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ABSTRACT
Multi-step methods are important in reinforcement learn-
ing (RL). Eligibility traces, the usual way of handling them,
works well with linear function approximators. Recently,
van Seijen (2016) had introduced a delayed learning ap-
proach, without eligibility traces, for handling the multi-step
λ-return with nonlinear function approximators. However,
this was limited to action-value methods. In this paper,
we extend this approach to handle n-step returns, gener-
alize this approach to policy gradient methods and empir-
ically study the effect of such delayed updates in control
tasks. Specifically, we introduce two novel forward actor-
critic methods and empirically investigate our proposed meth-
ods with the conventional actor-critic method on mountain
car and pole-balancing tasks. From our experiments, we ob-
serve that forward actor-critic dramatically outperforms the
conventional actor-critic in these standard control tasks. No-
tably, this forward actor-critic method has produced a new
class of multi-step RL algorithms without eligibility traces.

Keywords
Reinforcement Learning, Actor-Critic, Policy Gradient, Non-
linear Function Approximation, Incremental Learning

1. INTRODUCTION
Reinforcement Learning (RL)[11, 12] is a problem setting

where a learner learns to map actions to situations, in order
to maximize a numerical reward signal. Temporal-Difference
(TD)[10] learning is the popular algorithm for handling RL
problems. Typically, a TD method estimates the quality
of an action-selection strategy from online experiences and
continually improves them by performing certain sample up-
dates.

These update targets usually contain information extend-
ing multiple time steps into the future and often play a key
role in the speed and efficiency of learning. λ-return is a
multi-step update target that is typically used in TD learn-
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ing and it is defined as a weighted average of rewards and
value estimates. The λ parameter determines the weights
for averaging between these components and can be seen as
a parameter for controlling the bias-variance tradeoff.

TD learning, from a theoretical standpoint, can be defined
as learning from stochastic gradient descent updates towards
an update target, like the λ-return. Using such an update
target will require the learning algorithm to gather informa-
tion from time steps extending into the future, which implies
that this method needs to look forward in time, and so this
approach is called the forward view [14]. Näıvely implement-
ing this will result in an algorithm that does not learn contin-
ually from online experiences — which seriously undermines
the usability of this method in many real-world ongoing ap-
plications. Eligibility traces were introduced specifically to
address this challenge.

With eligibility traces, TD learning can utilize multi-step
update targets, like λ-return, and still learn incrementally
from online experiences. Learning with eligibility traces
propagates information back through time, and for this rea-
son this approach is called the backward view [11].

Eligibility traces work well with linear function approxi-
mators. Recently, however, van Seijen (see [13]) showed that
eligibility traces can cause divergence while learning with
nonlinear function approximators, like neural networks. The
underlying cause behind this instability is because of the
deviations between the updates of forward and backward
views. Specifically, eligibility traces in the case of nonlinear
function approximators can produce updates that deviate
from that of the forward view, thereby violating the equiv-
alence between forward and backward views. Also, it is not
prudent to avoid using nonlinear function approximators —
they play a key role for scaling up reinforcement learning ap-
proaches to many difficult domains, particularly, in robotics.

Towards addressing this challenge, van Seijen introduced
a multi-step action-value learning algorithm without eligibil-
ity traces. This is called forward Sarsa(λ), where the learn-
ing takes place incrementally through delayed multi-step up-
dates and it occupies a middle ground between forward and
backward views. In the case of nonlinear function approx-
imators, this action-value learning algorithm performs sub-
stantially better than a conventional Sarsa(λ) algorithm.
However, this work focused on designing an action-value
method rather than a general policy gradient method. This
is a drawback that needs to be addressed, because policy
gradient methods with nonlinear function approximators are
important for many control applications, like intelligent pros-
thesis, self-driving cars etc.
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In this paper, we extend van Seijen’s approach to handle
n-step returns, generalize this for policy gradient methods
and empirically study the effect of delayed updates in two
standard control tasks, mountain car and pole-balancing.
Specifically, we introduce a policy gradient algorithm called
the forward actor-critic, which utilizes multi-step update
targets without any complications arising from eligibility
traces. Moreover, this forward actor-critic method can be
generalized to handle any complex backup, since it directly
implements the forward view. As a direct consequence, this
leads to the creation of a new class of forward multi-step
policy gradient algorithms without eligibility traces. Un-
like the conventional forward view methods, this proposed
forward actor-critic method is computationally efficient and
can learn incrementally from online experiences. Though
the learning updates happen after a certain delay, it is out-
weighed by the substantial performance improvements ob-
tained over the conventional actor-critic method with non-
linear function approximators. However, for linear function
approximators, there is no real advantage for this forward
actor-critic method.

2. BACKGROUND

2.1 Reinforcement Learning Framework
RL tasks are formulated as Markov Decision Processes

(MDPs) which are usually described as a tuple
〈
S,A,

p, r, γ
〉
, consisting of S, set of all states; A, set of all actions;

p(s′|s, a), a transition probability function, which gives the
probability of transition to the next state s′ ∈ S from a
given current state s ∈ S by selecting an action a ∈ A;
r(s, a, s′), the reward function that gives the expected re-
ward for a transition from state s ∈ S to s′ ∈ S by taking
action a ∈ A; γ is the discount factor, that specifies the
relative importance between immediate and long term re-
wards. In episodic problems, the MDP can be viewed as
having special states called terminal states, which terminate
an episode. Such states ease the mathematical notations as
they could be viewed as a state with a single action that
results in a reward of 0 and transition to itself. The return
Gt at a time instance t is defined as the discounted sum of
rewards after time t :

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · ·

Gt =

∞∑
i=1

γi−1Rt+i

where Rt+1 denotes the reward received after taking an ac-
tion At = a in state St = s.

Actions are taken at discrete time steps t = 0, 1, 2, · · · ac-
cording to a policy π : S×A → [0, 1] which defines a selection
probability for each action conditioned on the state. Each
policy π has a corresponding state-value function vπ(s), that
maps each state s ∈ S to the expected return Gt from that
state by following the policy π,

vπ(s) = Eπ
[
Gt|St = s

]
2.2 Temporal-Difference Learning

Temporal-Difference (TD) learning aims at learning the
state-value (or the action-value function) based on an update

rule derived from stochastic gradient descent[2]. Let V̂ (s|w)

be an estimate of the true value function vπ(s) parametrized
by a weight vector w ∈ Rn. For a given set of samples{
S1, S2, · · · , Sn} experienced by the learning algorithm, a

squared error function can be defined as:

L(w) :=
1

2

n∑
i=1

[
vπ(Si)− V̂ (Si|w)

]2
Minimizing this error function by stochastic gradient de-

scent for an online sequence of samples experienced by the
learning algorithm will yield the following update rule:

wt+1 = wt − αv
1

2
∇w
[
vπ(St)− V̂ (St|wt)

]2
= wt + αv

[
vπ(St)− V̂ (St|wt)

]
∇wV̂ (St|wt)

where αv > 0 is the step-size parameter and controls the
magnitude of this update rule.

Generally, vπ(St) is an unknown quantity. In TD learning,

an estimate of vπ(St), like Gλt , G
(n)
t or Gt, is typically used.

This estimate can be viewed as an update target Ut:

wt+1 = wt + αv
[
Ut − V̂ (St|wt)

]
∇wV̂ (St|wt) (1)

As these update targets require information spanning into
the future time-steps, the methods that utilize this update
rule are called forward view methods. In order to learn incre-
mentally from experiences, the idea of eligibility traces were
introduced. The learning methods that learn incrementally
from ongoing experiences using eligibility traces are called
backward view methods.

2.3 Actor-Critic Methods
Actor-Critic methods are special forms of policy gradient

methods[1, 9] and are usually viewed as an architecture for
solving RL problems.

The actor learns an action-selection policy π(At|St,θ), pa-
rameterized by θ ∈ Rm, that maximizes the total expected
reward in a RL control task. On the other hand, the critic
learns a value function V̂ (St|w) with respect to this policy
and is parameterized by w ∈ Rn. At every time step, the
critic critiques the actor for selecting an action by generat-
ing a TD error δt = Rt+1 + γV̂ (St+1|w)− V̂ (St|w). This δt
drives the learning in both actor and critic modules.

Typically, the critic utilizes the TD learning algorithm and
its update rules are the same as described in the previous
section.

For a given set of experienced states {S1, S2, · · · , Sn} by a
learning agent, an optimization function (Bhatnagar et. al.,
2009) can be defined for the actor module as:

L(θ) := Eπ
[
qπ(St, At)− V̂ (St|w)

]
Minimizing this error function by stochastic gradient de-

scent for an online sequence of samples experienced will re-
sult in the following update rule:

θt+1 = θt + απ
[
qπ(St, At)− V̂ (St|wt)

]∇θπ(At|St,θt)
π(At|St,θt)

= θt + απ
[
Ut − V̂ (St|wt)

]∇θπ(At|St,θt)
π(At|St,θt)

(2)

where απ > 0 is the step-size parameters for the actor mod-
ule. In order to learn incrementally from online experi-
ences, eligibility traces can be used for both the actor and
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Algorithm 1 Conventional Actor-Critic

INPUT: αv, απ, λ, γ,winit,θinit
1: w ← winit . w is the weight vector for the critic
2: θ ← θinit . θ is the weight vector for the actor
3: ew ← 0 . ew is the eligibility trace for the critic
4: eθ ← 0 . eθ is the eligibility trace for the actor
5: for num. of episodes do
6: obtain initial state S
7: while S is not terminal do
8: select action A for state S
9: take action A, observe S′ and R

10: vcurrent ← V̂ (S|w)
11: vnext ← 0
12: if S′ is not terminal then
13: vnext ← V̂ (S′|w)
14: end if
15: δ ← R+ γvnext − vcurrent
16: ew ← γλew +∇wV̂ (S|w)
17: w ← w + αvδew
18: eθ ← γλeθ +∇θlog[π(A|S,θ)]
19: θ ← θ + απδeθ
20: S ← S′

21: end while
22: end for

critic parameters. The conventional actor-critic algorithm
with eligibility traces is summarized in Algorithm. 1.

3. FORWARD ACTOR-CRITIC

3.1 λ-return, n-step return and the conventional
forward views

The forward views of both actor and critic (eqns. [1, 2])

uses multi-step update targets, like Gλt , G
(n)
t or Gt, in place

of Ut. These update targets are used as estimates of the true
value function vπ(St).

Usually, λ-return is often used in the update rules of both
critic (eqn. [1]) and actor (eqn. [2]). This λ-return, Gλt (w),
is defined as an infinite, weighted sum over n-step returns
as follows:

Gλt (w) = (1− λ)

∞∑
i=1

λi−1G
(i)
t (wt) (3)

where the n-step return G
(n)
t (w) is defined as:

G
(n)
t (w) =

n∑
j=1

γj−1Rt+j + γnV̂ (St+n|w)

n-step returns are intermediate update targets that are
based on an intermediate number of rewards extending into
the future, more than one but less than all of them un-
til termination. On the other hand, λ-return is a weighted
combination of n-step returns where the weightings are de-
termined by the λ parameter. Subsequently, we can also use
the n-step return in place of λ-return.

It is important to point out here that the algorithms based
on λ-return cannot learn incrementally from online experi-
ences.

3.2 K-bounded λ - return
The λ-return is defined as an infinite weighted sum which

contains information extending multiple time steps into the
future. This cannot be accurately and incrementally learned
from online experiences without eligibility traces. In order
to approximately estimate this λ-return without using el-
igibility traces, Cichosz (see [3]) had proposed the idea of
truncating this infinite sum so that it results in a K-bounded
λ-return, which sums over the first K n-step returns:

G
λ|K
t =(1− λ)

K−1∑
i=1

λi−1G
(i)
t (wt+i−1)+

λK−1G
(K)
t (wt+K−1)

The time indices of w are different from that of the conven-
tional λ-return defined in eqn. [3]. This allows in incremen-

tally computing G
λ|K
t . Cichosz assumed that the value of

K will be arbitrarily chosen. Subsequently, van Seijen intro-
duced a heuristic for selecting this value of K. This heuristic
was designed using γ and λ such that there was minimal er-
ror in approximating the actual λ-return with the truncated
return. This heuristic is defined as:

K =
ceil(log(0.01))

log(γλ)
(4)

TheK-bounded λ-return can be recursively and incremen-
tally computed from an incoming stream of online experi-
ences. The recursive equations along with their derivations
are comprehensively shown in [13]. The final recursive equa-
tions that are necessary for computing this truncated return
are defined as follows:

G
λ|K
t = G

λ|K−1
t + (γλ)K−1δ′t+K−1 (5)

G
λ|K
t = Rt+1 + γ(1− λ)V̂t+1 + γλG

λ|K−1
t+1 (6)

G
λ|K−1
t+1 =

(G
λ|K
t − ρt)
γλ

(7)

where δ′i and ρt are defined as:

δ′i = Ri+1 + γV̂ (Si+1|wi)− V̂ (Si|wi−1) (8)

ρt = Rt+1 + γ(1− λ)V̂ (St+1) (9)

These equations are the necessary recursive update equa-
tions that allow in efficient implementation of forward view
methods which are based on the K-bounded λ-return.

Using this return will result in an algorithm that waits for
the first K time steps before making the first learning up-
date. Specifically for this reason, these forward view based
algorithms are called delayed learning algorithms. Addition-
ally, this delay is determined through a heuristic based on
the values of γ and λ such that there is minimal approxima-
tion error between the actual and the K-bounded λ-return.

3.3 n-step return
In order to untangle the effects of these learning delays

in control tasks, it is necessary to analyze these forward
view methods with the simplest return available, which is

the n-step return G
(n)
t . For the K-bounded λ-return, the

delay depends on the value of λ and γ. But λ also controls
the amount of bootstrapping and the weighted averaging
between multiple n-step returns making it difficult to clearly
identify the factor responsible for the agent’s performance.
Therefore, we argue that it is reasonable to analyze these
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truncated return based forward view methods with their n-
step counterparts.

From the recursive update eqns. [5, 6, 7], the final recur-
sive equations for computing n-step returns can be derived
to be the following:

G
(n)
t = G

(n−1)
t + (γ)n−1δ′t+n−1 (10)

G
(n)
t = Rt+1 + γG

(n−1)
t+1 (11)

G
(n−1)
t+1 =

(G
(n)
t − ρt)
γ

(12)

where δ′i and ρt is defined as:

δ′i = Ri+1 + γV̂ (Si+1|wi)− V̂ (Si|wi−1) (13)

ρt = Rt+1 (14)

3.4 The Algorithm
For the K-bounded λ-return, the actor and critic update

equations can be rewritten as follows:

wt+1 = wt + αv
[
G
λ|K
t − V̂ (St|wt)

]
∇wV̂ (St|wt) (15)

θt+1 = θt + απ
[
G
λ|K
t − V̂ (St|wt)

]∇θπ(At|St,θt)
π(At|St,θt)

(16)

Similarly, for the n-step return, the forward view update
equations can be rewritten as:

wt+1 = wt + αv
[
G

(n)
t − V̂ (St|wt)

]
∇wV̂ (St|wt) (17)

θt+1 = θt + απ
[
G

(n)
t − V̂ (St|wt)

]∇θπ(At|St,θt)
π(At|St,θt)

(18)

where w ∈ Rn is the parameter vector for the critic and
θ ∈ Rm is the parameter vector for the actor.

Algorithm. 2 summarizes the forward actor-critic method.
This can handle both kind of returns that were defined pre-
viously. Importantly, when using K-bounded λ-return, the
learning algorithm waits for the first K time steps before
making its first learning update where K is computed based
on the above described heuristic eqn. [4]. Similarly, when
using n-step return, the algorithm waits for the first n time
steps before making its first update. After this initial delay
in learning, the algorithm continues to learn incrementally
from online experiences without any additional delay.

Initially, when the time-step t = 1, G
λ|1
0 is computed from

the following equation (reduced from δ′ since vcurrent is ini-
tialized as 0):

G
λ|1
t = G

(1)
t (wt)

= Rt+1 + γV̂ (St+1|wt)

For subsequent time steps 2 ≤ t ≤ k − 1, G
λ|t
0 is com-

puted using eqn. [5]. At time step t = k, the following

occurs: G
λ|K
0 is computed from eqn. [5]; the critic and ac-

tor representations are updated using the state-action pairs

(S0, A0) based on the eqns. [15]; G
λ|K−1
1 is computed from

eqn. [6]. These three updates are repeated for subsequent
time steps until the end of an episode. After the episode has
terminated, the remaining state-action pairs are updated se-
quentially. As δ′t is 0 for t > T , eqn. [5] need not be used
further.

From an algorithmic perspective, the above update equa-
tions would essentially form the forward actor-critic algo-
rithm. However, because of small rounding errors, repeat-

edly computing G
λ|K
t+1 from G

λ|K
t based on eqns. [7 and

Algorithm 2 Forward Actor-Critic

INPUT: αv, απ, λ, γ,K, n,winit,θinit
1: w ← winit

2: θ ← θinit
3: cfinal ← (γλ)K−1 (or) cfinal ← (γ)n−1

4: for num. of episodes do
5: Q← ∅ . Q is a Queue of length K
6: Usync ← 0
7: i← 0
8: c← 1
9: vcurrent ← 0

10: is ready ← FALSE
11: obtain initial state S
12: while S is not terminal do
13: select action A for state S
14: take action A, observe S′ and R
15: vnext ← 0
16: if S′ is not terminal then
17: vnext ← V̂ (S′|w)
18: end if
19: ρ← Eqn. [9] (or) Eqn. [14]
20: push the tuple (S,A, ρ) into Q
21: δ′ ← R+ γvnext − vcurrent
22: vcurrent ← vnext
23: if i = K − 1 then
24: U ← Usync
25: Usync ← vcurrent
26: i← 0
27: c← 1
28: is ready ← TRUE
29: else
30: Usync ← Usync + cδ′

31: i← i+ 1
32: c← γλc (or) c← γc
33: end if
34: if is ready = TRUE then
35: U ← U + cfinalδ

′

36: pop (Sq, Aq, ρq) from Q
37: update w using Sq and U
38: update θ using (Sq, Aq) and U
39: U ← Eqn. [7] (or) Eqn. [12]
40: end if
41: S ← S′

42: if is ready = FALSE then
43: U ← Usync
44: end if
45: while Q is not empty do
46: pop (Sq, Aq, ρq) from Q
47: update w using Sq and U
48: update θ using (Sq, Aq) and U
49: U ← Eqn. [7] (or) Eqn. [12]
50: end while
51: end while
52: end for
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5] causes errors in update targets. To avoid these practi-

cal issues, forward actor-critic method computes G
λ|K
t from

scratch every K time-steps. This is achieved by resetting
U to Usync. These observations were inaccordance with the
observations made by [13].

4. RESULTS
For all our experiments, we used a single hidden layer

neural network for representing the critic and actor modules
separately. The critic and actor networks each consisted of
50 hidden units with tanh activation function. As the critic
network estimated the value for a given state, it had only
one output unit. Additionally, the actor network estimated
the probabilities for selecting an action given a state rep-
resentation. So, the actor network had output nodes equal
to the number of actions available in a given domain. A
softmax activation function was used on these output units.

The different values for αv and απ are { 0.00001, 0.00005,
0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1}. For λ, the
different values considered were: {0.0, 0.2, 0.4, 0.6, 0.8, 0.9,
0.95} and for n, wherever applicable, the values were: { 1, 2,
4, 8, 16, 32, 64, 128, 256, 512 }. Moreoever, all the plots in
this paper were generated by averaging the results obtained
from 100 independent runs and standard errors are reported
on the plots, wherever relevant.

4.1 Experiment 1: Mountain car domain
Some of the experimental results presented here (Fig. 1

(a, b, c, d, e, f) and Fig. 2 (a, b, c)) are based on the
standard mountain car domain[11]. The objective here is to
make an underpowered car climb up a hill.

The Fig. 1 (a, b, c, d, e, f) were obtained from experiments
involving the K-bounded λ-return based forward actor-critic
method, while the Fig. 2 (a, b, c) were obtained through ex-
periments involving the n-step forward actor-critic method.
Both, K-bounded λ-return and n-step based forward actor-
critic methods were introduced in this paper.

The state space consists of the position and velocity of
this underpowered car. There are three actions available in
this domain and the reward is -1 for every time step. This
task is undiscounted (i.e., γ is set to 1.0). Each episode of
this task was limited to a maximum of 1000 time steps after
which the domain was reseted.
K-bounded λ-return forward actor-critic: For the

plots in Fig. 1 (a, b, d, e), we selected the αv values which
gave the best performance in terms of the average return ac-
cumulated by the learning agent over the first 50 episodes, by
both conventional and K-bounded λ-return forward actor-
critic methods, on the mountain car domain. This was ob-
tained for two different λ values (λ = 0.2, 0.9), to show the
effect of bootstrapping with respect to the agent’s learning
performance.

The plot on Fig. 1 (c) was obtained by selecting the best
performance value for these two methods, which is in turn
obtained by scanning over different αv and απ values. Also,
the plot on Fig. 1 (f) shows the learning curves for these
methods obtained with the best λ, αv, απ settings.

Specifically, the forward actor-critic method using this λ-
return simply performs much better than the conventional
method, for these λ = 0.2, 0.9 settings. Additionally, from
the Fig. 1 (c), the forward actor-critic method has the over-
all best performance in terms of the accumulated return over
the first 50 episodes, from the parameters optimized. From

the Fig. 1 (f), it can also be seen that the learning process of
the conventional actor-critic tends to deteriorate over time.
One possible reason for this can be inferred to be due to the
eligibility traces with nonlinear function approximators.
n-step forward actor-critic: The experiments for this

were based on the n-step return forward actor-critic method.
Similarly, for the plots in Fig. 2 (a, b, c), we selected the αv
that gave the best performances for many n settings. For
the plot in Fig. 3 (b), the values of αv and απ values are
scanned over to obtain the best performance in the mountain
car domain.

In this n-step return based forward actor-critic, it is clear
that, during control, there needs to be as little delay in learn-
ing as possible. For example, in this domain, for values of
n = 1, 2, 4 seem to give much better performance compared
to the other settings. As this value of n determines the de-
lay that exists for the first learning update to take place,
the plots suggests something that is very much interesting
— they suggest that the learning update needs to happen as
soon as possible, irrespective of its accuracy or its variance.

4.2 Experiment 2: Pole-balancing domain
We also performed experiments on the standard pole-

balancing task[1] and their results are presented in Fig. 1(g,
h, i, j, k, l) and in Fig. 2 (d, e, f). The objective here is to
balance a pole on a cart for as many time steps as possible.

The plots in Fig. 1(g, h, i, j, k, l) were based on the K-
bounded λ-return based forward actor-critic method whereas
the plots in Fig. 2 (a, b, c) were based on the n-step forward
actor-critic method, both of which were introduced in this
paper.

The state space for this task consists of position and linear
velocity of the cart and the position and angular velocity of
the pole. There are two actions available in this domain.
The reward is +1 for every time step until termination. At
termination, the reward is -1 and the state space is reseted.
This task is undiscounted (i.e., γ is set to 1.0). Each episode
of this task was limited to a maximum of 1000 time steps
after which the domain was reseted.
K-bounded λ-return forward actor-critic: For the

plots in Fig. 1 (g, h, j, k), we selected the αv values which
gave the best performance, for both conventional and K-
bounded λ-return forward actor-critic methods, on the pole-
balancing domain. The performance in these experiments,
were measured on the average number of steps achieved by
the learning agent over the first 1000 episodes. This was
again repeated for two different λ values, to show that role
of bootstrapping in affecting the performance for these two
methods. Specifically, the forward actor-critic method using
this λ-return simply performs much better than the conven-
tional method, for these λ settings.

The plot on Fig. 1 (i) was obtained by selecting the best
performance value for these two methods, which is in turn
obtained by scanning over different αv and απ values. Again,
the plot on Fig. 1 (l) shows the learning curves for these
methods obtained with the best λ, αv, απ settings. From
this figure, it can be seen that the performance of the con-
ventional actor-critic tends to deteriorate over time, as does
in the mountain car task.
n-step forward actor-critic: Similarly, for the plots

in Fig. 2 (a, b, c), we selected the αv that gave the best per-
formances for many n settings. The plot in Fig. 3 (b), the
values of αv and απ values are scanned over to obtain the
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best performance in the mountain car domain. In this n-step
return based forward actor-critic, it is clear that, during con-
trol, there needs to be as little delay as possible for learning.
For example, in this domain, for values of n = 1, 2, 4 seem
to give much better performance compared to the other set-
tings. As this value of n determines the delay that exists for
the first learning update to take, the plots suggests some-
thing that is very much interesting — to make the learning
update as soon as possible, irrespective of its accuracy. How-
ever, for the pole-balancing domain, it seems that some small
delay actually improves the performance. For the n = 8, 16,
the performance of the forward actor-critic is near to the
best performance obtained by this method.

5. DISCUSSIONS
Typically, multi-step methods in reinforcement learning

involve the use of eligibility traces. These work well for
linear function approximators. However, in order to scale
reinforcement learning methods for real-world control tasks,
it is necessary to use non-linear function approximators (e.g.:
neural networks) as these can express complicated real-valued
functions. In such interesting scenarios, eligibility traces
tend to deviate from their corresponding forward view meth-
ods. Specifically, using eligibility traces along with non-
linear function approximators will not be equivalent to its
forward view thereby leading to divergence issues.

Recently, this divergence issue has been comprehensively
studied in TD methods (see [13]). However, even before this
was studied, there was a general reluctance towards using
eligibility traces (see [7, 6, 4, 15, 5]) , which could have
been to avoid this specific issue. These methods specifically
use the complete return Gt for learning. Moreover, as these
methods use batch learning schemes, they lose the advan-
tage of learning incrementally and often this leads to slower
learning.

Learning incrementally is also the key focus of reinforce-
ment learning and the methods introduced in this paper are
promising, because they can learn incrementally from ongo-
ing experiences and achieves this without eligibility traces.
Also, this produces a new class of forward methods with
better learning abilities compared to conventional methods,
specifically for the case of nonlinear function approximation.

In this paper, we introduced two novel policy gradient al-
gorithm which incrementally learning from complex multi-
step update targets, specifically using the λ-return and n-
step return. The strength of these approaches is that, it uses
complex returns for learning without eligibility traces and
achieves this with incremental computation. We evaluateK-
bounded λ-return and the n-step based forward actor-critic
methods on mountain car and pole-balancing domains us-
ing non-linear function approximation. Actor-Critic meth-
ods have the inherent ability to represent stochastic action-
selection policies. Also, they use separate memory struc-
tures for representing the state-value function and action-
selection policy separately. Decoupling the policy from the
value function gives the freedom in selecting different learn-
ing algorithms for the actor and critic. Moreover, actor-
critic methods have shown tremendous promise in many
real-world control tasks as well[5, 15].

Additionally, the experiments conducted in this paper sug-
gests that it is important to bootstrap, even while learning
to control. Earlier, it was believed that bootstrapping is nec-
essary only for improving the predictions[11]. From our for-

ward actor-critic methods, it can be established that boot-
strapping is necessary to improve performance in control
tasks also. Subsequently, our results show that, to achieve
the best level of performance in control tasks, it is important
to perform learning updates as quick as possible. In other
words, the agent learns to achieve much higher performance
when it makes incremental but noisy updates.

From our experiments, we also conclude that multi-step
methods can ideally improve learning performance, even in
non-linear function approximations. Recently, Mnih et al.[8]
showed that actor-critic methods achieve far better perfor-
mance on Atari games compared with deep Q-network. As a
future work, it would be interesting to compare their actor-
critic method with forward actor-critic.

Further, there have been several recent successes with
actor-critic methods but most of them either learned using
the full return which is obtained after an episode terminates,
after which the learning updates are made. Our method can
definitely make significant contributions on those domains
and those would be our future work, in order to show the
complete potential for forward methods.

6. CONCLUSIONS
We introduced and empirically investigated two novel for-

ward actor-critic methods, which as a result has produced
a new class of multi-step learning algorithms without eligi-
bility traces. This forward actor-critic algorithm produced
substantial and dramatic performance improvements in the
pole-balancing domains when compared against the con-
ventional actor-critic method. Specifically, forward actor-
critic learns to balance the pole for twice the length of an
episode completed by the actor-critic method. In the moun-
tain car domain, this forward actor-critic method produced
small performance improvements which were not significant.
Additionally, from the forward actor-critic methods, it can
be inferred that bootstrapping is necessary to improve con-
trol performance which had not been studied until now.
Moreover, we also showed that learning delays need to be
as minimal as possible in order to achieve a higher level
of performance, especially in control tasks. These forward
actor-critic methods can learn incrementally from online ex-
periences and with non-linear function approximators. As a
result, they can produce immediate impacts in many real-
world control domains.
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(a) avg. return for different απ (λ =
0.9;αv = 0.0005)

(b) avg. return for different απ (λ =
0.9;αv = 0.00005)

(c) avg. return for different λ set-
tings (optimized over αv & απ)

(d) avg. return for different απ (λ =
0.2;αv = 0.0001)

(e) avg. return for different απ (λ =
0.2;αv = 0.0005)

(f) learning curves over the episode
number (Forw.AC: λ = 0.2;αv =
0.0001;απ = 0.001; AC: λ =
0.4;αv = 0.00005;απ = 0.0005)

(g) avg. steps for different απ (λ =
0.9;αv = 0.00005)

(h) avg. steps for different απ (λ =
0.9;αv = 0.0005)

(i) avg. steps for different λ settings
(optimized over αv & απ)

(j) avg. steps for different απ (λ =
0.2;αv = 0.00005)

(k) avg. steps for different απ (λ =
0.2;αv = 0.0001)

(l) learning curves over the episode
number (Forw. AC: λ = 0.4;αv =
0.0001;απ = 0.0001; AC: λ =
0.0;αv = 0.00005;απ = 0.0001)

Figure 1: Forward actor-critic and actor-critic - comparison plots: (a, b, c, d, e, f) are obtained from the mountain car domain
whereas (g, h, i, j, k, l) are from the pole-balancing domain. The forward actor-critic method shown here is based on the
K-bounded λ-return in which the learning delay depended indirectly on the γ and λ values. This is compared against a
conventional actor-critic method with eligibility traces. Both these methods use similar neural networks. Additionally, from
the plots (c) and (i), it can be inferred that higher values of λ do improve the performance in these control tasks, which
implies that some level of bootstrapping is required for good control performance. Also, from the plots (f) and (l), it can be
observed that the actor-critic method begins to deteriorate as time progresses within a task.
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(a) avg. return for different απ
(αv = 0.00005)

(b) avg. return for different απ
(αv = 0.0001)

(c) avg. return for different απ
(αv = 0.0005)

(d) avg. steps for different απ (αv =
0.00001)

(e) avg. steps for different απ (αv =
0.00005)

(f) avg. steps for different απ (αv =
0.0001)

Figure 2: n-step forward actor-critic - step-size plots: (a, b, c) are from the mountain car domain and (d, e, f) are from the
pole-balancing domain. From these step-size plots, it can be observed that the forward actor-critic method is relatively robust
to a wide range of step-sizes as long as n takes a smaller value. Additionally, from (a, b, c), the parameters n = 1, 2 seem to
provide a significant performance improvement in the mountain car domain. Similarly, from (d, e, f), the same inference can
also be made from the pole-balancing domain, i.e., the delay in performing learning updates needs to be minimum. Overall,
from all these plots, it can be inferred that for optimal control performance, the learning updates need to be performed as
quickly as possible and such parameter settings are relatively robust to their step-sizes. However, small values of n also implies
that these updates might be sometimes unnreliable or biased.

(a) mountain car domain: avg. re-
turn for different n settings (opti-
mized over αv & απ)

(b) pole-balancing domain: avg.
steps for different n settings (opti-
mized over αv & απ)

Figure 3: n-step forward actor-critic - performance plots: the final performances for both mountain car and pole-balancing
domains are plotted for multiple settings of n after scanning over the different values for αv and απ. The parameter n controls
the delay in making a learning update to the actor-critic method. For the mountain car task, it is clear that the value of n
needs to be small, probably n = 1, 2. In the case of pole-balancing, the performance does not begin to deteriorate until n
reaches 32. This implies that the n-step forward actor-critic method is relatively robust, atleast in this domain, in terms of
its learning delays.
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