, each run of the generator pro-
duces a new distinct auction instance (we obtain this randomization
by drawing certain model parameters from distributions). There-
fore, we do not seek an exact match to the one Canadian data point
—in particular, having a generator that produces one data point per-
fectly is not very useful. Instead, we seek a generator that produces
a realistic distribution of instances consistent with the Canadian
data. As a consequence of this, there will not be a one-to-one match
between the bidders in the benchmark data and those in the gener-
ated instances — even though we use the same number of bidders.
As a comparison at the level of individual bidders would thus be
ill-defined, we instead perform our evaluation at the level of bidder
types (local, regional, national). Specifically, we compare summary
statistics over each bidder type as observed in the benchmark with
the results of our generator by tracking the following metrics:

e Licenses: Number of licenses won by each bidder type.

o Regions: Regions in which at least one license was won.

e Bid per MHz-Pop: Winning bid divided by the MHz
bought and the population served. Division by MHz-Pop is
a commonly-used way to control for the amount of people a
license covers and the amount of bandwidth it provides.

Given this, we can now define the goal of the fitting procedure:
we search for model parameters such that the means of the distri-
butions over the three metrics produced by our auction generator
match the corresponding statistics of the benchmark as well as pos-
sible. The result is a (probabilistic) model constructed such that,
on average, the generated instances match the benchmark, while
possessing a useful variance for experimentation purposes.'!

Note that fitting the model parameters to the data is a highly
non-linear problem, and thus we cannot use global search tech-
niques which are otherwise standard to fit simpler models to data.
Instead, we use a human-guided hill-climbing algorithm to greed-
ily improve each of the parameters in turn to minimize the distance
between the generated instances and the real-world data. More pre-
cisely, we search for model parameters such that the mean-squared-
error (MSE) between the means of the distributions of the generated
instances and the benchmark data is minimized for all three metrics.

Experimental Data. To conduct these experiments it is important
to choose the right benchmark. We choose the 2014 Canadian 700

9The MIP formulations for the other models will be added soon.

1SATS currently supports the CPLEX solver, but adapters for
other solvers could straightforwardly be implemented.

"'Note that an alternative fitting procedure is also possible. We
could fix all model parameters deterministically (or equivalently,
set all variances to zero) to then exactly fit the model to the one ob-
served Canadian auction instance. The generator would then pro-
duce only a single instance, which would be its best match to
the benchmark data. One could then analyze the resulting model
for possible further insights into the benchmark auction. However,
such an econometric analysis is not the goal of this paper and out-
side the scope of this work.



| Type |

SATS

| Canadian

Local 0.355(0.013) | 0.333 (0.333)

Licenses Regional | 4.707 (0.047)| 3.250 (1.436)
National | 26.035 (0.247) | 27.667 (2.848)

Local 0.355(0.013) | 0.333 (0.137)

Regions Regional | 4.132 (0.047)| 3.250 (1.436)
National | 13.980 (0.005) | 13.667 (0.333)

Local 0.142 (0.005) | 0.137 (0.137)

Bid/MHz-Pop || Regional | 1.925 (0.016) | 1.968 (0.466)
National | 4.162 (0.031)| 4.163 (0.832)

Table 2: SATS and Canadian Auction benchmark data for each
of our metrics, showing mean and standard error

MHz auction because (1) the auction was of a substantial scale with
10 bidders, 14 regions, and 98 licenses; (2) the auction was complex
with good diversity in geography, frequency, and bidder types; (3)
the full set of bidding data is publicly available; and (4) the auction
used a CCA auction format with a distinct supplemental round [3].

In the CCA, the supplemental round consists of a sealed-bid CA
with a payment rule that, while not strategyproof, is chosen because
it is thought to induce “very good incentives.’'> We take advantage
of this by adopting the reported bids as statements of value and use
them to fit our model. Because there is no obvious methodology
for correcting for strategic play in any of the real-world CA de-
signs (and because such an econometric exercise would in any case
be beyond the scope of this paper), we adopt this approach as a
second-best approximation. To mitigate the effects of this approxi-
mation as much as possible, we only compare the efficient alloca-
tion computed at the real-world bids, with those computed at the
values our model produces; we do not implement or compare the
final payments under the CCA mechanism.

The Canadian auction, like many similar real-world auctions,
included side constraints (called aggregation limits) in its winner
determination algorithm to promote industry competition. Specifi-
cally, these limits ensured that no bidder won more than two of the
five paired blocks. As a further allocation detail, any bundle that
included two paired blocks from the same region had to include at
least one A block [11]. For realism, we also included similar con-
straints in our evaluation, corresponding to our implementation of
the Canadian auction."

Results. Table 2 shows a comparison of 1,000 instances generated
by the SATS MRVM model, with parameters chosen so as to be
consistent with the Canadian 700 MHz auction. Comparing the
columns, it is clear that our generator is able to match the three
statistics for all three bidder types extremely well.

Limitations. We have focused our evaluation on the Canadian 700
MHz auction, because it is the only auction of this complexity (with
multiple frequency bands and geographic division) where full bid-
ding data is available and where the auction format was conducive
to obtaining useful bid data (CCA-style combinatorial auction).
Thus, we could not validate our model with more auction instances,
which we leave to future work should additional datasets become
available. That said, we note that the Canadian auction setting is
broadly similar to several auctions in the US and Australia.

2Cramton [10] argued that the CCA “induces truthful bidding”,
while Day and Raghavan [14] showed that MRC-selecting payment
rules (as used in the supplemental round) minimize the bidders’
total potential gains from strategic manipulation. Day and Milgrom
[12] have argued that, if finding a beneficial deviation from truthful
bidding is very hard, then many bidders may just report truthfully.

Note that we modeled the Canadian auction as having three
separate bands, with 3/2/2 blocks each (see Appendix B.1).
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8. CONCLUSION

Over the last 15 years, many researchers have used computa-
tional experiments to evaluate different designs for CAs in general,
and spectrum auctions in particular. Having good spectrum auction
value models, as well as software tools, is essential to conduct these
kinds of experiments.

In this paper, we have made four main contributions. First, we
have introduced the MRVM model, a realistic model capturing fre-
quency division as well as geographic complementarities. Second,
we have encoded our model as a concise MIP, making large-scale
auction simulations tractable. Third, we have introduced SATS, a
new spectrum auction test suite, and released it to the public under
an open-source license at www . spectrumauctions.org. As
of now, SATS includes our new MRVM model as well as six pre-
viously introduced models. Fourth, we have evaluated the MRVM
model experimentally, showing that it is rich enough to match the
2014 Canadian auction data well on various metrics.

We are planning to successively extend SATS by adding new fea-
tures, incorporating feedback from the research community. When
a community adopts a set of benchmark problems, a number of
positive externalities can be realized, enabling significant advances
[21]. We believe that SATS can serve in this role, in a manner sim-
ilar to how CATS has served the community for the past 15 years,
enabling research that would not otherwise have been possible. As
a first example of this, in Spring 2017, SATS is expected to be used
as part of a CS course at Brown University in which students are
building autonomous bidding agents for a CA.' In the future, we
hope to expand upon this experience in order to use SATS as the
basis for broader competitions, similar to the trading agent compe-
tition (TAC) that has been run for over 15 years.

APPENDIX

A. MRVM WINNER DETERMINATION

The following MIP is implemented in SATS to solve for the effi-
cient allocation of a set of bidders with MRVM valuations exactly,
using a MIP Solver (e.g., CPLEX):

argmax Z vr (i) + Z vr(i) + Z un (i)  (6)
iEN, iENR iENN
st Y Xipp<mVreRbEB 7)
ieN

Here X; b € {1,...,mp} is the primary decision variable which
denotes the number of licenses assigned to bidder ¢ in regionr € R
from band b € B, N1, C N is the set of local bidders, Ng C N
the set of regional bidders and Nn C N the set of national bidders,
N = Nr UNRg UNy, and vr,(i), vr(i) and vy (3) are variables
holding the value of local, regional or national bidders respectively,
and defined as follows:

ve()) =Y Qur VieN (8)
rel;

vr(i) =Y dir-Qi, Vi€ N ©)
r€ER

N (i) = Z YikWik VieNn (10)
ke{o,....k}

where ;. € R>¢ is the undiscounted regional value for bidder 4 in
region r defined below, I; C R are the regions of interest for local
bidder i, d;,,, = A7) is a discounting constant associated
with the distance between region r and bidder i’s headquarters h;.

14CS1951k (Alg. Game Theory) taught by Amy Greenwald.




A national bidder ¢’s value is parameterized in terms of the num-
ber of regions k (capped at kmax) not covered by any license in
the bidder’s bundle. It is specified as a sum over a discount factor
for missing exactly k regions, ;. x, multiplied by the undiscounted
value for a bundle missing exactly k regions, ¥; . Importantly,
W; i is defined to be O whenever the current bundle does not have
exactly k missing regions.

Undiscounted Regional Values.
For all bidders i € N, the undiscounted value for a given region r
in the current bundle is defined as:

an

where: (3; , is bidder ’s market share in region r, p, is the number
of subscribers in region 7, and sv; - (-) is a piecewise linear func-
tion specifying the value bidder ¢ obtains for region r when receiv-
ing capacity ¢; - in r, defined below. It is defined using the control
points listed in (4), and included by appeal to standard MIP for-
mulations for piecewise linear functions. Next, we define regional

capacity:
Ciyr = E Cap; rp
beB

Qi,r = ﬁi,'r cPr SVi,r(C'L,r)

12

where cap; ., € Rxo is the capacity obtained by bidder ¢ in region
r for band b, defined as:

Cap; »p = Cb - Xz - syny (Xirp) (13)

where ¢, is the capacity per unit of band b, and syn, (X; ) is
another piecewise linear function capturing the capacity synergy
from having multiple bands in the same region.

National Bidders’ Value.

Lastly, we specify W; j, the undiscounted value national bidders
obtain from having a bundle that is missing exactly k regions, with
0 < k < kmax. We build toward this by introducing several auxil-
iary variables. To begin, we define W; . € {0, 1} to be 1 iff bidder
i possesses at least one license in region r:

Wi < Z Xirp No license  (14)
beB
1
Wipr > =———- Xirp Atleast 1 license  (15)
2 ben M Z

beB

This enables us to define W; € {0, ...|R|} as the number of regions
bidder 7 covers with at least one license as:

Wi=> Wi,

reR

Covered regions  (16)

With this, we can define Wzk € {0,1} to be 1 iff bidder ¢ has
exactly k missing regions for k € {0, ..., kmax } using the following
constraints:

For 0 < k < kmax uncovered:

Wi—(IR| —k) < My, - (1=Wig)Vk <kna (17
Wi— (IRl —k) > —My, (1= W) V< knax  (18)
For > kmax uncovered:
Wi = (|R| = knax) < My - (1= Wik, (19)
z ‘R‘_kmax_wi+1
Wi kmax = 20
T (20)

where the “big-M” constant M;, = |R|.
i,k
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We can now define the bidders’ undiscounted value for a bundle
missing exactly k regions, using the following:

Value if k£ uncovered:

Uik <3 Qi+ My, - (1= Wig) @n
rER
Uik > Qi — My, , - (1-Wi) (22)
rER
0 otherwise: .
Wi < M- Wi (23)

where My, , is the largest non-discounted value bidder ¢ can have.

B. PARAMETERIZATION OF MRVM

The following are the parameters of the MRVM model after being
fitted to the 2014 Canadian auction data.

B.1 World Parameters

The region geographic proximity and their populations are set ac-
cording to the Tier Two information from Industry Canada [19].
The frequency bands B are modeled as:

Parameters
Band Block Capacity
Description Quantity cy
Lower 700 Mhz Paired 3 U3, 4]
Upper 700 Mhz Paired 2 U[1.5,2.5]
Unpaired 2 U[0.5,1]
1 ifn=1
We set the band synergies as: syny(n) = ¢ _’ nn :
1.2, otherwise
B.2 Bidder Parameters
Parameters
Bidder Number of hé;’:;n;er: Market
i 3
Type Bidders Customer a; Share j3;
Local 3 U200, 400 4[0.05,0.15]
Regional 4 U[700,950 U[0.1,0.2
National 3 24[800, 1400] | 2/[0.1,0.2

For the fit to the Canadian auction data, we set the thresholds for the
function governing the capacity-to-quality mapping in an endoge-
nous way based on the other model parameters as follows (where,
for all r, we set 3;,» = ; for simplicity):15

max(0, 8; — 0.3) - ¢(r, L)

l
Zip = (24)
’ pr - Bi
Zzh,r _ min(1, 8; +0.3) - ¢(r, L) 25)
pr - Bi

There are several additional type-specific bidder parameters:

Local

e The set of regions of interest, /;, is drawn uniformly at ran-
dom from all regions, with |I;| ~ U3, 7].

Regional

e The head region, head;, is drawn uniformly from all regions.
e The distance discount is \; = 27%-°,

National

e The discount index cap is kmazr = 4.

e The missing region discountis y; x = 1 —

For simplicity, we set ;. = 3; V r.
">Note that setting these parameters in this endogeneous way is
not necessary. Instead, one can also set/fit those parameters directly.

21{:*0‘2
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