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ABSTRACT
We study the problem of learning to partition users into
groups, where one must learn the compatibilities between
the users to achieve optimal groupings. We define four nat-
ural objectives that optimize for average and worst case
compatibilities and propose new algorithms for adaptively
learning optimal groupings. When we do not impose any
structure on the compatibilities, we show that the group
formation objectives considered are NP hard to solve and
we either give approximation guarantees or prove inapprox-
imability results. We then introduce an elegant structure,
namely that of intrinsic scores, that makes many of these
problems polynomial time solvable. We explicitly charac-
terize the optimal groupings under this structure and show
that the optimal solutions are related to homophilous and
heterophilous partitions, well-studied in the psychology liter-
ature. For one of the four objectives, we show NP hardness
under the score structure and give a 1

2
approximation al-

gorithm for which no constant approximation was known
thus far. Finally, under the score structure, we propose an
online low sample complexity PAC algorithm for learning
the optimal partition. We demonstrate the efficacy of the
proposed algorithm on synthetic and real world datasets.

1. INTRODUCTION
The problem of learning to partition users (or objects)

into groups has numerous applications in ridesharing, health
care groups, project groups etc. Effective grouping of users
is critical in these applications as it determines how well
the group can work together [27]. For instance, the success
of ridesharing adoption depends on how the system assigns
users to groups taking into account their source destination
requirements as well as their personalities. A user who does
not like making conversation would rate the ride-sharing
experience low if they are in the same group as users who
talk a lot. Here, the ridesharing company might be interested
in maximizing the average happiness of the rideshare groups.
In another instance, effectively allocating employees to teams
for a critical project might influence the project’s success
[21]. Here the organization might want to be defensive and
maximize the compatibility of the least compatible pair of
employees in any team.

Appears in: Proc. of the 16th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2017),

S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),

May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

That effective grouping leads to improved outcomes has
been extensively studied in the psychology literature [18].
In particular, the effects of homophily (grouping similar
individuals together) [23, 2] and heterophily (grouping dis-
similar individuals together) [25] on desired outcomes have
been documented in applications such as team formation
[19] and study groups [10, 13] among others. While the
social phenomemon of homophily and heterophily have been
well studied [20] [1], it is not clear (more so from a formal
standpoint) as to when one should prefer homophilous to
heterophilous grouping in general.

In this work, we formalize the group formation problem
by considering four concrete objectives that involve pairwise
compatibility of users. We refer to the pairwise compatibility
as the happiness of the pair of users. Under this happiness
index, we study the following objectives: maximize (i) the
average of average happiness across groups (AoA), (ii) mini-
mum compatibility of any pair of users across groups (MoM),
(iii) average of the minimum compatible pairs across groups
(AoM) and (iv) minimum of the average happiness across
all groups (MoA) (see Table 2 for formal definitions). The
objectives cover most of the scenarios one may be interested
in maximizing. While we do consider general pairwise com-
patibilities, we introduce and focus mainly on an elegant
structure that we impose on them. Under this structure,
each individual has an associated intrinsic score and the
pairwise compatibility between two individuals depend on
their corresponding scores. We will see that under this
structure, the optimal solutions to these objectives naturally
translate to homophilous and heterophilous groupings. The
motivation of studying the score-based model, where the
compatibility (or, preference towards each other) of a pair of
users is determined by their relative scores, arises from the
well-known Bradley-Terry-Luce (BTL) (Bradley and Terry,
1952 [5]; Luce, 1959 [22]) in literature. The BTL model is
often applied for pairwise comparisons, in order to determine
the relative preferences. This led us to study the simpler
case of score-based preferences, for which optimal polynomial
algorithms can be provided in most cases, while the general
case is either inapproximable or hard to approximate beyond
a certain factor.

We list below the major contributions of this paper.

Our Contributions

• We show that all the objectives considered above are
NP-hard (and hard to approximate beyond a factor)
when we assume no structure on the pairwise compati-
bilities. We give polynomial algorithms under certain
assumptions.
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Table 1: Summary of main results of the paper. All shaded boxes
correspond to NP-Hard problems. The top row (in blue) lists the
hardness results, and the bottom row highlights the polynomial
time solvability (unshaded) and approximation guarantee (gray).

AoA MoM AoM MoA

General 1− 1

(k2)m
inapprox

(
1− 1

m

)
1− 1

(k2)

Score-
based

Homophily Heterophily Homophily 1
2

(AoA) max
Π(S1,...Sm)

1

m

m∑
i=1

H(Si|W)

(MoM) max
Π(S1,...Sm)

min
i

(
min
j,k∈Si

Wjk

)
(AoM) max

Π(S1,...Sm)

1

m

m∑
i=1

(
min
j,k∈Si

Wjk

)
(MoA) max

Π(S1,...Sm)
min
i
H(Si|W)

Table 2: Objectives considered.

• When the compatibilities are dictated by intrinsic scores
of each individual, we show that three of the four
objectives become solvable in polynomial time.

• Under the intrinsic scores assumption, we explicitly
characterize the structure of the optimal solution and
show that they are related to the notion of hompohily
and heterophily.

• We show that the MoA objective is NP-hard to solve
even under the intrinsic scores assumption.

• We propose a greedy algorithm for the MoA objective
and prove a 1

2
approximation guarantee for the same.

This is a significant improvement on known algorithms,
since no constant factor result was known thus far.

• Under the intrinsic score structure, we propose a low
sample complexity PAC learning algorithm to learn the
scores (and hence the optimal groupings) provably.

Table 1 summarizes some of the contributions of this paper.

2. RELATED WORK
Graph partitioning and clustering problems are well re-

searched with several variants such as the disjoint clique
problem, k-way partition problem, partition into triangles
and many others [12]. Balanced or capacitated versions of
such partitioning or clustering problems are related to our
work. For instance, the AoA objective is the same as the
k-equipartition problem [11] and is known to be NP-hard
[14]. The Sum-Max partitioning problem [28] looks at min-
imizing the average of maximum weighted edge between
pairs of groups and is close to, but not the same as the
AoM objective. Min-max objectives similar to MoM and
MoA objecives have been recently considered by Svitkina
and Tardos [26] and Bansal et al. [3], where the problem is
to create a k-way equipartition to minimize the maximum
weight of edges leaving a single group. This is different from
the MoM objective where we want to maximize the minimum
of minimum weights across edges within each group.

Many seemingly related problems such as the clique parti-
tion problem [16], the capacitated max-k-cut and min-k-cut
problems [15] do not come with size restrictions or have ob-
jectives that do not capture homophily or heterophily. In the
clustering domain, the work closest to ours is that of Zhu,
Wang and Li [29], where heuristic algorithms for clustering
with size constraints on the clusters are proposed, although

for a majority of clustering applications such size constraints
or information on the number of clusters is not pre-defined.

There is one class of graph partitioning problems that come
with size restrictions, namely, the Graph Tree Partitioning
Problem [7], where the objective is to partition a graph into
equal size subsets, such that the weight of the spanning tree
on each subset is either as high as possible (max-min) or
as low as possible (min-max), or, the sum of the weights of
the spanning trees are either as high (max-sum), or, as low
(min-sum) as possible. Though these objectives are closely
related to ours, they are not exactly the same problems.

Some recent research in application areas such as team
formation and ride-sharing study similar questions as us.
Singla et al. [24] present online learning algorithms with
PAC bounds in the context of learning the expertise of work-
ers for team formation. The emphasis is on speeding up
learning by exploiting similarities between workers and be-
tween tasks. In contrast to our work, their objective is to
select an optimal subset of the workers after learning their
expertise and there is no notion of forming groups. Bistaffa,
Farinelli and Ramchurn [4] study an offline optimization
problem of grouping users to minimize travel costs. This is
formulated as a coalition formation problem, restricted by
a social network based compatibility graph that is assumed
given. The groups are formed based on heuristics without
any guarantees on optimality. Brindley, Blaschke and Walti
[6] look at what factors impact the formation of effective
learning groups through an empirical study.

Our formulations and learning algorithms can also be ap-
plied in recurring sharing economy settings (e.g., AirBnB) as
well as healthcare. In the latter setting, it has been observed
that assigning patients of similar disease characteristics to
groups often helps in effective treatment [8].

3. PRELIMINARIES
Let [n] = {1, 2, . . . , n} be the set of items to be partitioned

into groups. Let each group be of size k and let m = n
k

de-

note the number of groups 1. A k-partition Π(S1 . . .Sm) of
[n] is denoted by a set of subsets {S1,S2 . . .Sm} where each
Si ⊆ [n], |Si| = k with Si ∩ Sj = ∅ ∀i 6= j and

⋃
i Si = [n].

We will capture the relation between users/objects using a
symmetric pairwise compatibitlity matrix W ∈ Rn×n

+ where
Wij(= Wji) denotes the compatibility of users/objects i
and j. Given a subset S ⊆ [n], we define the happiness of
the subset with respect to W as H(S|W) = 1

|S|2
∑
i,j∈SWij .

1Assume k divides n or add dummy items if not.
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Problem Definition: Given a pairwise compatibility ma-
trix W ∈ Rn×n+ , partition the n items into m groups in the
best possible manner that maximizes each of the four objec-
tives defined in Table 2.

Towards this, we will first consider the case where we don’t
impose any conditions on the pairwise compatibilities. In
the subsequent section, we consider the same problem by
imposing a score structure.

4. GENERAL COMPATIBILITY MATRICES
We start by describing some results on the hardness of

approximation of the four objectives in the general case.

Theorem 1. (Approximability) For k ≥ 3, unless P =
NP , the following are lower bounds on polynomial time ap-
proximability: (a) MoM: inapproximable, (b) AoM:

(
1− 1

m

)
,

(c) AoA: 1− 1

(k2)m
and (d) MoA: 1− 1

(k2)
.

Proof. MoM: inapproximable. Consider an instance
G = (V, E) of PartitionIntoTriangles [14], where |V| = 3q
for some q ∈ Z+. The decision question is whether V can be
partitioned in to q disjoint sets of size 3 each, V1, . . . , Vq, such
that each Vi, i ∈ [q] forms a triangle in G. Create an instance
of MoM, a weighted graph G′ = (V ′, E ′,W ′) from G, where
for every vertex v ∈ V, we create a vertex v′ ∈ V ′, and for
every edge e = (u, v) ∈ E , we create an edge e′ = (v′, u′) ∈ E ′
between the corresponding vertices v′ and u′ in V ′, and set
its weight we′ = M , where M is a large number. Set k = 3
(group size) and m = q (number of groups). For any pair
of vertices (p, q) ∈ V, such that no edge exists between p
and q in E , we create an edge e′′ = (p, q) ∈ E ′ of weight
we′′ = ε, where ε is a small number and add it to E ′. If there
exists a partition of V in to q disjoint triangles, then there
exists a solution to the MoM problem with objective function
= M . The q disjoint triangles correspond to m groups in
G′, where in each group, every edge has weight M , since the
corresponding edge exists in G. Similarly, if there does not
exist any partition of V in to q disjoint triangles, then every
solution to MoM on G′ has value = ε. This is because any
solution to the group formation problem with k = 3 and
m = q on G′, would result in at least one group where at
least one edge has a weight ε, since the corresponding edge
does not exist in G.

Therefore, if there exists a polynomial time approximation
algorithm with an approximation ratio > ε

M
, one would

be able to distinguish between the Yes and No instances
of PartitionIntoTriangles, by creating a corresponding
instance of MoM and applying the algorithm. A Yes instance
would result in MoM > ε, and similarly, a No instance would
result in MoM ≤ ε. Hence, unless P = NP , there can
be no polynomial time approximation algorithm with an
approximation ratio > ε

M
. For ε→ 0, and M →∞, we can

make the ratio arbitrarily bad, → 0. Hence, it is NP -hard
to approximate the MoM problem in the general case.

The approximability proofs of MoA, AoA and AoM use
the same reduction as above. Specifically, create a graph
G′ = (V ′, E ′,W ′), with k = 3 and m = q, from an instance of
PartitionIntoTriangles, G = (V, E), where |V| = 3q. For
a Yes instance of the PartitionIntoTriangles, the disjoint
m groups in G′ corresponding to the disjoint q triangles in
G, will give a solution with MoA=AoA=AoM= M . On the

other hand, for a No instance, any partition of G′ into m
disjoint groups would result in at least one group, with at
least one edge of weight ε. Setting ε = 0, therefore, MoA
≤ 2M

3
, AoA ≤M

(
1− 1

3m

)
, and AoM ≤M

(
1− 1

m

)
.

Therefore, if there exists a polynomial time approximation
algorithm for any of the above three objectives with better
approximation factors (MoA: 2

3
, AoA:

(
1− 1

3m

)
, and AoM:(

1− 1
m

)
), one can distinguish between the Yes and and No

instances of PartitionIntoTriangles. The approximation
guarantees can be extended to general k > 3, by similar
reduction, replacing triangles by k-cliques.

4.1 Polynomial Solvability for k = 2

While the general case is hard, for the case where k = 2,
all the objectives become polynomial time solvable.

Theorem 1. (Polynomial solvability for k = 2) When
k = 2, all four objectives are polynomial time solvable.

For proving Theorem 1, we first prove the following claim.

Claim 2. When k = 2, the optimal solution for MOA is
the same as that of MOM, and the optimal solution for AoA
is the same as the optimal solution for AoM.

Proof. We first prove that the optimal solution for MoA
is the same as that for MoM when k = 2. Since group sizes
are k = 2, every group has only one edge, that occurring
between the pair of vertices in the group. Therefore, the
average of the weight of edges in any group is determined
simply by the weight of the single edge in the group. Hence,
the minimum of the averages, namely MoA is the same as
the minimum weight edge in any group, that is, MoM. We
next argue that the optimal solution for AoA is the same
as that for AoM when k = 2. Since every group has only a
single edge each, the solution maximizing the average of the
average weight of every group, namely, AoA, is the same as
maximizing the average of the weight of the edge in every
group, which corresponds to AoM for k = 2.

Now, we discuss how Edmond’s maximum weighed match-
ing for general graphs solves AoA (and AoM) optimally in
polynomial time for k = 2. We find a maximum weight
matching in G using Edmond’s algorithm [9]. This returns a
partition of V in to n

2
groups, maximizing the total weight

of edges used in the matching. Suppose there is an opti-
mal solution for AoA (also, AoM) for k = 2 in G, that has
a higher objective function value. That means that there
exists a partition of V in to n

k
disjoint subsets, with each

subset of size 2, hence including only one edge, such that the
total weight of edges used in the subsets is higher than that
returned by Edmond’s algorithm. However, that contradicts
the optimality of Edmond’s algorithm, since we can use the
solution to AoA (also, AoM) to find a higher weight matching.
Similarly, suppose there is a higher weight matching than
the objective function value of the optimal solution for AoA
(also, AoM). Then, one can use the matching returned by
Edmond’s algorithm to find a higher value, feasible solution
for AoA (also, AoM), thereby contradicting the optimality
of the optimal value for AoA (also, AoM).

For MoA and MoM, we first prove the following property.

Lemma 2. Given a graph G, and an optimal solution value
OPT for MoM (also, MoA), if we delete all edges of weight
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< OPT , and make the resultant graph G′ unweighted, then
there exists a perfect matching in G′, corresponding to an
optimal solution in G.

Proof. Consider the groups in an optimal solution for
MoM (also, MoA) in G. Since the optimal solution has value
OPT , there must exist a partition of the vertices in to groups
of 2, such that the edge in each group has a weight ≥ OPT .
However, this corresponds to a matching in G, where every
edge in the matching has a weight ≥ OPT . Now, delete every
edge of weight < OPT . The matching remains unperturbed,
and corresponds to a perfect matching in G′.

Now, we give the algorithm for optimally solving MoM and
MoA for k = 2. The algorithm for maximizing MoM (also,
MoA) would involve ordering the distinct weights in W in
non-decreasing order. For the next weight w in the list,
delete all edges of weight we < w. Create an unweighted
graph G′ containing only the remaining edges in G (without
considering their weights). Now, use Edmond’s algorithm
to find a maximum cardinality matching in G′. The lowest
weight w, after deleting which, G′ does not have a perfect
matching, is the optimal value for MoM (also, MoA). The
optimality of this algorithm follows from Lemma 2 and the
optimality of Edmond’s maximum cardinality matching for
general graphs, that runs in polynomial time. The polynomial
time solvability also follows, hence.

We next study a linear time solvable special case.

4.2 Transitive Compatibility: Optimal Linear
Algorithm for any k

We next prove that under a transitivity like assumption on
the compatibility matrix, there exists a linear time optimal
algorithm. The assumption follows from the intuition that
if user i is compatible with j, j is compatible with k, then
i is compatible with k. Formally, the transitive property
assumed is: ∀i, j, k,Wij ≥ min (Wik,Wkj). The following
theorem follows from the fact that graphs obeying transitive
compatibility would have a particular structure: a collection
of disjoint cliques, and, a linear traversal of the graph would
return the optimal solution.

Theorem 3. Under the transitive compatibility property
in G, there exists a linear time optimal algorithm for MoM.

Proof Sketch:
We first argue that the graph G on which the transitive com-
patibility property holds has a certain structure. Specifically,
it consists of disjoint connected components, where each
connected component is a clique. To see this, consider a pair
of vertices in G, u and v, between whom the happiness or
compatibility is 0. In other words, no edge exists between
them. We argue that in order to maintain the transitive
property, any vertex p that u is adjacent to (i.e., Wu,p > 0),
must necessarily have a 0 compatibility with v. This is be-
cause if there exists an edge between p and v, then with both
Wp,v > 0 and Wu,p > 0, the transitive property is violated
by 0 = Wu,v < min (Wu,p,Wp,v). Therefore, if Wu,v = 0,
then Wp,v = 0 for all p, such that Wu,p > 0. Similarly, any
vertex p′ that p is adjacent to cannot have any edge to v.
Continuing in this manner, it can be seen that any vertex
that u is connected to cannot have any edge to v. Therefore,
u and v must be in disjoint connected components. Similarly,
any pair of vertices that u is adjacent to, say, v1 and v2, must

be adjacent to each other. Otherwise, it can be seen that the
transitive compatibility property is violated.

Another property that transitive compatibility induces is
that, in every clique, there can be at most one edge of higher
weight, and all other edges must be of identical weight. To
see this, note that if there are two edges of higher weight
compared to the weight of all other edges in a clique, then
there would be at least one triangle, where one edge is lower in
weight than the other two, violating the transitive property.

Any optimal solution would consider each clique separately
(in other words, only the participants belonging to the same
clique would be matched to one another), since otherwise the
partitions would include edges of weight = 0. Moreover, in
every grouping of the clique vertices, there can be at most one
group with at most one edge of higher weight, and all other
edges in all the groups would have identical lower weight, say
w. Hence, replacing the higher weight edge by an edge of
weight w would not change the MoM objective value. Hence,
any partitioning of the vertices of a clique in to groups of
size k 2 would be optimal. The algorithm is linear in the
number of vertices, since one has to traverse at most all the
vertices in all the cliques in order to get the partitions.

5. SCORE BASED COMPATIBILITY MATRI-
CES

In this section we consider a simple yet useful structure on
the pairwise compatibility matrix under which three out of
the four objectives introduced in Section 3 become poly-time
solvable. Specifically, we consider the case of score based
compatability matrices where every item i has an associated
score si ∈ R+ and the pairwise compatibility of items i
and j is given by the product of their individual scores sisj .
This is a natural assumption in several practical scenarios.
For instance in study groups, the score could refer to the
influence a student has on her peers which may depend on
the GPA of the student. In ride sharing applications the
score may indicate how introverted/extroverted a person is.

We begin by defining certain natural partitions induced
by score vectors.

Definition 4. (Homophilous Partition) Let s ∈ Rn
and let σ = argsort(s)3. A k-partition Π(S1, . . . ,Sm) corre-
sponding to s is called homophilous w.r.t s if ∀i ∈ [m],Si =
{σ((i− 1)k + 1, . . . , σ((i− 1)k + k)}

Definition 5. (Heterophilous Partition) Let s ∈ Rn
and let σ = argsort(s). A k-partition Π(S1, . . . ,Sm) cor-
responding to s is called heterophilous if ∀i ∈ [m],Si =
{σ((i−1)(k−1)+1), . . . , σ((i−1)(k−1)+(k−1)), σ(n+1−i))}

As an example, let σ = (1 2 3 4 5 6) and k = 2. The
homophilous 2-partition corresponding to σ would be {S1 =
(1 2),S2 = (3 4),S3 = (5 6)} whereas the heterophilous
2-partition would be {S1 = (1 6),S2 = (2 5),S3 = (3, 4)}.
Our main results of this section explicitly characterize the
optimal solutions for the objectives considered.

2Without loss of generality, for any clique of size n′, we add
dummy vertices with edges of weight w incident on them, to
make its cardinality, a multiple of k.
3argsort(s) is the permutation obtained by sorting the values
of score vector s in non-increasing order. Specifically, for
σ = argsort(s), for any i, j, si > sj =⇒ σ(i) < σ(j).
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Theorem 6. (Homophilous Partition is Optimal for
AoA and AoM) Let W ∈ Rn×n be a score based compati-
bility matrix parametrized by the score vector s ∈ Rn. The
optimal solution to the average of averages (AoA) and the
average of minimums (AoM) objectives w.r.t W is given by
the homophilous partition of s.

Proof. Note that for any group S, if the compatibility
matrix is score based, then the sum of weights of all pairs in

the group is given by
∑
i,j∈SWij =

(∑
i∈S si

)2

AoA Objective: Assume wlog the entries of s are sorted in
descending order i.e., si > sj for all i < j. Let Π denote the
homophilous k-partition corresponding to s. For the sake of
contradiction let Π̄ 6= Π be the optimal k-partition. Let i be
the minimum index such that both i and i+1 are in the same
groups in Π whereas they are in different groups in Π̄. Denote
these groups by g1 and g2. We will show that by swapping
specific elements from g1 and g2, one can obtain a partition
which is at least as good as Π̄. Let i ∈ g1 and i + 1 ∈ g2.
Notice that there must be at least one element x ∈ g1 such
that si+1 > sx (otherwise it contradicts the minimality of i).
We will consider two cases depending on whether

∑
j∈g1 sj >∑

j∈g2 sj or otherwise. Case 1:
∑
j∈g1 sj >

∑
j∈g2 sj . Let

v1 =
∑

j∈g1;j 6=i,x

sj , v2 =
∑

j∈g2;j 6=i+1

sj . Then, using convexity

of H(Si|W), we have

(si + si+1 + v1)2 + (sx + v2)2 ≥ (si + sx + v1)2 + (si+1 + v2)2

Case 2:
∑
j∈g1 sj ≤

∑
j∈g2 sj In this case, there must be

an element x ∈ g2 such that sx < si. One can follow a similar
proof as the previous case by swapping i ∈ g1 and x ∈ g2. In
both the cases, we obtain a partition whose sum (average) of
weights over the groups of the partition is at least as good
as Π̄. One can repeat the procedure with the new partition
obtained until one reaches Π. But this contradicts the fact
that Π̄ 6= Π is optimal.
AoM Objective: Assume wlog that the score vector s is
such that s1 ≤ s2 . . . ≤ sn. We will show the result using
induction on the number of groups m. Consider the base
case where m = 2 i.e. n = 2k. In this case, we need to show:

s1s2 + sk+1sk+2 ≥ si1sj1 + si2sj2

where (i1, j1) and (i2, j2) correspond to the minimum com-
patibile pairs in the two groups corresponding to some non-
homophilous partition of s. If any of these pairs is same as
(1, 2) then the result is obvious. Assume not. Then both
1 and 2 will contribute to the minimum compatible pairs.
Thus it is enough to show that both of the below cases hold

s1s2 + sk+1sk+2 ≥ s1sk+2 + s2s3 and

s1s2 + sk+1sk+2 ≥ s1s3 + s2sk+2

as all other cases give rise to smaller objective values. But

sk+2(s3 − s2) ≥ s1(s3 − s2)

=⇒ s1s2 + sk+1sk+2 ≥ s1sk+2 + s2s3

Similarly one can show the result for the other case as well.
This proves the base case. Now for a general k, assume that
the induction hypothesis is true for m = k − 1. For n = mk,
apply the induction hypothesis to the bottom n− k items
i.e, for the set {sk+1, . . . sn}. We need to show that with
the newly added items {s1, s2, . . . , sk} the hypothesis is still

satisfied. Assume not. Then there must exists index pairs
(i1, j1), . . . (im, jm) such that

s1s2 + sk+1sk+2 + . . . s(m−1)k+1s(m−1)k+2 <

si1sj1 + si2sj2 + . . . simsjm

If items 1 and 2 are in the same group, we arrive at a contra-
diction. Assume they are in different groups. Let (1, j1) and
(2, j2) be the corresponding minimum pairs. By swapping 2
with j1, we can only increase the objective. We can itera-
tively swap items without decreasing the objective such that
the first k items are in the first group. But this contradicts
the induction hypothesis for the last n− k items.

Theorem 7. (Heterophilous Partition is Optimal for
MoM) Let W ∈ Rn×n be a score based compatibility matrix
parametrized by the score vector s ∈ Rn. The optimal solu-
tion to the minimum of minimums (MoM) objective w.r.t W
is given by the heterophilous partition of s.

Proof. We prove the base case for n = 4 and k = 2. Let
the scores be given by s1 > s2 > s3 > s4. The three possible
ways of partitioning this are given by {(1, 2)(3, 4)}, {(1, 3)(2, 4)},
{(1, 4)(2, 3)}. Note that we have s1s4 > s3s4 and s2s3 > s3s4.
Thus,

min(s1s4, s2s3) > s3s4 = min(s1s2, s3s4)

Similarly, we have s1s4 > s2s4 and s2s3 > s2s4. Thus,
min(s1s4, s2s3) > s2s4 = min(s1s3, s2s4)

As the induction hypothesis, assume that the claim is true
for some n and k. We will show that it is true for n + k.
Let the new items added be x1, x2, . . . xk assume wlog that
x1 > x2 > xk−1 > s1 > s2 > . . . sn > xk. We know from
the induction hypothesis that the heterophilous partition
corresponding to s is has the highest MoM objective value.
For the sake of contradiction, assume that by adding the
new k items, the heterophilous partition corresponding to
the vector [x1 x2 . . . xk−1 s1 s2 . . . sn xk] is not optimal.

Case 1: As x1, . . . xk−1 are larger than si ∀i and xk, the
only way any of them could be a part of the minimum pair
is when all the items with scores x1, . . . xk−1 are in the same
group. If xk is also in this group, we arrive at a contradiction.
If item with score xk is not in this group, then we swap the
item with some item with score sp to arrive at a contradiction.

Case 2: The other case to consider is when none of the
items with scores {x1, . . . xk−1} contribute to the minimum
compatible pair in their respective groups. In this case, we
start with the group g that contains at least one item with
scores of {x1, . . . xk−1} and has the highest minimum com-
patible weight. We iteratively swap the remaining items with
scores xi for some i which are not in g, with items from g with
score sj for some j. This can be done without decreasing the
MoM objective value. We then continue swapping iteratively
to get to the partition where the group g consists of items
with scores {x1, . . . , xk−1} along with some other item with
score sp for some p. Now, we can use the argument from
case 1 to arrive at the required contradiction.

Theorem 8. (Hardness of MoA) Computing the opti-
mal partition for the minimum of averages (MoA) objective
for a score based compatibility matrix is NP-hard.

Proof. Consider an instance I of 3-Partition, with
n = 3m items, each associated with a value; si is the value
for the item i. The total sum of the values is

∑
i∈I si = mB,
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and the size of each item is B
4
< si <

B
2

. The decision
problem is whether there exists a partition of the items into
m partitions, such that the sum of the values of items in each
partition is exactly B. This is a strongly NP-hard problem.

Now, construct an instance I′ of the MoA problem, with
k = 3, where we create an item in I′ corresponding to every
item in I, and the score associated with the item in I′ is
set to the value of the corresponding item in I. In the MoA
problem our goal is to partition the items in I′ in to m
groups, each containing exactly k = 3 items, such that the
total score of each group is as high as possible. In fact, the
lowest total score determines MoA. The decision question we
ask here is as follows: does there exist a partitioning of the
n items into m groups, each group containing exactly k = 3
items, such that the total score of each group is at least B?

If there exists a partition of the items into m groups, such
that every group contains exactly 3 items, and the total
score of every group is ≥ B, then that corresponds to a YES
instance of 3-Partition. Clearly, every group has to sum
up to exactly B, since the total sum is mB. Alternately,
if I corresponds to a YES instance of 3-Partition for a
given value B, then note that the corresponding m partitions
would have exactly 3 items because of the choice of the range
of the values of the items (and hence, the range of the scores),
and each partition would sum up to B. This would give a
feasible solution for the MoA in I′, with each group’s score
summing up to ≥ B. This completes the reduction.

While MoA is NP-Hard in general, we give a simple al-
gorithm Greedy for the MoA objective given W ∈ Rn×n,
a score based compatibility matrix: Sort the objects/items
by their scores in a non-increasing order. Take the next
unassigned item from the list and assign it to the partition
(or group) with the lowest total score thus far, as long as
the partition is not full (i.e., it has < k vertices). Break ties
arbitrarily. The best known approximation factor for this
algorithm is max

(
2
k
, 1
m

)
([17]). We prove a constant factor

approximation below, a significant improvement.

Theorem 9. (Greedy Algorithm is 1
2
approx for MoA)

Algorithm Greedy produces a k-partition that is a 1
2

approx-
imation for the MoA objective for score based compatibilities.

Proof. For the first m iterations, each group will receive
one item each from the top of the sorted list. Define a
Reduced SetR as a set of groups in the final solution obtained
by the greedy algorithm, such that: (a) for any (p, q) ∈ R,
there is at least one iteration t of the greedy algorithm after
the first m iterations when p is favored over q for assigning
the next available item, while q is not full, and there is also
at least one iteration t′ > m when q receives an item while
p is not full, (b) R has the maximum cardinality among all
such sets of groups, (c) R includes the group j ∈ [m] that
receives the mth item in the sorted list as its first item.

Let vj,i be the ith item added to the jth group with size
sj,i, and the earliest iteration by which all groups in R get
full be tR. Then it follows from the definition of R:

Observation 3. Any group j /∈ R would receive all the
items from from the second one to the kth one, that is, items
{vj,2, . . . , vj,k} in iterations t > tR.

This follows from the definition of R. Suppose a group
j′ /∈ R received the item vj′,2 in an iteration t′ < tR. In that
case, there exists at least one iteration, specifically, t′, when

j′ is favored over each of the groups in R, and at least one
iteration ≤ tR, when each of the groups in R are favored over
j′, since by tR all groups in R get full. This implies, that j′

should have been included in R, and R is not a maximal set.

Claim 10. Let the items in the sorted list be {v1, v2, . . . , vn},
where s1 ≥ s2 ≥ . . . sn, (si is the score of item vi, the ith

item in the sorted list). Let m′ = m − |R|. The items
vm′+1, vm′+2, . . . , vm′+|R|k get assigned to groups in R.

Proof. Suppose an item in the sequence vm′+r, r ∈
{1, . . . , |R|k} gets assigned to a group j /∈ R.

Case 1: vm′+r, r ≥ 1 is the first item assigned to j. Now,
there is at least one group j′ ∈ R, that receives an item
earlier in the list than vm′+r as its first item as the greedy
algorithm assigns one item each to each of the groups, before
assigning the second item to any group, and there are only
m′ groups outside R. Thus, once j′ receives the second item,
the total score of j′ will be greater than that of j, and hence,
j will receive at least one item before j′ is chosen again. But
from Observation 3, groups /∈ R do not receive their second
item till all groups in R are full.

Case 2: vm′+r is the second item assigned to j /∈ R.
Since from Observation 3, j receives its second item only
after tR, and all groups receive at least one item before
any group receives its second item, this is possible only if
m′ + r > |R|k + m′. However, m′ + r ≤ |R|k + m′ by
assumption. Hence this is not possible either.

From Claim 10, it follows that the m′ groups /∈ R, receive
the m′ largest score items as their first items, specifically,
items v1, . . . , vm′ . Let us call these first m′ items as large
items, since the groups receiving them do not get their second
item till all groups in R are full. Moreover, it also follows
that any subset of |R|k items from V \ {v1, . . . , vm′} (that is,
from the set of all items excluding the large items), would
have a total score at most the total score of the items used
to fill R. This can be seen from the fact that R gets the
highest score |R|k items, excluding the large items.

Claim 11. Denote the sum of scores of a set of items S
as Sum(S). max((S⊂{V\{v1,...,vm′}})∩(|S|=|R|k)) Sum(S) ≤∑

j∈R
∑
i∈[k] si,j.

Proof. This follows from Claim 10. Therefore, R gets
the highest score |R|k items, excluding the large items.

Claim 12. Let OPT be the optimal value of MoA for a

given instance. Then OPT ≤
∑

j∈R
∑

i∈[k] si,j

|R|

Proof. There is a partition of the items into m groups,
such that the sum of the scores of each group is ≥ OPT .

Let AV GR =
∑

j∈R
∑

i∈[k] si,j

|R| . If |R| = m, then the claim

is obvious. Suppose for contradiction, that OPT > AV GR
when 1 ≤ |R| < m. We have m′ = m−|R| groups outside the
reduced set. Therefore, we only have m′ large items, that can
be distributed to at most m′ groups in any optimal solution.
The remaining ≥ |R| groups in the optimal solution (that do
not receive any large item) would each need to get k items,
summing up to ≥ OPT . Therefore, there must exist a subset
of items, say S, of cardinality |R|k, excluding the large items,
such that their score sums up to ≥ |R|OPT . From Claim
11, therefore, AV GR|R| ≥ Sum(S) ≥ |R|OPT . However,
this contradicts the assumption that AV GR < OPT . This
completes the proof.
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Hence, we conclude from Claim 12 that OPT ≤ AV GR.
Suppose the minimum total score is realized by a group
r /∈ R. Clearly, sr,1 ≥

∑
p∈[k−1] sq,p ∀q ∈ R. Since we assign

the items in non-increasing order of their scores, sq,k ≤∑
p∈[k−1] sq,p

k−1
∀q ∈ R, hence, sr,1 ≥

(
1− 1

k

) ∑
j∈R,i∈[k]si,j

|R| .

Therefore, sr,1 ≥
(
1− 1

k

)
OPT . Hence, for k ≥ 2, the realized

minimum total score in this case is ≥ 1
2
OPT .

Now, consider the case when the minimum total score is
realized by some group in R. Let p and q be the groups
with the lowest and highest sum of scores in R respectively.
By definition of R, there exists at least one iteration after
all the groups have received one item each (that is, some
iteration > m), when the total score of q was lower than
p, and hence q got assigned an item favored over p. Let
k′ ∈ [2, . . . , k] be the highest index such that the q received
the k′th item while p was not full. Let p have k′′ < k
items assigned at that time. Since q was favored over p,∑
i∈[k′′] sp,i ≥

∑
j∈[k′−1] sq,j . Also, sq,k′ ≤ sp,k′′ . After

this, p received k − k′′ more items, before q received any
of the items in {vq,k′+1, . . . , vq,k}, if k′ < k (otherwise, q
would not receive any items after this). Clearly, sq,` ≤
sp,k for ` ∈ {k′ + 1, . . . , k}. Hence, the total score of q is∑
i∈[k] sq,i ≤

∑
i∈[k′′] sp,i + sp,k′′ + (k − k′)sp,k. Therefore,∑

i∈[k] sq,i ≤
∑
i∈[k′′] sp,i+sp,k′′+(k−k′′)sp,k+(k′′−k′)sp,k

≤ Sp + sp,k′′ + (k′′ − k′)sp,k. Now, k′′ − k′ < k, and because
we consider items in sorted order, sp,` ≥ sp,k∀` ∈ [k]. Hence,
sp,k′′+(k′′−k′)sp,k ≤ sp,k′′+

∑
i∈{1,...,k}\k′′ sp,i ≤ Sp. Hence,

Sq ≤ 2Sp. Since Sq ≥ AV GR ≥ OPT , the realized minimum
total score Sp ≥ OPT

2
. This concludes the proof.

Algorithm 1 LEARNORDER

Paramters: Number of users n, number of groups m,
group size k, confidence δ
Set δ∗ as in Theorem 13
Generate a Erdos-Renyi random graph G ∼ G(n, log(n)

n
)

Let diam(G) be the diameter of G.
Let E1, . . . E` be a partition of the edges of G into ` bins
got using an (approximate) minimum edge coloring G.
for i = 1 to ` do

Divide Ei arbitrarily into bi := d|Ei|/me disjoint bins
{Bi1, . . . Bib}.
for j = 1 : bi do

Play k-partitions corresponding to Bij for

O
(
diam(G)2

∆2 ln( 1
δ∗ )
)

rounds each.

Estimate ŝp − ŝq for all edges (p, q) ∈ Bij
end for

end for
For each k, estimate ŝk by summing the estimates for
ŝi − ŝj along the shortest path in G from 1 to k. If no
path exists for node k, set ŝk = 0;
Return σ̂ = argsort(ŝ).

6. LEARNING SCORE VECTOR AND GUAR-
ANTEES

In this section, we propose an algorithm for adaptively
learning the optimal ordering corresponding to the score
vector of a pairwise compatibility matrix. The learning
proceeds in rounds and for every group Sti in a chosen k-
partition Π(St1, . . . ,S

t
m) at round t, we assume that we receive

a iid noisy version of the happiness of the group as the
response i.e. H(Sti) + ηti where ∀t, i, ηti ∈ [−b, b] for some
b > 0 and E(ηti) = 0.

Our goal is to learn the ordering corresponding to the
score vector s ∈ Rn of the pairwise compatibility matrix
W ∈ Rn×n, by choosing groups adaptively for T (n, k, δ)
rounds. Here k is the size of groups chosen in each round,
and δ is the failure probability for learning a wrong ordering.
Once the ordering is learned, we can compute the optimal (or
approximately optimal) partition for the various objectives
by sorting the scores and invoking Theorems 6, 7 and 9.

The algorithm to learn the ordering is given in Algorithm 1.
The Algorithm LearnOrder begins by generating a random
Erdos-Renyi graph G where the probability of an edge being

present is log(n)
n

. Thus the expected number of edges in
the graph is n log(n). The edges of G are then partitioned
into disjoint pieces using an approximate O(Σ) edge coloring
where Σ is the maximum degree of the G. For each of these
pieces, for every edge (i, j) in the piece, groups {i,Sij} and
{j,Sij} are chosen where Sij is a fixed k − 1 sized set that
does not contain i or j. The idea is that, by obtaining the
un-normalized happiness values hi = (si +

∑
l∈Sij

sl)
2 +k2ηi

and hj = (sj +
∑
l∈Sij

sl)
2 + k2ηj for these two groups over

multiple rounds, one can compute a estimate of the difference
of the corresponding scores si − sj with high confidence.
As we only require the relative ordering to be correct, we
can without loss of generality, set ŝ1 = 0 and compute the
remaining scores using the following procedure: For node k,
we find the shortest path in G that connects 1 and k and sum
the differences along this path (w.h.p G is connected and so
there exists at least one path connecting 1 and k). Each of
these differences are estimates and hence the confidence in
the sum of the these estimates depend on the diameter of G.

We formally state the guarantee for learnorder below.

Theorem 13. (PAC guarantee for learnorder) Let
W ∈ Rn×n be a score based compatibility matrix with score
vector s ∈ Rn. Let ∆min = min

i6=j
|si − sj |, ∆ = 2ksmin∆min −

∆2
min and let δ∗ =

(
1 −

(
exp(− δ

k
)
))
/m. Then, algorithm

LearnOrder (Algorithm 1) outputs a permutation σ̂ whose
ordering is same as that of s with probability at least 1− δ
after O

(
|E|
m

diam(G)2

∆2 ln( 1
δ∗ )
)

rounds.

Proof Sketch: For a chosen edge pair (i, j), let hi and
hj denote the unnormalized happiness values obtained by
choosing the groups (i,Sij) and (j,Sij) where |Sij | = k − 1
and i, j /∈ Sij . We have,
√
hi −

√
hj =

√
(si + a)2 + k2ηi −

√
(sj + a)2 + k2ηj

where ηi and ηj correspond to the bounded random noise

and a =
∑
l∈Sij

sl. If the noise ηi, ηj were not present, then the

difference
√
hi −

√
hj = si − sj , which is what we want to

estimate. Nevertheless, we can control the noise by playing

this pair of groups for O
(
diam(G)2

∆2 ln( 1
δ∗ )
)

rounds as in the

Algorithm and averaging the happiness values obtained to
obtain estimates ŝij . In this case, after these many rounds,
we have with probability at least 1− δ∗,

(si − sj)−∆min

diam(G)
≤ ŝij ≤

(si − sj) + ∆min

diam(G)
∀i, j
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Figure 1: Normalized error between the estimated and true weights (y-axis) of LearnOrder. The left plot is for a random
graph and the right is for a Facebook graph instance.

When computing the estimate of a pair (s1, sk) not in the
edge set E, the algorithm sums up the estimated weights
on the shortest path from 1 to k. As the shortest path is at
most diam(G) long by definition, we obtain estimates for all
pairs of the form (s1, sk) such that all the estimated values
ŝ1k satisfies with probability 1− δ∗, |ŝ1k − s1k| ≤ ∆min ∀k.

Thus under the above condition, if we fix ŝ1 = 0 and obtain
values for all other vertices, we can sort them to produce
an ordering. It is easy to see that this ordering will exactly
correspond to the ordering of the actual score vector s.

Remark: The sample complexity (i.e., the number of groups
to be chosen) by the above Theorem depends on the diameter
of the random graph G. It is known that for large enough n,

diam(G) is concentrated sharply around 2 log(n)
log(n/2)

and the

number of edges behaves as O(n log(n)).

7. EXPERIMENTS
We assess the quality of the LearnOrder algorithm using

simulated and real data. The graph instances we chose were
the following. (a) Random: for this synthetically generated
dataset, we fixed the group size k = 4 and the graph size
n = 16. We added uniform noise between [−1, 1] to the
feedback in each round and the score for each item was
drawn uniformly at random from {1, ..., 10}. And (b) Social
network: a 16 node instance was sampled from the Facebook
friendship graph, built from an existing anonymized dataset
of Facebook users’ data (Leskovec and Krevl 2014). The
dataset has 4039 user nodes and 88234 unweighted edges.
We used the Jaccard similarity coefficient of features such as
education, hometown, language, etc to obtain scores for the
users. The performance of LearnOrder is shown in Figure
1 (averaged over 30 runs), and is in terms of the normalized
error between the estimated score vector and the true score
vector. It decreases as the number of rounds t increases.

In addition to showing that the learning algorithm indeed
converges, the experiments add empirical support to the fact
that the number of rounds needed to learn the true scores
within 10% normalized error is very practical (for instance
70 rounds for the Facebook subgraph of size 16). Since the

weight matrix was filled using a pairwise similarity measure
(using demographical and other user specific metadata) and
no intrinsic score was assumed, the experiment shows that the
weight matrix is naturally low rank (allowing us to learn the
scores very well) for this dataset. As a consequence, for this
dataset, we could infer that the users’ intrinsic characteristics
reasonably determine who they are friends with.

8. CONCLUSIONS
We studied the problem of grouping a set of users using

their pairwise compatibilities. We first showed hardness and
inapproximability results when no assumptions on the pair-
wise compatibility values are made. We then studied the
intrinsic score model for the compatibility, a model that is
not only simple and straight forward but also very similar
to the popular Bradley–Terry–Luce (BTL) model for pair-
wise comparisons. Under this model, we related the optimal
groupings to homophilous and heterophilous groupings which
are well studied in the psychology literature. We proposed
the LearnOrder algorithm, which after choosing a small
number of groups, adaptively learns the best ordering cor-
responding to the score vector of the pairwise compatibility
matrix. Our experiments on both synthetic and real datasets
demonstrate the efficacy of our algorithm.

We note that there may be several applications where the
pairwise compatibilities between users/items may depend on
multiple features (instead of one) and the pairwise compat-
ibility matrix can in general be low rank (instead of being
score based). In such cases, our framework can be slightly
modified to incorporate a matrix completion subroutine to re-
cover the low rank compatibility matrix. However, the results
regarding the optimality of the homophilous/heterophilous
partitions do not follow. The analysis of this is beyond the
scope of the current work.

In the future, we would like to consider other relevant
structures for the happiness index and develop algorithms for
the same, possibly with statistical as well as computational
guarantees.
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