
Scaling Expectation-Maximization for Inverse
Reinforcement Learning to Multiple Robots under

Occlusion

Kenneth Bogert
Department of Computer Science

University of North Carolina
Asheville, NC 28804

kbogert@unca.edu

Prashant Doshi
THINC Lab, Dept. of Computer Science

University of Georgia
Athens, GA 30602

pdoshi@cs.uga.edu

ABSTRACT
We consider inverse reinforcement learning (IRL) when portions of
the expert’s trajectory are occluded from the learner. For example,
two experts performing tasks in close proximity may block each
other from the learner’s view or the learner is a robot observing
mobile robots from a fixed position with limited sensor range. Pre-
vious methods mitigate this challenge by either focusing on the
observed data only or by forming an expectation over the missing
portion of the expert’s trajectories given observed data. However,
not only is the resulting optimization nonlinear and nonconvex, the
space of occluded trajectories may be very large especially when
multiple agents are observed over an extended time, which makes
it intractable to compute the expectation. We present methods for
speeding up the computation of conditional expectations by employ-
ing blocked Gibbs sampling. Challenged by a time-limited, multi-
robot domain we explore various blocking schemes and demonstrate
that our methods offer significantly improved performance over
existing IRL techniques under occlusion.

1. INTRODUCTION
Inverse reinforcement learning (IRL) [1, 2] refers to both the

problem and associated methods by which an agent learns the pref-
erences of another agent engaged in performing a task simply by
passively observing it. The expert is modeled as a Markov decision
process (MDP) [3] whose parameters except for the reward function
are known to the learner. The problem is usually made feasible by
assuming that the reward function is a linear combination of binary
feature functions, and the problem reduces to that of finding the
weights associated with the feature functions.

IRL in the real world is often challenged by occlusion. For
example, two experts performing tasks in close proximity may block
each other from the learner’s view [4, 5] or the learner is a robot
observing mobile robots in motion from a fixed position with limited
sensor range. This makes the optimization further degenerate. A
straightforward method in this context is to simply remove the
occluded states and actions from consideration [6]. While this
omission is not egregious in some applications, in others it may be
that some features predominantly activate in the occluded portions
only. For example, the learner observing a cyclically patrolling
robot from a vantage point with a limited field of view may never

Appears in: Proc. of the 16th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2017),
S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),
May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

see the robot turning around. Consequently, no data is available to
guide the weighting of these features.

A more effective approach is to form an expectation over the miss-
ing data conditioned on the observed portions. Bogert et al. [7] adapt
maximum-entropy optimization involving latent variables situated
within the expectation-maximization schema [8] for application in
IRL. Specifically, a distribution over the set of all trajectories with
the maximum entropy is sought, which is constrained to match the
observed feature expectations. When portions of the trajectory are
hidden, a distribution over possible hidden portions conditioned on
the observed part is formed. However, a significant limitation is that
computing this distribution becomes intractable when the occluded
portion is large because the size of the underlying set of possible
trajectories grows exponentially with length. This growth exacer-
bates to being doubly exponential in domains with two experts that
interact due to which joint trajectories must be considered.

Clearly, IRL involving multiple observed agents and exhibiting
moderate to high occlusion of their trajectories require computing
the conditional expectation over a large latent space. This quickly
precludes solving multi-expert problems exactly. The primary con-
tribution of this paper is to reclaim tractability by introducing a
method for computing the conditional expectations more efficiently
while flexibly trading off exactness. Our method intuitively models
the stochastic process generating the joint trajectories of length T as
a dynamic Bayesian network (DBN) of T slices, thereby reducing
the problem to one of Bayesian inference. However, some slices of
this DBN, corresponding to the occluded sequences, are fully hid-
den while perfect evidence is available for others. As hidden slices
could alternate with observed ones, an exact inference technique
such as the forward-backward algorithm is appropriate. While linear
in T , the complexity of forward-backward remains exponential in
the number of agents. Consequently, we show how we may utilize
Gibbs sampling [9] for performing fast inference. The typically
slow convergence rate of Gibbs sampling is speeded up by using a
coordinate (variable) blocking scheme.

We comprehensively evaluate our method for multi-expert IRL
under occlusion on a previously introduced robotic application [6].
It involves a robot L observing from a fixed vantage point two
robotic patrollers executing cyclic trajectories. L’s view is drasti-
cally limited and it is tasked with penetrating the patrol to reach
a goal state. We compare our approximate solution to a previous
method in both simulation and on physical robots, and show that the
blocked Gibbs sampling is effective in quickly computing the con-
ditional expectations. It offers improved inverse learning accuracy
under time constraints.

Rest of the paper is structured as follows. In Section 2, we briefly
review IRL and a well-known method that maximizes entropy. We

522

also review how this method is extended to settings involving occlu-
sion using EM. Section 3 details the methodological contribution
of this paper by introducing a technique for speeding up the com-
putation of the E-step, and gives the main algorithm. The domain
and evaluation metrics are presented in Section 4 followed by the
experiments in Section 5. We contrast our approach with related
work in Section 6, and conclude in Section 7.

2. BACKGROUND
Informally, IRL refers to both the problem and method by which

an agent learns preferences of another agent that explain the lat-
ter’s observed behavior [1]. Usually considered an “expert” in
the task that it is performing, the observed agent, say I , is mod-
eled as executing the optimal policy of a standard MDP defined
as 〈SI , AI , TI , RI〉. The learning agent is assumed to perfectly
know the parameters of the MDP except the reward function. Con-
sequently, the learner’s task may be viewed as finding a reward
function under which the expert’s observed behavior is optimal.

This problem in general is ill-posed because for any given behav-
ior there are infinitely-many reward functions which align with the
behavior. Abbeel and Ng [10] present an algorithm that allows the
expert I to provide task demonstrations instead of its policy. The
reward function is modeled as a linear combination of K binary
features, φ: SI × AI → {0, 1}, each of which maps a state from
the set of states SI and an action from the set of I’s actions AI to
either a 0 or 1. Note that non-binary feature functions can always
be converted into binary feature functions although there will be
more of them. Throughout this article, we assume that these features
are known to or selected by the learner. The reward function for
expert I is then defined as RI(s, a) =

∑K
k=1 θk · φk(s, a), where

θk are the weights. The learner’s task is reduced to finding a vector
of weights that complete the reward function, and subsequently the
MDP such that the demonstrated behavior is optimal.

To assist in finding the weights, feature expectations are cal-
culated for the expert’s demonstration and compared to those of
possible trajectories [11]. A demonstration is provided as one or
more trajectories, which are a sequence of length-T state-action
pairs, (〈s, a〉1, 〈s, a〉2, . . . 〈s, a〉T), corresponding to an observa-
tion of the expert’s behavior across T time steps. Feature expec-
tations of the expert are averages over all observed trajectories,

φ̂k = 1
|X|

∑
x∈X

∑
〈s,a〉∈x φk(s, a), where x is a trajectory in the

set of all observed trajectories, X .
Given a set of reward weights the expert’s MDP is completed and

solved optimally to produce π∗
I . The difference φ̂− φπ∗

I provides a
gradient with respect to the reward weights for a numerical solver.
To resolve the degeneracy of this problem, Abbeel and Ng [10]
maximize the margin between the value of the optimal policy and
the next best policy. The resulting program may be solved with a
quadratic program solver such as a support vector machine.

2.1 Maximum Entropy IRL
While expected to be valid in some contexts, the max-margin

approach introduces a bias into the learned reward function in gen-
eral. To address this, Ziebart et al. [11] find the distribution with
maximum entropy over all trajectories that is constrained to match
the observed feature expectations.

max
Δ

(
−∑

X∈X
Pr(X) log Pr(X)

)

subject to
∑

X∈X
Pr(X) = 1∑

X∈X
Pr(X)

∑
〈s,a〉∈X φk(s, a) = φ̂k ∀k

(1)

Here, Δ is the space of all distributions Pr(X). The benefit is that
this distribution makes no further assumptions beyond those which
are needed to match its constraints and is maximally noncommittal
to any one trajectory. As such, it is most generalizable by being
the least wrong most often of all alternative distributions. A dis-
advantage of this approach is that it becomes intractable for long
trajectories because the set of trajectories grows exponentially with
length. In this regard, another formulation defines the maximum
entropy distribution over policies [12], the size of which is also large
but fixed.

2.2 IRL under Occlusion
Our motivating application involves a subject robot that must

observe other mobile robots from a fixed vantage point. Its sensors
allow it a limited observation area; within this area it can observe the
other robots fully, outside this area it cannot observe at all. Previous
methods [6, 13] denote this special case of partial observability
where certain states are either fully observable or fully hidden as
occlusion. Subsequently, the trajectories gathered by the learner ex-
hibit missing data associated with time steps where the expert robot
is in one of the occluded states. The empirical feature expectation of

the expert φ̂k will therefore exclude the occluded states (and actions
in those states).

To ensure that the feature expectation constraint in IRL accounts
for the missing data, Bogert and Doshi [6] while maximizing entropy
over policies [12] limit the calculation of feature expectations for
policies to observable states only. However, an associated limitation
of this method labeled as mIRL∗, is that features active in the
occluded states only exhibit a gradient of 0 due to which the gradient
of the Lagrangian dual may be unavailable. Therefore, to find
the solution a numerical function minimizer that does not use the
gradient is required such as Nelder-Mead’s simplex [14].

A recent approach [7] improved on the limitations of mIRL∗

by taking an expectation over the missing data conditioned on the
observations. Completing the missing data in this way allows the
use of all states in the constraint and with it the Lagrangian dual’s
gradient as well. The nonlinear program in (1) is modified to account
for the hidden data and its expectation.

Let Y be the observed portion of a trajectory, Z is one way of
completing the hidden portions of this trajectory, Z is the set of all
possible Z, and X = (Y ∪ Z). Now we may treat Z as a latent
variable and take the expectation to arrive at a new definition for the
expert’s feature expectations:

φ̂
Z|Y
k � 1

|Y|
∑

Y ∈Y

∑

Z∈Z

Pr(Z|Y ;θ)
∑

〈s,a〉∈Y ∪Z

φk(s, a) (2)

where Y is the set of all observed Y and X is the set of all complete

trajectories. The program in (1) is modified by replacing φ̂k with

φ̂
Z|Y
k , as we show below. Notice that in the case of no occlusion

Z is empty and X = Y . Therefore φ̂
Z|Y
k = φ̂k and this method

reduces to (1). Thus, this method generalizes the previous maximum
entropy IRL method.

max
Δ

(
−∑

X∈X
Pr(X) log Pr(X)

)

subject to
∑

X∈X
Pr(X) = 1∑

X∈X
Pr(X)

∑
〈s,a〉∈X φk(s, a) = φ̂

Z|Y
k ∀k

(3)

However, the program in (3) becomes nonconvex due to the
presence of Pr(Z|Y). As such, finding its optima by Lagrangian
relaxation is not trivial. Wang et al. [15] suggests a log linear ap-
proximation to obtain maximizing Pr(X) and casts the problem
of finding the reward weights as likelihood maximization that can

523

be solved within the schema of expectation-maximization [16]. An
application of this approach to the problem of IRL under occlusion
yields the following two steps with more details in [7]:

E-step This step involves calculating Eq. 2 to arrive at φ̂
Z|Y ,(t)
k , a

conditional expectation of the K feature functions using the parame-
ter θ(t) from the previous iteration. We may initialize the parameter
vector randomly.

M-step In this step, the modified version of the constrained max-

imum entropy program of (1) is optimized by utilizing φ̂
Z|Y ,(t)
k

from the E-step above as the expert’s feature expectations to obtain
θ(t+1). An adaptive exponentiated gradient descent [17] solves the
program.

As EM may converge to local minima, this process is repeated
with random initial θ and the solution with the maximum entropy is
chosen as the final one.

3. MULTI-EXPERT IRL UNDER
OCCLUSION

We focus on domains involving multiple experts as exemplified by
the two-robot patrolling scenario. IRL in such contexts may model
the experts as a multiagent MDP [18], where the joint state and
actions of all observed agents influence the transitions and rewards.
Formally, let S = SI × SJ be the state of the observed system con-
sisting of two experts, I and J , whose set of states is SI and SJ , re-
spectively. Let AI and AJ be the sets of I’s and J’s actions, respec-
tively. Dynamics of the multiagent MDP are generally modeled us-
ing a two-time slice DBN as shown in Fig. 1. As the next states of the
two experts in our domain of interest are not explicitly correlated, the
joint transition probability T (〈St+1

I , St+1
J 〉|〈At

I , A
t
J〉, 〈St

I , S
t
J〉) is

factored by applying conditional independence, and it becomes
TI(S

t+1
I |〈At

I , A
t
J〉, 〈St

I , S
t
J〉)× TJ(S

t+1
J |〈At

I , A
t
J〉, 〈St

I , S
t
J〉).

S t
I

A t
I

S t
J

A t
J

A t+1
J

A t+1
I

S t+1
I

S t+1
J

S t
I

s I

s I

s I

s I

s I

s I

s I

s I

s J

s J

s J

s J

s’J

s’J

s’J

s’J

A t
I

a i

a i

a i

a i

a’i

a’i

a’i

a’i

a’j

a’j

a’j

a’j

a j

a j

a j

a j

Pr(s)I
 t+1

p1

p5

p4

p3

p2

p5

p6

p6

S t
J A t

J

interacting

not interacting

S t
J

A t
I

A t
J

A t
J

p1 p2 p3 p4

A t
I

p5 p6

s J s’J

a i a ia’i a’i

a j a ja’j a’j

Figure 1: DBN modeling the dynamics and policy of a two-
agent MDP. Assuming that each node is binary valued for il-
lustration, the state and actions of both agents I and J influ-
ence the transition functions in the interacting state 〈sI , sJ〉.
However, in the non-interacting state 〈sI , s′J〉, the distribution
over St+1

I is independent of J’s state and actions. This context-
specific independence facilitates a more efficient representation
of the CPT as a tree.

While supporting full generality, this approach makes IRL signifi-
cantly intractable because implementations of IRL must solve this
large MDP repeatedly during the search for optimal reward weights.

Occlusion further complicates matters because one of the robots
may be observed at a time step while the other is not, resulting in
the state of the joint MDP being partially observed. The resulting
problem may not be solved by traditional IRL methods that assume
perfect observability of the trajectories.

However, in domains where the experts interact sparsely such as
only when the two patrolling robots approach each other in the nar-
row corridor, we may continue to model each robot using a separate,
individual MDP. The behavior of the robots during an interaction is
modeled separately and overrides the behavior prescribed by these
MDPs for the duration of the interaction. To avoid a collision, one
of the patrollers stops while the other slows down to sidestep it.

Let Sint ∈ S be the set of those joint states where I and J inter-
act. In our patrolling example, these could be the same or adjacent
grid cells and the two patrollers are facing each other. Then, S̄int

are those states of the multi-expert system devoid of any interaction.
For any state s = 〈sI , sJ〉 ∈ S̄int, transition probability for an ex-
pert say I , TI(S

t+1
I |〈At

I , A
t
J〉, 〈stI , stJ〉) = TI(S

t+1
I |At

I , s
t
I), and

analogously for J . Recall that TI is the transition function of I’s
individual MDP. For all other states, TI(S

t+1
I |〈At

I , A
t
J〉, 〈stI , stJ〉)

may not be simplified due to the interaction. The above simplifi-
cation is a classic example of context-specific independence [19],
which allows us to represent the conditional probability tables of the
chance nodes St+1

I and St+1
J as efficient trees. We illustrate this in

Fig. 1 and point out the unbalanced tree due to the context-specific
independence.

Our aim is to generalize the EM based maximum-entropy IRL
reviewed in the previous section to multiple agents by using this
approach. The outcome will be a method that operates well under
occlusion and scales to multiple experts that interact sparsely. The
computational challenge is that the set of all possible trajectories
grows exponentially in the number of observed agents and doubly
exponentially with length. Specifically, X = ((SI × AI)

N)T ,
where N is the number of observed agents each of whose state and
action sets are assumed to be same as I’s for simplicity and T is the
length of the trajectory. We present an approach to quickly infer the
relevant joint distributions next.

3.1 Blocked Gibbs Sampling
Equation 2 in the E-step requires us to calculate

∑
Z∈Z

Pr(Z|Y ;

θ(t)) for each incomplete trajectory Y .

Pr(Z|Y ;θ(t)) =
Pr(X;θ(t))

Pr(Y ;θ(t))
∝ Pr(X;θ(t)) (4)

Computing Pr(Z|Y ;θ(t)) is feasible for small-sized Z by enu-
merating all possible ways in which a given Y may be completed
and obtaining the probability of each complete trajectory Pr(X).
In the event that an expert is occluded from view the corresponding
state and action nodes at that time step will be hidden. Consequently,
if T ′ is the length of the trajectory that is occluded from the learner,

|Z| = O(((|Socc||AI |)N)T
′
) where Socc is the subset of states

occluded from the learner. These would be the coordinate loca-
tions (mapped to grid cells) that are not visible to the learner in our
patrolling domain.

As Fig. 2 illustrates, hidden nodes in several contiguous time
slices may be interspersed with a few observed time slices when the
agent comes into view. The two agents may not be in the view of L
simultaneously, as in our patroller domain, due to which all nodes in
the same time slice may not be hidden. The extent of hidden nodes
presents a significant challenge to inferring the joint Pr(X;θ(t))
tractably as hidden nodes are summed out in normalizing it.

524

S t
I

A t
I

S t
J

A t
J

A t+1
J

A t+1
I

S t+1
I

S t+1
J

S t-1
I

A t-1
I

S t-1
J

A t-1
J

A t+2
J

A t+2
I

S t+2
I

S t+2
J

S t-2I

A t-2
I

S t-2
J

A t-2
J

Figure 2: A DBN model of the two-expert trajectory. There
are as many time slices in the DBN as the number of steps in
the trajectory. State-action pairs of each agent where the state
belongs to Socc are hidden, and these are shown shaded. Here,
J is two time steps behind I and the learner does not observe
any robot currently. J will come into L’s view in the next time
step.

An appealing method for computing the joint that is well suited
to extensive occlusion is the forward-backward message passing
algorithm [20]. This filtering and smoothing algorithm makes use of
dynamic programming to calculate the posterior marginal probabili-
ties of the hidden states of a Markov chain and has a time complexity
of O(T ′(|Socc||AI |)N). This is no longer exponential in time as
compared to a naive inferencing scheme.

3.1.1 Gibbs Sampling
In robotic applications, the state is often multi-dimensional be-

cause just representing a robot’s pose requires tracking its two or
three-dimensional coordinates along with its orientation. A princi-
pled method for efficiently computing the posterior of a DBN that
models a multi-dimensional evolving state, and which is exact in the
limit is Gibbs sampling [9]. A Markov chain Monte Carlo method,
Gibbs sampling is well suited for approximating the distribution
of a BN with hidden variables. It is a special case of the Metropo-
lis–Hastings algorithm in which the probabilities of each individual
node are known and can be sampled from, but the distribution over
the entire network is intractable. Sampling proceeds by first ran-
domly assigning all hidden nodes and then repeatedly sampling each
node conditioned on the current or just sampled values of all other
nodes. Gibbs sampling distinguishes itself by utilizing newly sam-
pled values of variables as soon as we obtain them. This procedure
generates a Markov chain of samples where each complete network
generated from samples depends on the previous one only, and over
time the sequence of networks approaches the true joint distribution.

As each node in a BN is conditionally independent of all other
nodes given its Markov blanket, the nodes in multi-agent Z may be
sampled from these distributions:

Pr(stI |MB(stI)) = η TI(s
t−1
I , st−1

J , at−1
I , at−1

J , stI)×
TI(s

t
I , s

t
J , a

t
I , a

t
J , s

t+1
I) TJ(s

t
J , s

t
I , a

t
J , a

t
I , s

t+1
J)×

Pr(at
I |stI , stJ) Pr(at

J |stJ , stI); and

Pr(at
I |MB(at

I)) = η′ TI(s
t
I , s

t
J , a

t
I , a

t
J , s

t+1
I) Pr(at

I |stI , stJ)

Sampled nodes are states or actions; MB(·) is the Markov blanket
of the argument node; η and η′ are normalizers.

3.1.2 Blocking
To improve the convergence rate of Gibbs sampling – a well-

known impediment to using it – we may employ blocking [21].
Similarly to blocked coordinate descent [22], variables are grouped

into acyclic blocks and the joint distribution of all nodes within
the block are computed and sampled as one unit. The size of the
block and the order in which the blocks should be visited are often
determined empirically.

We may easily calculate the joint distribution when a block size of
only one time step of the trajectory is used. However, if block sizes
incorporate multiple time steps the joint distribution may become
intensive to compute due to its size. We could utilize a forward-
backward algorithm to obtain the distribution in this case. As multi-
agent trajectories greatly increase the size of the sample space we
develop and evaluate variants of the blocking and visitation schemes
in an attempt to improve convergence rates of Gibbs sampler:

• Blocked Gibbs - Samples the state and action of one agent
as a block, alternating between agents and proceeding in time
step order.

• Multiagent Blocked Gibbs - Samples the joint state and ac-
tion of all agents at a given time step of the joint trajectory
as a single block; reduces to the above Blocked Gibbs if only
one agent is occluded at a time.

• X Time-steps Blocked Gibbs - Samples X time steps of a
single agent as a block, alternating between agents. Uses a
forward-backward algorithm to obtain the joint distribution
over the block, which is sampled.

• X Time-steps Multiagent Blocked Gibbs - Samples X time
steps of all agents jointly as a block. Also uses forward-
backward message passing for the joint distribution of the
block.

Markov blankets of all these blocking schemes are the states and
actions in the time steps surrounding the block - these nodes are
treated as perfectly observed in the forward-backward. If a value
for a node in the blanket is not available to the learner, it uses an
uninformative dummy observation that weights all occluded states
and all actions equally.

3.2 Algorithm
Our sampling in the E-step proceeds by initializing the large

number of nodes in Z in time step order: first sample from the
distribution over an expert’s state at time t using T (st−1, at−1, st)
and then over its actions using Pr(at|st). If blocking is utilized,
the joint distribution over the block is computed first as mentioned
in the previous subsection.

As a full trajectory X is produced by Gibbs sampling, we may
obtain the feature expectations due to each trajectory and update
the mean of feature expectations so far at regular intervals; this
approximates computing Eq. 2. We may stop this sampling pass
when the change in the mean feature expectations has remained
consistently below a small threshold for some number of iterations
(we use last 20 in our experiments). This mean is then added to a
mean-of-means and Gibbs is repeated until the mean-of-means has
converged. 1

For the M-step, we minimize the dual of (3) using the adaptive,
unconstrained and exponentiated gradient descent algorithm [17]
with variance bounds. The gradient involves a summation over
all possible trajectories, which may be a very large set. With the

1Convergence of Gibbs sampling to the expected distribution is not
guaranteed except in specific cases involving nodes that exhibit high
levels of mixing. This is not necessarily the case with transition
functions used in robotic applications (a robot may not arrive at any
other location given its current). Convergence of mean-of-means is
a simple method to incorporate restarts into Gibbs sampling.

525

goal of speeding up the computation, we avoid this summation
by expressing the feature expectations in terms of state-visitation
frequencies at each time step:

∇Θ =
∑

X∈X
Pr(X)

∑
(s,a)∈X φk(s, a)− φ̂Z|Y

=
∑

s∈SI
μ(s)

∑
a∈AI

Pr(a|s) φk(s, a)− φ̂Z|Y

=
∑

s

∑
t μt(s)

∑
a Pr(a|s) φk(s, a)− φ̂Z|Y

(5)

Here, ∇Θ denotes the gradient; μ(s) is the state-visitation fre-
quency, μt(s) is the state-visitation frequency at time t, which is ob-
tained as, μt(s) =

∑
s′

∑
a

Pr(s|s′, a) Pr(a|s′) μt−1(s
′). The over-

all state-visitation frequency, μ(s) =
∑

t∈T μt(s), and Pr(a|s)
is calculated using softmax value iteration [11]. Next, we decom-
pose this gradient along time steps with the goal of using an online
stochastic gradient descent approach. We begin by using Eq. 2,

∇Θ =
∑

s∈SI

∑
t∈T

μt(s)
∑

a∈AI

Pr(a|s) φk(s, a)

− 1

|Y|
∑

Y ∈Y

∑
Z∈Z

Pr(Z|Y ;θ)
∑

〈s,a〉∈Y ∪Z
φk(s, a)

≈
∑

s∈SI

∑
t∈T

μt(s)
∑

a∈AI

Pr(a|s) φk(s, a)

− P̃ r(s, a)t φk(s, a)

=
∑

t∈T

∑
s∈SI

∑
a∈AI

φk(s, a) (μt(s)Pr(a|s)

− P̃ r(s, a)t)

The gradient at a particular time step t is,

∇Θt =
∑

s∈SI

∑
a∈AI

φk(s, a) (μt(s)Pr(a|s)− P̃ r(s, a)t)

where, P̃ r(s, a)t is the empirical distribution of state-action pairs
at time t across all trajectories obtained from the E-step. Notice
that as t grows, computing μt begins to dominate the run time due
to its recursive nature. Unfortunately, this additional run time chal-
lenges the online use of this algorithm in our experiments, thereby
suggesting an additional approximation.

Because the learner receives a long trajectory from each expert
in our problem domain thereby providing several state-action pairs,
we explore simply replacing the exact computation of the state-
visitation frequency by an empirical estimate. In order words, we
allow, μt(s) =

∑
a∈AI

P̃ r(s, a)t, in the equation above. The
stochastic gradient descent is performed for 10,000 iterations, and
we update Pr(a|s) after blocks of 10 iterations.

4. ROBOTIC DOMAIN, METRICS
AND MODEL

We utilize the multi-robot patrolling domain for our empirical
evaluations. While a previous method [6] let the patrollers’ interac-
tion behavior be unknown, here we assume that the learner knows
how the overlaid interaction proceeds. This permits a focus on oc-
clusion. Patrollers I and J operate in narrow hallways of a building
as shown in Fig. 3. L observes from a corner as the patrollers move
in a cyclic trajectory using way points unknown to L. Each robot is
a Turtlebot equipped with a video camera and laser scanner (Kinect
360). A time step is two seconds.

Learner L is tasked online with (i) passively observing the pa-
trollers to gather data for IRL; (ii) using IRL to recover the pa-
trollers’ reward functions and subsequently the policy they are using;
(iii) utilizing the found policies to predict the future path of both
patrollers; (iv) planning a route that avoids the patrollers’ predicted
path while reaching the goal state.

(a)

(b)

Figure 3: (a) A diagram of the map for our patrolling exper-
iment. (b) Corresponding MDP state space for each patroller.
Shaded squares are the turn-around states, which is not known
to the learner, and the red X is L’s goal state.

Two measures allow an evaluation of the ability of IRL to learn
the behavior of the patrollers. The first is learned behavior accuracy,
which is the proportion of states in which the optimal policy for
the learned reward function gives the observed action. This gives a
measure of the prediction accuracy of a given technique. The second
measure is the success rate of L as a proportion of penetration
attempts that result in L reaching its goal without being detected.
This measures all aspects of the experiment but suffers from the
possibility that L could fail to learn the patrollers’ policies accurately
but still reach its goal undetected, by chance.

Additionally, we report the number of time outs for each method,
a measure of L taking excessively long to perform its task. A run
times out after 25 minutes and if L has not reached the goal until
then, the run is counted as a failure. Time outs may occur because
the inverse learning takes too long or the learned policies produce
no useful predictions causing L to believe that there is no safe path
to the goal.

4.1 Model
States of each patroller’s MDP are cell decompositions of the

patrolled area (x, y) and an additional discretized orientation ψ.
Each patroller may take one of 4 actions: Move forward, Stop, Turn
left, and Turn right. The transition function models the probability of
any action succeeding at 92.5% with the remaining probability mass
distributed uniformly among the intended states of other actions. As
L is expected to move through the same space as the patrollers, its
MDP is similar to theirs with the important addition of a discretized
time variable. This 4-dimensional MDP is needed otherwise L’s
reward function would be dynamic as patrollers move constantly [6].
All MDPs are solved for infinite horizon until convergence.

On learning the policy of each patroller, L jointly projects these
forward in time starting from the last position each patroller was
observed, to arrive at a prediction for the future positions of each
patroller. These positions are noted in L’s MDP and any states
which are visible from a patroller’s position at a given time step
receive a negative reward. Goal locations at all time steps are given
a positive reward and the MDP is solved optimally. L requires a
positive value at its starting position at the current time or some
future time step; this implies that L expects there to be a path to
the goal that avoids detection starting from that time. L waits until
that time step has arrived and begins following its policy. In the
event that no positive value is found the positions of the patrollers

526

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L
e
a
rn

e
d
 B

e
h
a
v
io

r
A

c
c
u
ra

c
y

Degree of Observability

Gibbs
Blocked Gibbs

M/A Blocked Gibbs

3 Timestep Gibbs
mIRL*+ne

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u
c
c
e
s
s
 R

a
te

Degree of Observability

Gibbs
Blocked Gibbs

M/A Blocked Gibbs

3 Timestep Gibbs
mIRL*+ne

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u

m
b

e
r

o
f

T
im

e
o

u
ts

Degree of Observability

Gibbs
Blocked Gibbs

M/A Blocked Gibbs
3 Timestep Gibbs

mIRL*+ne

(c)

Figure 4: (a) Effect of degree of observability on average learned behavior accuracy (error bars are standard deviation) (b) Success
rates achieved by each method as observability changes (error bars are 95% confidence intervals) (c) Proportion of runs that timed
out, we stop a run after 25 mins. We used standard computers for running the simulations – Intel Core 2 Duo @ 3.00GhZ and 4GB
RAM on Ubuntu.

are updated due to any new observations and the process is repeated
until one is found or the run times out.

Interactions between the robots occur as they attempt to pass each
other without collision, resulting in one robot stopping while the
other moves slowly around it. It takes 3 time steps to model the
slower movement of the robots during interaction.

The reward functions of I and J are a linear combination of three
feature functions:

1. Has moved, which returns 1 if the action causes the patroller
to leave its current location s, otherwise 0;

2. Turn around at state s, which returns 1 if the robot turns at
the location given by s, otherwise 0; and

3. Catch All, which returns 1 for all other state-action pairs not
matched by the above two features.

The true reward function penalizes turning around in the middle
of the hallway and rewards turning at the shaded states of Fig. 3(b).
As a result, the optimal policies of the patrollers generate trajectories
that move through the hallways, turn around at the ends, and move
back. This scenario is illustrated in Fig. 3 (a), which shows a trace
of the patrollers. The state space of a robot’s MDP is shown in Fig. 3
(b) where the shaded squares are the states in which the patrollers
turn around. L must move from its position in the top left corner to
reach the red X undetected by either I or J .

4.2 Baselines
Several methods described previously are evaluated in this sce-

nario. As the size of Z is very large due to long trajectories, two
experts, and the large number of states per agent the original E-
step that seeks to compute Pr(Z|Y ;θ(t)) exactly is not employed
here. Instead, we test the schemes Gibbs Sampling, Blocked Gibbs,
Multiagent Blocked Gibbs, and 3 Time-steps Blocked Gibbs, which
were previously described. Computing the joint of the large block
in the 3 Time-steps Multiagent Blocked Gibbs quickly proved to be
infeasible within the time limit and was not utilized further. EM
iterations were limited to a maximum of 7 and the Gibbs sampling
over the entire network was iterated up to 50 times. Additionally, we
compare the methods to a baseline mIRL∗+ne, a variant of mIRL∗

described in Section 2 in which the interaction behavior is known.
This approach does not compute the expectation over trajectories
and is expected to take least time with respect to |Socc|.

5. EXPERIMENTS AND RESULTS
We empirically evaluate the methods mentioned in Section 4.2 in

simulation and on physical robots. In particular, we seek a Gibbs

sampling scheme that results in most success. Each run lasts for a
total of 25 minutes both in simulation and using the physical robots.
Out of these, the learner observed the patrols for at most 6 minutes.
About 8-10 minutes of the remaining time was spent in performing
the IRL and solving the MDP, and then it waited until the right time
step to launch a penetration attempt.

5.1 Simulations
We first examine the learned behavior accuracy of all methods

in simulation as the proportion of the patrollers’ trajectories visible
to L is varied. Figure 4 (a) shows that the Blocked Gibbs scheme
exhibited the highest accuracy for low degrees of observability
until other methods reach its performance as observability improves.
Observe the large standard deviation of mIRL∗+ne and the non-
blocking Gibbs as compared to Blocked Gibbs. When the entire
trajectory is observable, all EM-based methods perform similarly
as without missing data no E step is needed. Each data point is the
result of 230 runs, resulting in very low standard error that ranges
from 0.0024 (Gibbs, highest observability) to 0.010 (Gibbs, lowest
observability). Consequently, the improved performance of Blocked
Gibbs at low observability is statistically significant.

Next, we report the success rates achieved by all methods as the
degree of observability is again varied. As we may expect, Fig. 4 (b)
shows that Blocked Gibbs again provides the best overall success
rate, matching or outperforming mIRL∗+ne significantly and all
other EM-based methods. As observability decreases these methods
must sample from a greatly increased space of possible trajectories
thereby increasing the time to find a solution. This leaves less time
to find an opportunity to successfully penetrate the patrol and results
in an increased number of time outs. As can be seen in Fig. 4 (c),
mIRL∗+ne experiences the fewest time outs of all methods followed
closely by Blocked Gibbs. Notice the high proportion of time outs
experienced by 3 Timestep Gibbs and Multiagent Blocked Gibbs;
this explains their poor performances as these sampling algorithms
take excessive time to sample Z under large amounts of occlusion.

These experiments strongly indicate that Blocked Gibbs where a
block comprises a single agent’s state-action nodes at a time step
strikes a careful balance between tractability and learning perfor-
mance. Larger-sized blocks in the multiagent and extended time-step
schemes require increased time in computing the joint that leads to
time outs in high occlusion scenarios. Indeed, our results indicate
that it is better to not group variables based on the performance of
Gibbs, which is second best.

5.2 Physical robots
To verify the applicability of the EM-based IRL to tasks in the

physical world, we performed a set of experiments with physical

527

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 50 100 150 200 250 300 350 400

S
u

c
c
e

s
s
 R

a
te

Observation Time

Gibbs - Simulated

Gibbs - Physical

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 50 100 150 200 250 300 350 400

S
u

c
c
e

s
s
 R

a
te

Observation Time

Blocked Gibbs - Simulated

Blocked Gibbs - Physical

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 50 100 150 200 250 300 350 400

S
u

c
c
e

s
s
 R

a
te

Observation Time

mIRL*+ne - Simulated

mIRL*+ne - Physical

(c)

Figure 5: Success rates based on observation times in the physical runs for (a) Gibbs sampling (b) Blocked Gibbs and (c) mIRL∗+ne.
We compare with those obtained from the simulations for the same low degree of observability. The vertical bars are 95% confidence
intervals. Laptops on the TurtleBots have Intel i3 processors with 4GB RAM on Ubuntu.

Turtlebots in conditions that matched the lowest degree of observabil-
ity in our simulations. As altering the observability is not possible
in the physical setup we instead varied the observation time and
performed 10 runs per data point. Figure 5 demonstrates that all
methods closely matched simulation results for 45 and 180 seconds
of observation times. However, interestingly both EM methods out-
performed their simulation results at 360 seconds. One hypothesis
for this result is, surprisingly, computing power. While the pro-
gram in physical experiments had dedicated access to the processing
power, simulations shared compute time with the ROS environ-
ment and two patroller stacks. We think that this slowed down the
solver to counteract the improved performance due to more data.
Importantly, EM-based methods are overall robust to observations
of trajectories that are often more noisy in the real world.

6. RELATED WORK
Ng and Russell [2] formalized IRL as a problem involving a single

subject agent learning from a single expert modeled as a MDP. We
may view IRL as a special case of inverse optimal control [23],
which allows for other frameworks as well, such as inverse linear-
quadratic regulators [24].

Ziebart et al. [11] developed maximum entropy IRL as a way of
removing bias from the learned reward function. The technique uti-
lized the principle of maximum entropy [25] to obtain a distribution
over all possible trajectories, constrained to match feature expecta-
tions with those calculated from observed trajectories of the expert
agent. A different formulation of maximum entropy IRL maintains
a distribution over all candidate policies [12]. Bogert and Doshi [6]
extended maximum entropy IRL to settings involving occlusion of
portions of the trajectory, by limiting the constraints to the observed
portion of the trajectories only. As a result the Lagrangian gradient
becomes undefined, slowing the optimization step. In contrast, an
EM based approach [7] forms an expectation over the missing data
to allow the use of the Lagrangian gradient. However, this method
suffers from a computationally intensive expectation step when the
occluded portions of the trajectories are long; a limitation addressed
by this paper.

Nguyen et al. [26] also combined EM with IRL to find multi-
ple locally-consistent reward functions. The identity of the reward
function and its parameters in use at each time step of the expert’s
demonstration is obtained by employing the EM scheme for cluster-
ing to find the maximum likelihood parameterization. In contrast,
our method assumes a single reward function but due to missing
data it may not be uniquely determined. We use EM to find the
maximum likelihood reward weights.

Other approaches to improving the performance of IRL seek to
avoid calculating the forward problem by inversely learning the

value function [27] and then performing a regression step to recover
the reward function [28].

7. CONCLUDING REMARKS
Interest in IRL has increased tremendously in the past few years

because of potential applications in learning from demonstrations
and in imitation learning. Significant advances are readying IRL
for real-world impact. A basic challenge in this regard is that the
observed agents may become partially occluded from the learner as
they go about performing their tasks; this exacerbates the degener-
acy of the optimization. While previous methods seek to address
this challenge, this paper shows that the EM-based method which
previously demonstrated better learning is intractable for longer tra-
jectories and multiple agents. It introduces Gibbs sampling as a way
of speeding up the inference required in the E-step, and empirically
explores various blocking schemes. While Gibbs sampling is known
for estimating distributions in dynamic Bayesian networks, its em-
bedding in a forward-backward algorithm for IRL under occlusion
is novel. The net result is an IRL technique that scales to both long
trajectories of as many as 180 time steps and multiple observed
agents under occlusion.

Of course, the space of trajectories is smaller in a domain with
less stochasticity, but generally, the space grows exponentially with
length. Given the favorable performance in scaling from one to two
patrollers, we believe that Gibbs sampling can scale reasonably well
to more experts. However, a key challenge that we encountered is
that with 3 and more patrollers, it becomes very difficult to penetrate
patrols and reach the target, despite good learning accuracy; the
success rate is low. Consequently, a different problem domain is
needed to evaluate this method with more experts.

Further speed up of the E-step seems possible through the careful
use of parallelization. Another significant avenue of future work is
to explore methods for automatically discovering variable grouping
schemes from data [29].

Acknowledgments
This research was funded, in part, by a grant from ONR N-00-0-
141310870. We thank Brian Ziebart for useful discussions.

REFERENCES
[1] Stuart Russell. Learning agents for uncertain environments

(extended abstract). In Eleventh Annual Conference on
Computational Learning Theory, pages 101–103, 1998.

[2] Andrew Ng and Stuart Russell. Algorithms for inverse
reinforcement learning. In ICML, pages 663–670, 2000.

528

[3] Martin L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons, Inc.,
New York, NY, USA, 1st edition, 1994.

[4] Y. Iwashita, R. Kurazume, T. Hasegawa, and K. Hara. Robust
motion capture system against target occlusion using fast level
set method. In IEEE International Conference on Robotics
and Automation (ICRA), pages 168–174, 2006.

[5] Christian Schmaltz, Bodo Rosenhahn, Thomas Brox, Joachim
Weickert, Lennart Wietzke, and Gerald Sommer. Dealing with
self-occlusion in region based motion capture by means of
internal regions. In 5th International Conference on
Articulated Motion and Deformable Objects (AMDO), pages
102–111, 2008.

[6] Kenneth Bogert and Prashant Doshi. Multi-robot inverse
reinforcement learning under occlusion with interactions. In
International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), pages 173–180, 2014.

[7] Kenneth Bogert, Jonathan Feng-Shun Lin, Prashant Doshi,
and Dana Kulic. Expectation-Maximization for Inverse
Reinforcement Learning with Hidden Data. In International
Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), pages 1034–1042, 2016.

[8] Shaojun Wang Shaojun Wang, R. Rosenfeld, Yunxin
Zhao Yunxin Zhao, and D. Schuurmans. The latent maximum
entropy principle. Proceedings IEEE International
Symposium on Information Theory,, pages 131–167, 2002.

[9] Robert Casella. Monte Carlo Statistical Methods.
Springer-Verlag, 2004.

[10] Pieter Abbeel and AY Ng. Apprenticeship learning via inverse
reinforcement learning. In ICML, page 1, 2004.

[11] Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and
Anind K. Dey. Maximum entropy inverse reinforcement
learning. In AAAI, pages 1433–1438, 2008.

[12] Abdeslam Boularias, O Kromer, and J Peters. Structured
apprenticeship learning. Machine Learning and Knowledge
Discovery in Databases, 7524:227–242, 2012.

[13] Kenneth Bogert and Prashant Doshi. Toward estimating
others’ transition models under occlusion for multi-robot IRL.
In International Joint Conference on Artificial Intelligence
(IJCAI), pages 1867–1873, 2015.

[14] J. A. Nelder and R. Mead. A simplex method for function
minimization. The Computer Journal, 7(4):308–313, 1965.

[15] Shaojun Wang, Dale Schuurmans, and Yunxin Zhao. The
latent maximum entropy principle. ACM Transactions on
Knowledge Discovery from Data (TKDD), 6(2):1–8, 2012.

[16] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistics Society. Series B
Methodological, 39(1):1–38, 1977.

[17] Jacob Steinhardt and Percy Liang. Adaptivity and
optimism:an improved exponentiated gradient algorithm. In
International Conference on Machine Learning (ICML),
pages 1593–1601, 2014.

[18] Craig Boutilier. Planning, learning and coordination in
multiagent decision processes. In 6th Conference on
Theoretical Aspects of Rationality and Knowledge (TARK),
pages 195–210, 1996.

[19] Craig Boutilier, Nir Friedman, Moises Goldszmidt, and
Daphne Koller. Context-specific independence in bayesian
networks. In Twelfth international conference on Uncertainty
in artificial intelligence (UAI), pages 115–123, 1996.

[20] Stuart Russell and Peter Norvig. Artificial Intelligence: A
Modern Approach (Third Edition). Prentice Hall, 2010.

[21] Claus Jensen, Uffe Kjaerulff, and Augustine Kong. Blocking
gibbs sampling in very large probabilistic expert systems.
International Journal of Human Computer Studies, 42(6),
1995.

[22] P. Tseng. Convergence of block coordinate descent method for
nondifferentiable minimization. Journal of Optimization
Theory and Applications, 109:475–494, 2001.

[23] RW Obermayer and Frederick A Muckler. On the inverse
optimal control problem in manual control systems, volume
208. NASA, 1965.

[24] BD Ziebart, JA Bagnell, and AK Dey. Modeling interaction
via the principle of maximum causal entropy. In ICML, 2010.

[25] Edwin T. Jaynes. Where do we stand on maximum entropy. In
Levin and Tribus, editors, The Maximum Entropy Formalism,
pages 15–118. MIT Press, 1979.

[26] Quoc Phong Nguyen, Bryan Kian Hsiang Low, and Patrick
Jaillet. Inverse reinforcement learning with locally consistent
reward functions. In Advances in Neural Information
Processing Systems, pages 1747–1755, 2015.

[27] Krishnamurthy Dvijotham and Emanuel Todorov. Inverse
optimal control with linearly-solvable MDPs. In ICML, pages
335–342, 2010.

[28] Edouard Klein and M Geist. Inverse Reinforcement Learning
through Structured Classification. Advances in Neural
Information Processing Systems, pages 1–9, 2012.

[29] Charlie Frogner and Avi Pfeffer. Discovering
weakly-interacting factors in a complex stochastic process. In
Advances in Neural Information Processing Systems (NIPS),
2007.

529

