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ABSTRACT
Several methods exist for electing committees of representa-
tives and conducting multiple referenda based on approval
voting. Recently, a family of rules for approval-based vot-
ing using ordered weighted averaging was proposed in [1],
ranging from a simple candidate-wise majority (minisum)
to egalitarian rule (minimax). Even though the first rule is
strategyproof and the second is not, due to its egalitarian
nature, only a partial study on manipulation has been con-
ducted for inbetween rules.
This paper investigates the manipulability of fair rules within
this family. We first prove that all rules parameterized by
fair (non-increasing) weight vectors are manipulable, ex-
cept minisum, if we consider them either resolute with a
tie-breaking mechanism or irresolute with classic extension
principles. Then, we conduct an empirical study of the pro-
portion of elections that are manipulable, showing that it
increases based on the rule’s fairness.

CCS Concepts
•Computing methodologies → Multi-agent systems;

Keywords
Approval voting; Manipulation; Minisum; Minimax; Or-
dered weighted averaging

1. INTRODUCTION
Multiple referenda and committee elections are similar

problems. In the first situation, voters are making a collec-
tive decision over several binary issues, while in the second
they are electing several winners from a set of candidates.
In both cases, voters have to decide a common value for a
binary variable that corresponds either to an issue (accepted
or rejected) or a candidate (elected or rejected). There may
be constraints on the set of feasible combined decisions, such
as cardinality constraints (e.g. the elected committee must
have between 6 and 10 members).

Approval voting is a well-known voting procedure used for
conducting multiple referenda [4] and committee elections [5,
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17]. Voters cast approval ballots that, in the context of a
committee election, consist of a set of approved candidates,
and in the context of a multiple referendum, a set of ap-
proved binary issues. From here on, we stick to committee
election terminology, but everything naturally flows to mul-
tiple referenda where we replace candidates with issues and
committees with bundles of issues. As previously reviewed
in [17], there are several different ways of finding the winning
outcome, i.e. the winning set of candidates. The most stan-
dard way, called minisum, consists of choosing candidates
by their approval scores: if the size of the committee is not
subject to any constraint (which will be the case in this pa-
per), the candidates approved by a majority of voters are
elected. Another way is minimax approval voting which, as
argued in [5], makes decisions that are fairer than minisum
(where fairness has to be understood in the Rawlsian sense):
minimax selects a committee that minimizes the maximum
over all the voters of the Hamming distance to a voter’s
ballot, seen as a binary vector (and equivalently, minimizes
disagreement).

However, a strong objection to minimax is its extreme be-
havior. Its egalitarian nature gives a huge influence to the
agent with the worst utility (the largest distance), even if
everyone else agrees. Indeed, consider the following situa-
tion: 10 voters have to decide on two binary propositions, p1
and p2. Nine voters agree on assignment 11 (assigning both
p1 and p2 to true), but the last voter prefers assignment 00.
Instead of choosing the almost unanimous outcome, 11, min-
imax chooses an outcome that has a Hamming distance of 1
to any voter, for example, 01. Since the last voter can pre-
vent an otherwise unanimous outcome from being chosen,
she seems to have too much influence.

Related to this, minimax approval voting is not strate-
gyproof [19], whereas minisum is. This should not be con-
sidered too strong an objection, since strategyproof ways of
reaching collective decisions are the exception rather than
the rule. However, the tremendous influence of the least
happy voter implies that her vote can wield strong manip-
ulation power, and this is a specificity of minimax approval
voting.

A family of rules for committee elections and multiple ref-
erenda has been proposed in [1] for designing rules that lie
between minisum and minimax in terms of fairness. Making
use of ordered weighted averaging (OWA), these rules, de-
noted as w-Approval Voting (or w-AV), are parameterized
by weight vector w, which weights voters by their rank when
we order their Hamming distances to a given outcome, from
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the largest to the smallest. As an example, minimax cor-
responds to weight vector (1, 0, . . . , 0) since only the voter
with the largest Hamming distance matters when computing
the score of a committee. Given an election with n voters,
minisum is parameterized by vector (1/n, . . . , 1/n) since all
voters are equally taken into account.

Rules parameterized by non-increasing weight vectors are
considered fair because they respect a basic fairness require-
ment: the Pigou-Dalton principle [8, 22]. Focusing on non-
increasing weight vectors, we have a continuum of rules from
minisum to minimax, which are considered fairer and fairer
when they are closer to minimax and further from minisum.

From these constatations, we may wonder how the manip-
ulation potential of minimax is related to its fairness prop-
erty. An interesting question is the study of the manipu-
lation of w-AV rules, depending on their fairness (seen as
the proximity to minimax). A preliminary study [1] showed
that a subset of these rules is manipulable, when considering
them resolute with a linear order tie-breaking mechanism.
The question of knowing if minisum is the only strategyproof
resolute rule1 in this context remains open. Furthermore,
since minimax tends to elect a large number of winning com-
mittees, due to its low discriminative power, manipulation
of its irresolute version is worth studying.

Contribution: The aim of this paper is to study the ma-
nipulability of the w-AV rules that fall between minisum
and minimax. We first study fair resolute w-AV rules with
a linear order tie-breaking mechanism and show that min-
isum is the only strategyproof rule of this family. Irresolute
rules require more assumptions on how preferences over com-
mittees extend to preferences over subsets of committees.
With classical extension principles (optimistic, pessimistic
and Gärdenfors principles), minisum is again the only fair
rule that is strategyproof. Moreover, if we assume that each
voter derives utility from a committee that is proportional
to the opposite of its Hamming distance, then any w-AV
rule composed with the uniformly randomized tie-breaking
mechanism is manipulable (in terms of expected utility), ex-
cept minisum.

Then, through an experimental study, we explore the link
between fairness and manipulability. The orness measure
[25], an appealing concept of fairness, captures the proxim-
ity of a w-AV to minimax. We compute the average num-
ber of manipulable elections depending on the orness of the
studied rule and observe that this number increases almost
linearly from minisum to minimax.

Related Work: A few recent works use OWA operators in
a voting context. One work [15] generalized positional scor-
ing rules by weighting a candidate’s scores obtained from dif-
ferent voters by their rank in the ordered list of these scores
and studied the properties of these rules, before conducting
an experimental study of manipulation, under several distri-
butions of preferences. Two works used OWAs for defining
generalizations of the Chamberlin and Courant proportional
representation rule. In [24], a committee’s score from a vote
was computed by applying an OWA to the scores of the
committee members, ranked by the voter’s ballots, where
the score of a committee from a collection of votes is simply

1Resolute minisum is strategyproof when ties are broken by
a linear order over the committee and under the assumption
of Hamming-consistent preferences, explained in Section 2.2.

the sum of the scores obtained from different voters. An-
other work [9] extended the Chamberlin and Courant rule
in a different way: for each candidate, the OWA is applied
to the scores obtained by the candidate for different voters.
Last, another previous work [11] studied OWA-based scor-
ing rules, among other natural classes of scoring rules. This
work focuses on the axiomatic properties of such classes and
the containment relations between them.

The series of works that study manipulation issues and
strategic behavior in multi-winner elections (such as [20])
is another related research stream. The computational as-
pects of strategic behavior in standard multiwinner approval
voting have been studied [3]. Two other works [7, 19] both
study the conditions under which an approximation of min-
imax is sensitive to manipulation. Minimax approval voting
has also been used in judgment aggregation [18]. In all these
contexts, it seems appropriate to study rules that are less ex-
treme than minimax while remaining fairer than minisum.

Outline: In the rest of our paper, we consider that no cardi-
nality constraint exists on the size of the outcome. This as-
sumption is especially justified in multiple referenda, where
any proposition can be accepted or rejected, but also in some
kinds of multiwinner election contexts, such as hall of fame
elections. The outline of this paper is as follows. In Section
2, we formally define our framework and manipulation in
this context, and address the manipulation of resolute w-AV
rules in Section 3. The manipulation of irresolute (or non-
resolute) rules is studied in Section 4. Section 5 addresses
the experimental study of the evolution of manipulability
when fairness is increased. Finally, we give several research
directions in Section 6.

2. DEFINITIONS AND NOTATION

2.1 w-AV Rules
The exposition of w-AV rules is taken from a previous

work [1].
We denote the set of voters by N , |N | = n, and the set of
candidates by X, |X| = m. Approval profile P is a tuple
P = (P1, ..., Pn), where Pi ⊆ X denotes the approval bal-
lot of voter i. An approval ballot is a subset of candidates
approved by a voter. We can also represent approval bal-
lot Pi as a binary vector in {0, 1}m, where 1s indicate the
candidates approved by voter i. In most of the proofs, we
exploit the binary vector representation. An election under
approval voting is specified by tuple (N,X,P ).

There are several ways of using approval voting for com-
mittee elections; see [17] for a review. Two popular methods
are minisum, which consists of electing the candidates who
are approved by a majority of voters, and minimax. To de-
fine minimax, we first define the Hamming distance between
two ballots Pi and Pj , as the total number of candidates on
whom they differ: dH(Pi, Pj) = |Pi \ Pj | + |Pj \ Pi|. Mini-
max approval voting, introduced in [5], selects a committee
S that minimizes maxi∈N dH(S, Pi).

We study a family of voting rules introduced in [1], that
generalizes minisum and minimax. To define that family,
they used Ordered Weighted Averaging operators (OWA)
[25]. In this family, each rule is specified by a weight vec-
tor and selects an outcome that minimizes the weighted
sum of Hamming distances, after ordering them in non-
increasing order. Given a preference profile of n voters,
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P = (P1, ..., Pn), and a committee S ⊆ X, we denote by
H(P, S) the n-dimensional vector that contains the Ham-
ming distances of each Pi from S in non-increasing order,
i.e. (dH(Pi, S))i∈N after ordering it in non-increasing or-
der. Now consider w = {wn}n∈N, a family of weight vec-
tors such that for every number of voters n ∈ N, wn =
(wn(1),wn(2), . . . ,wn(n)) ∈ [0, 1]n and the coordinates of
wn sum up to 1. Weight wn(i) is attached to the i-th largest
Hamming distance of the selected outcome to the n voters.
Then the voting rule, which we refer to as w-Approval Vot-
ing, or w-AV, is given as follows.

w-AV: Given election (N,X,P ) with n voters, select a
subset of candidates S such that it minimizes dot product
wn·H(P, S).

In some settings, the size of the committee to be elected
is fixed, but we focus on a case where the size is not fixed,
which is especially justified in multiple referenda.

Recall that w-AV is a generalization of both minisum and
minimax, corresponding respectively to weight vectors wn =
( 1
n
, 1
n
, . . . , 1

n
) and wn = (1, 0, . . . , 0).

To illustrate this family of rules, consider the following
slightly modified example [1]:

Example 1. Six coauthors of a paper, A1, . . . A6, have
to decide whether they should use Dropbox (d or d), have a
physical meeting (m or m) and whether they should continue
to work and prove more results before submission (w or w).
Here are their votes:

d m w
A1 1 1 0
A2 0 1 0
A3 1 0 0
A4 1 1 1
A5 1 1 1
A6 0 0 1

Minisum selects a winning committee in {110, 111}, and
minimax selects a winning committee in {010, 100, 111}. Con-
sider vector w = ( 6

21
, 5
21
, 4
21
, 3
21
, 2
21
, 1
21

), which can be seen as
the Borda weight vector. Then corresponding w-AV selects
unique committee 110, where H(P, 110) = (3, 1, 1, 1, 1, 0)
and w·H(P, 110) = 32

21
.

In this paper, we focus on OWA vectors that are non-
increasing. This non-increasing condition is standard in the
study of OWAs because it corresponds to a basic fairness
requirement: the Pigou-Dalton principle [22, 8]. This prin-
ciple simply states that the utility derived by a set of voters
from a committee should be as equally distributed as pos-
sible, all things being equal otherwise. Strictly decreasing
weight vectors satisfy the Pigou-Dalton principle, whereas
non-increasing weight vectors only satisfy it in a weak sense.
Arguably, minimax is the fairest and minisum the least fair
of the rules satisfying the Pigou-Dalton principle, with a
continuum inbetween. In Section 5, we introduce fairness as
a measure of proximity to minimax.

2.2 Manipulation
To define manipulation in this setting, we need to know

the preferences of the voters on all committees. However,
we only have the top committee of each voter, correspond-
ing to each approval ballot. We don’t have to exhaustively
express those preferences. We just assume that the smaller

the Hamming distance is between a committee and a ballot,
the more appreciated this committee is. Such preferences
are called Hamming-coherent. Formally, given voter i and
ballot Pi, for all c, c′ ⊆ X,

dH(c, Pi) < dH(c′, Pi)⇔ c �i c′,

which means that i prefers c to c′. Notice that in most
of our results, we only require the assumption that each
voter strictly prefers his optimal committee to any other. Of
course, this assumption is much weaker than the Hamming-
coherence assumption.

Note that the Gibbard-Satterthwaite theorem ([23, 14])
does not apply in our setting since we are in a domain of
Hamming-induced preferences. Not surprisingly, however,
we show that most of the rules in this family are manipula-
ble.

Given irresolute rule R, we study manipulation in three
ways: 1) we“determinize” irresolute rule R with tie-breaking
mechanism T to obtain resolute rule RT ; 2) we study ma-
nipulation of irresolute voting rules using an extension prin-
ciple; 3) we “cardinalize” the preferences by assuming that
the utility of a committee for a voter is (to a constant) the
opposite of the Hamming distance to its optimal committee.

Given profile P and irresolute rule R, we denote by R(P )
the outcome of the rule on profile P . We also denote by P−i
the preferences of all voters besides i. Hence, we can also
write P as (Pi, P−i). Manipulability means that voter i has
an incentive to unilaterally change her preference to reduce
the distance of Pi from the outcome. Then we can formally
define manipulation for resolute rule RT :

Definition 1. Resolute rule RT is manipulable if there
exist profile P , voter i, and preference P ′i ⊆ X such that:

RT (P ′i , P−i) �i RT (P ).

Manipulation for irresolute rules requires another assump-
tion. Indeed, we have to compare non-empty subsets of win-
ning committees and define how the preferences on the sub-
sets of committees are related to the preferences on commit-
tees. To do so, we exploit extension principles, which extend
preferences over committees to preferences over non-empty
subsets of committees. Let A and B be two non-empty sub-
sets of 2X , and let �i be the preference relation of i on
2X . Extension principle E turns �i on 2X into preference

relation �Ei on 22X \ ∅.
We study three well-known extension principles2: opti-

mistic, pessimistic and Gärdenfors (see [13]).

Optimistic A �Oi B if and only if ∃A ∈ A such that ∀B ∈
B, we have A �i B. In other words, the best element
of A is preferred to the best element of B.

Pessimistic A �Pi B if and only if ∃B ∈ B such that ∀A ∈
A, we have A �i B. In other words, the worst element
of A is preferred to the worst element of B.

Gärdenfors A �Gi B if and only if (a) A ⊆ B and ∀A ∈ A,
∀B ∈ B \ A, we have A �i B; or (b) A ⊇ B and
∀A ∈ A\B, ∀B ∈ B, we have A �i B; or (c) ∀A ∈ A\B
∀B ∈ B \ A, we have A �i B.

2For a discussion of extension principles in social choice, see
[2] and [6].
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Example 2 illustrates these extension principles.

Example 2. Consider two candidates and the Hamming-
coherent preference of voter 1:

P1 : 10 � 11 ∼ 00 � 01.

First, use the optimistic and pessimistic principles to com-
pare two subsets of committees, {10, 01} and {11, 00}. We
obtain {10, 01} �O1 {11, 00} because the best choice of {10, 01}
is preferred to the best choice of {11, 00}. However, we have
{10, 01} ≺P1 {11, 00} because the worst choice of {11, 00} is
preferred to the worst choice of {10, 01}.

Now, by comparing the subsets {10, 11} and {10, 01} with
the Gärdenfors principle, we obtain {10, 11} �G1 {10, 01}
because 11 is preferred to 01.

Then, for extension principle E, profile P , and irresolute
rule R, we define an E-manipulation of R as a manipulation
by voter i whose preferences respect E, i.e., vote P ′i such
that R(P ′i , P−i) �Ei R(P ).

Definition 2. Irresolute rule R is manipulable with re-
spect to E if there exist profile P , voter i, and preference
P ′i ⊆ X such that:

R(P ′i , P−i) �Ei R(P ).

Finally, assume that the preferences are cardinals. We
study rule RR representing the composition of irresolute rule
R and the uniformly randomized tie-breaking mechanism,
R. Furthermore, we consider that the utility of a voter
whose favorite committee is x (when the outcome of the
election is y), is m − dH(x, y). Thus, the expected utility
of voter i, denoted as ui(P ) with x as a favorite committee
(when he votes sincerely) is:

ui(P ) =
1

|R(P )|
∑

y∈R(P )

m−H(x, y).

Then a manipulation for rule RR by voter i is vote P ′i such
that the expected utility of i in P ′ = (P ′i , P−i) is strictly
greater than its expected utility in P .

Definition 3. Irresolute rule R is manipulable with re-
spect to R if there exist profile P , voter i, and preference
P ′i ⊆ X such that:

ui(P
′
i , P−i) > ui(P ).

In the context of Hamming-coherent preferences, we know
that minimax is manipulable but not minisum (see [5, 19]).
A previous argument [5] can easily be extended to any type
of manipulation considered above. How does this result ex-
tend to w-AV rules in general?

For readability, we introduce some notations. For commit-
tee c, we write H(c) = H(c, P ) and D(c) = w·H(c, P ) when
there is no ambiguity about P or weight vector w. Moreover,
for i ≤ j, we define Wi→j =

∑j
k=i+1 wk, Wj→i = −Wi→j

and Wi→i = 0. Finally, (2p 1q 0r) represents a vector that
starts with p coordinates that equal 2, and then q coordi-
nates equal 1 and r = n− p− q coordinates equal 0.

3. RESOLUTE W-AV
In this section, we focus on resolute w-AVT rules obtained

from the composition of an irresolute w-AV rule and tie-
breaking mechanism, T . To protect anonymity, tie-breaking

mechanisms are usually linear priority order over commit-
tees. The main result of this section shows that any resolute
w-AVT rule parameterized by a non-increasing weight vec-
tor is manipulable, except minisum.

Theorem 1. If w is non-increasing and w-AVT differs
from minisumT , then, for any m, w-AVT is manipulable.

The proof of Theorem 1 is presented in Subsections 3.1
and 3.2, where the first considers an even number of vot-
ers and the second considers an odd number. These two
cases lead to slightly different results. Indeed, when the
number of voters is even, the smallest deviation from weight
vector wn = ( 1

n
, 1
n
, . . . , 1

n
) leads to a rule that is manipula-

ble. When it is odd, some weight vectors close to wn =
( 1
n
, 1
n
, . . . , 1

n
) produce w-AV rules that are equivalent to

minisum, and therefore resistant to manipulation.

3.1 Even number of voters
First, we consider manipulation for non-increasing weight

vectors with an even number of voters. The following propo-
sition shows the manipulation of all non-increasing w-AVT

in this case.

Proposition 1. If n is even, w is non-increasing and
differs from the minisum weight vector; then, for any m ≥ 2,
w-AVT is manipulable.

Proof. The proof is a generalized example, providing a
manipulation for all such weight vectors. Consider an even
number of voters, n = 2q, and integer α, 0 ≤ α < q. Profile
P is composed of (q − α) votes 00, α votes 10 and q votes
01. The tie-breaking priority favors 01 over 00 and 00 over
11. Let w be such that W0→α = Wq→q+α, and W0→α+1 >
Wq→q+α+1. We have the following scores:

H(00) = (1q+α0q−α) D(00) = W0→q+α
H(01) = (2α1q−α0q) D(01) = 2W0→α +Wα→q
H(10) = (2q1q−α0α) D(10) = 2W0→q +Wq→2q−α
H(11) = (2q−α1q+α) D(11) = 2W0→q−α +Wq−α→2q.

Clearly, for 0 ≤ α < q, we have D(00) < D(11) and D(01) <
D(10) and D(01) − D(00) = W0→α −Wq→q+α. Then, the
winner is 01 due to tie-breaking.
Now let one of the 00-voters vote 10. The new scores are:

H(00) = (1q+α+10q−α−1)
H(01) = (2α+11q−α−10q)
H(10) = (2q1q−α−10α+1)
H(11) = (2q−α−11q+α+1)

D(00) = W0→q+α+1

D(01) = 2W0→α+1 +Wα+1→q
D(10) = 2W0→q +Wq→2q−α−1

D(11) = 2W0→q−α−1 +Wq−α−1→2q.

Clearly, for 0 ≤ α < q, we still have D(01) < D(10). If
α < q − 1, then D(00) < D(11), and if α = q − 1, then
D(00) = D(11), and the tie-breaking favors 00. Finally, we
have D(01) − D(00) = W0→α+1 − Wq→q+α+1. Then, the
winner is 00 and the manipulation is successful.

This result holds for any q, and by symmetry, for any linear
order tie-breaking mechanism T . Furthermore, the result
extends to any number of candidates by adding candidates
that are unanimously approved (or disapproved).
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This example also deals with weight vectors that are close
to minimax. Indeed, when α = 0, any weight vector w such
that w1 > wq+1 induces a manipulation.

3.2 Odd numbers of voters
Next we study how this result extends to an odd number

of voters by first considering a similar example as in the
proof of Proposition 1 to prove the following proposition.

Proposition 2. If n = 2q + 1, w is non-increasing and
there exists α, 0 ≤ α < q, such that W0→α ≤ Wq→q+α+1

and W0→α+1 > Wq→q+α+2; then, for any m ≥ 2, w-AVT is
manipulable.

Proof. The proof resembles the proof of Proposition 1,
adapted to an odd number of voters. Consider an odd num-
ber of voters, n = 2q + 1, and integer α, 0 ≤ α < q. Profile
P is composed of (q − α) votes 00, α votes 10 and (q + 1)
votes 01. The tie-breaking priority favors 01 over 00 and 10,
and 00 over 11. Let w be such that W0→α ≤ Wq→q+α+1

and W0→α+1 > Wq→q+α+2. The scores are:

H(00) = (1q+α+10q−α)
H(01) = (2α1q−α0q+1)
H(10) = (2q+11q−α0α)
H(11) = (2q−α1q+α+1)

D(00) = W0→q+α+1

D(01) = 2W0→α +Wα→q
D(10) = 2W0→q+1 +Wq+1→2q−α+1

D(11) = 2W0→q−α +Wq−α→2q+1.

Clearly, for 0 ≤ α < q, we have D(00) < D(11) and
D(01) ≤ D(10), and the tie-breaking favors 01 if D(01) =
D(10). Finally, D(01)−D(00) = W0→α−Wq→q+α+1. Then,
the winner is 01, due to tie-breaking if W0→α = Wq→q+α+1.
Now one of the 00-voters casts 10. The scores become:

H(00) = (1q+α+20q−α−1)
H(01) = (2α+11q−α−10q+1)
H(10) = (2q+11q−α−10α+1)
H(11) = (2q−α−11q+α+2)

D(00) = W0→q+α+2

D(01) = 2W0→α+1 +Wα+1→q
D(10) = 2W0→q+1 +Wq+1→2q−α
D(11) = 2W0→q−α−1 +Wq−α−1→2q+1.

Clearly, for 0 ≤ α < q, we still have D(01) < D(10).
If α < q − 1, D(00) < D(11), and if α = q − 1, then
D(00) = D(11), and the tie-breaking favors 00. Finally,
we have D(01)−D(00) = W0→α+1−Wq→q+α+2. Then, the
winner is 00 and the manipulation is successful.

As before, this result holds for any q, and by symmetry, for
any linear order tie-breaking mechanism T . Furthermore,
the result extends to any number of candidates by adding
candidates that are unanimously approved (or disapproved).
This example also deals with weight vectors that are close
to minimax.

However, scrutinizing the weight vectors that are close to
wn = ( 1

n
, 1
n
, . . . , 1

n
), we encounter rules that are equivalent

to minisum and thus resistant to manipulation when the
number of voters is odd.
To specify these rules, let us first state the following tech-
nical proposition, for which we omit the proof due to space
limitations.

Proposition 3. Consider a set of n integers, {ai}i=1...n,
with odd n, such that −α ≤ ai ≤ α and

∑n
i=1 ai = −α,

and a non-increasing vector w = 〈wi〉i=1...n. Then we have∑n
i=1 wi ∗ ai ≤

∑bn/2c
i=1 α ∗ wi −

∑n
i=bn/2c+1 α ∗ wi.

Now, given this property, we study the w-AV rules that
are close to minisum and show that the weight vectors that
are too close to wn = ( 1

n
, 1
n
, . . . , 1

n
), i.e., where W0→q <

Wq→2q+1, produce w-AV rules that are equivalent to min-
isum.

Proposition 4. Given n = 2q + 1 and non-increasing
weight vector w, if there exists approval profile P such that
w-AVT (P )6= minisumT (P ), then W0→q ≥Wq→2q+1.

Proof. Consider n = 2q + 1, a non-increasing weight
vector w and profile P such that w-AVT (P )6= minisumT (P ).
We denote c = minisumT (P ) and c′ = w-AVT (P ). Since
the number of voters is odd, minisum has a unique winner;
thus we have minisum(c′, P )−minisum(c, P ) = α, for some
α ≥ 1. Now we address the difference between the w-AV
scores of c and c′:

D(c)−D(c′) =

n∑
i=1

wi ∗ (H(c)i −H(c′)i).

Note that the number of candidates that differ from c to c′

is at most α. In fact, c contains all the candidates approved
by a majority of voters; thus removing or adding a candidate
from or to c (to obtain c′) increases its minisum score by at
least 1.

Then we prove that for all 1 ≤ i ≤ n, we have −α ≤
(H(c)i −H(c′)i) ≤ α. Given integer i such that 1 ≤ i ≤ n,
we call v the voter who corresponds to the ith coordinates
of H(c), and v′ is the voter who corresponds to the ith co-
ordinates of H(c′). With these notations, the previous re-
mark implies that dH(c, v′) − dH(c′, v′) ≥ −α. Moreover,
without loss of generality (by symmetry), we assume that
dH(c, v) − dH(c, v′) ≥ 0. Together, these two inequations
imply that dH(c, v) − dH(c′, v′) ≥ −α, which is exactly
H(c)i − H(c′)i ≥ −α. Furthermore, by contradiction, as-
sume that dH(c′, v′) < dH(c, v) − α. Then, because of the
previous remark, all voters v′′ such that dH(c, v′′) ≥ dH(c, v)
also verify dH(c′, v′′) > dH(c′, v′), which is a contradiction
since v′ is the voter corresponding to the ith coordinates
of H(c′). Thus we have dH(c′, v′) ≥ dH(c, v) − α, which is
exactly H(c)i −H(c′)i ≤ α.

In addition, since minisum(c′, P ) −minisum(c, P ) = α,
we have

∑n
i=1(H(c)i − H(c′)i) = −α. Then, we can apply

the result of Proposition 3 and obtain

n∑
i=1

wi ∗ (H(c)i −H(c′)i) ≤
q∑
i=1

α ∗ wi −
n∑

i=q+1

α ∗ wi.

However, since we have w-AVT (P ) = c′, we know that
D(c) −D(c′) ≥ 0. Thus 0 ≤

∑q
i=1 α ∗ wi −

∑n
i=q+1 α ∗ wi,

which implies W0→q ≥Wq→2q+1.

Proposition 4 implies that if the weight vector is close
to the minisum weight vector, i.e., if W0→q < Wq→2q+1,
then w-AVT (P ) is equivalent to minisumT and is therefore
resistant to manipulation. Thus, the results of this section
imply the following.

Proposition 5. If n is odd, w is non-increasing and w-
AVT differs from minisum; then, for any m, w-AVT is ma-
nipulable.
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The conclusion of Sections 3.1 and 3.2 notes that as soon as
we consider non-increasing weight vector w that does not
induce minisum, the w-AVT rule is manipulable. In other
words, since we introduce fairness in the w-AVT rules, we
also introduce the potential for manipulation. The extent to
which manipulation and fairness are related will be studied
empirically in Section 5.

4. IRRESOLUTE W-AV
Now we investigate irresolute w-AV, first with extension

principles and then with a uniformly randomized tie-breaking
mechanism (under the assumption of cardinal preferences).

4.1 Optimistic extension principle
Let us start with the optimistic principle to show that all

the rules are O-manipulable, except minisum.

Theorem 2. If w is non-increasing and differs from the
minisum weight vector, then w-AV is O-manipulable.

Again, we consider two cases to show this result. More
precisely, we show that all w-AV rules are O-manipulable as
soon as m ≥ 2 if the number of voters is odd. However, when
it is even and m = 2, some rules may not be O-manipulable,
but they become O-manipulable as soon as we consider three
or more candidates.

4.1.1 Even number of voters
First, let us study O-manipulation with an even number

of voters.

Proposition 6. If n = 2q and w is non-increasing such
that w1 > wq+1, then w-AV is O-manipulable.

Proof. The proof is an example of manipulation that
works for all such vectors. We consider an even number of
voters, n = 2q, where P is composed of q votes 00, (q − 1)
votes 01, and 1 vote 11. Let w be such that w1 > wq+1. We
have the following scores:

H(00) = (2 1q−10q) D(00) = 2W0→1 +W1→q
H(01) = (1q+10q−1) D(01) = W0→q+1

H(10) = (2q−11q+1) D(10) = 2W0→q−1 +Wq−1→n
H(11) = (2q1q−10) D(11) = 2W0→q +Wq→n−1.

Since w1 > wq+1, we have D(00) > D(01), which implies
that 00 is not a winning committee.

Manipulation comes from one of the 00-voters who now
votes 10. We obtain new scores:

H(00) = (2 1q0q−1) D(00) = 2W0→1 +W1→q+1

H(01) = (2 1q0q−1) D(01) = 2W0→1 +W1→q+1

H(10) = (2q−11q0) D(10) = 2W0→q−1 +Wq−1→n−1

H(11) = (2q−11q0) D(11) = 2W0→q−1 +Wq−1→n−1.

Clearly, D(00) = D(01) and D(10) = D(11). If q > 1,
D(00) < D(11), and if q = 1, D(00) = D(11). Either
way, 00 is a winning committee and the O-manipulation is
successful.

We failed to find an O-manipulation with two candidates,
an even number of voters, and a weight vector such that
w1 = wq+1. We conjecture that there is no such manipu-
lation in that case. However, as soon as we consider three
candidates, any non-increasing weight vector induces an O-
manipulable rule.

Proposition 7. If n = 2q, w is non-increasing such that
w1 > wn; then, for any m ≥ 3, w-AV is O-manipulable.

The proof is an example of manipulation working for all
such vectors, which again we omit due to space limitations.

4.1.2 Odd number of voters
For an odd number of voters, the situation is simpler since

any fair rule that differs from minisum is manipulable, when
considering two candidates.

Proposition 8. If n = 2q + 1, w is non-increasing such
that W0→α < Wq→q+α+1 and W0→α+1 ≥ Wq→q+α+2, 0 ≤
α < q; then, for any m ≥ 2, w-AV is O-manipulable.

Proof. The proof comes from the manipulation example
of Proposition 2. With irresolute w-AV, such that W0→α <
Wq→q+α+1 and W0→α+1 ≥ Wq→q+α+2, 0 ≤ α < q, commit-
tee 00 is not a winning committee before manipulation, but
it becomes a winner after a 00-voter switches his vote to 10.
Thus, it is an O-manipulation.

For the weight vectors that are closer to minisum weight
vectors, we already know from Proposition 4 that if W0→q <
Wq→2q+1, then there is no manipulation. However, Proposi-
tion 8 does not capture the rules that are close to minimax
(when wq+1 = 0). Those rules are O-manipulable as shown
in the following proposition, for which we omit the proof.

Proposition 9. If n = 2q + 1, w is non-increasing such
that w1 6= 0 and wq+1 = 0; then, for any m, w-AV is O-
manipulable.

The conclusion of optimistic manipulation is that min-
isum is the only fair rule (parameterized by a non-increasing
weight vector) that is resistant to O-manipulation.

4.2 Pessimistic and Gärdenfors extension prin-
ciples

In this section, we simultaneously study the pessimistic
and Gärdenfors extension principles. Similar to the opti-
mistic manipulation, we prove that all the fair rules are ma-
nipulable, except minisum.

Theorem 3. If w is non-increasing and differs from the
minisum weight vector, then w-AV is P - and G-manipulable.

Again, we show this result in two steps, first with an even
number of voters and then with an odd number.

4.2.1 Even number of voters
As in the optimistic manipulation, we show that most of

the fair rules are manipulable when we consider two candi-
dates or more. However, some rules require at least three
candidates to be manipulable.

Proposition 10. If n = 2q, w is non-increasing such
that W0→α = Wq→q+α and W0→α+1 > Wq→q+α+1, 0 ≤ α <
q − 1; then, for any m ≥ 2, w-AV is P -manipulable and
G-manipulable.

Proof. The proof is from the example of Proposition 1.
With irresolute w-AV, such that W0→α = Wq→q+α and
W0→α+1 ≥ Wq→q+α+1, 0 ≤ α < q − 1, committees 00
and 01 are winners before manipulation. Then when a 00-
voter switches his vote to 10, committee 00 is the only win-
ning committee. Thus, it is a P -manipulation and a G-
manipulation.
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Note this proposition does not capture the case where
α = q − 1, and in that case, we failed to find any manipu-
lation. We conjecture that there are no manipulations for
two candidates in that case. However, with three candi-
dates, there are manipulations for weight vectors such that
W0→q−1 = Wq→2q−1 and W0→q > Wq→2q.

Proposition 11. If n = 2q, w is non-increasing such
that W0→q−1 = Wq→2q−1 and W0→q > Wq→2q; then, for
any m ≥ 3, w-AV is P -manipulable and G-manipulable.

The proof is an example of a manipulation that we omit due
to space limitations.

4.2.2 Odd number of voters
When considering an odd number of voters, we show that

most of the fair rules are P -manipulable and G-manipulable
when considering two or three candidates, and they are all
manipulable with four or more candidates.

Proposition 12. If n = 2q+1, w is non-increasing such
that W0→α ≤ Wq→q+α+1 and W0→α+1 > Wq→q+α+2, 0 ≤
α < q−1; then, for any m ≥ 2, w-AV is P -manipulable and
G-manipulable.

Proof. The proof is from the manipulation example of
Proposition 2. With irresolute w-AV, such that W0→α ≤
Wq→q+α+1 and W0→α+1 > Wq→q+α+2, and with 0 ≤ α <
q − 1, committee 01 is the winner, possibly with 00, be-
fore manipulation. Then when a 00-voter switches his vote
to 10, committee 00 is the only winner. Thus, it is a P -
manipulation and a G-manipulation.

Note that this proposition states manipulation for vectors
that are close to minimax. In fact, when wq+1 = 0, we
obtain a P - and a G-manipulation, if w1 > 0.

However, at the opposite side of the spectrum of weight
vectors, this proposition does not capture the case where
α = q − 1, and in that case we failed to find any manip-
ulation with two candidates. We conjecture that there are
no manipulations for two candidates in that case. However,
with three candidates, there are manipulations for weight
vectors such that W0→q ≤ Wq→2q and W0→q > Wq→2q+1.
This result is obtained by Proposition 13, for which we omit
the proof.

Proposition 13. If n = 2q+1, w is non-increasing such
that W0→q−1 ≤Wq→2q and W0→q > Wq→2q+1; then for any
m ≥ 3, w-AV is P -manipulable and G-manipulable.

However, the weight vectors such that W0→q = Wq→2q+1

and W2q+1 = 0, are not captured by Proposition 13. In fact,
those weight vectors lead to P - andG-manipulable rules only
when the number of candidates is at least four; we omit the
proof.

To conclude on extension principles, we also studied Fish-
burn and Kelly extension principles ([12, 16]). However, the
results are heterogeneous and cannot be stated in a com-
pact form. For example, minimax requires eight voters to
be Kelly-manipulable with four candidates, but only seven
voters with five candidates and five voters with six candi-
dates. We will address this issue in future work.

4.3 Uniformly randomized w-AV
In this section, we briefly address the uniformly random-

ized w-AV rules, denoted as w-AVR. We show that all w-
AVR rules are R-manipulable by proving that a Gärdenfors
manipulation implies a R-manipulation in our setting.

Theorem 4. If w is non-increasing and differs from the
minisum weight vectors, then w-AVR is R-manipulable.

Proof. The proof is a study case, showing that a Gär-
denfors manipulation implies a R-manipulation, for a given
profile. Consider profile P and G-manipulation P ′i from
voter i whose favorite committee is x. Let C and C′ be the
subsets of committees such that C = w-AV(P ) and C′ = w-
AV(P ′i , P−i). There are three cases to consider.

• C′ ⊆ C. We know that for all y ∈ C \ C′ and for all
y′ ∈ C′, y′ �i y, which implies that m − dH(x, y′) >
m− dH(x, y). Thus, we have ui(C′) > ui(C).

• C ⊆ C′. The argument resembles the previous case.

• Otherwise, as in the first case, we have ui(C ∩ C′) >
ui(C), and as in the second one, we have ui(C′) >
ui(C ∩ C′), and we obtain ui(C′) > ui(C).

Thus, a Gärdenfors manipulation is a R-manipulation for
w-AVR.

The conclusion on irresolute manipulation resembles the
resolute case: minisum is the only fair rule that is strate-
gyproof.

5. EMPIRICAL RESULTS
In the previous sections, we proved that all the w-AV rules

parameterized by non-increasing weight vectors are manip-
ulable, except minisum. However, we conjecture that the
rules that are closer to minisum will be less often manipula-
ble in expectation than those closer to minimax. We focus
on resolute3 manipulation.

We study resolute manipulation under two assumptions
about the distribution of preferences: impartial culture dis-
tribution (IC) and biased distribution. In the context of ap-
proval ballots, impartial culture implies that any candidate
has a probability of 0.5 to be approved by each voter. Impar-
tial culture is the worst-case scenario where we don’t assume
anything about the preferences of the voters. In biased dis-
tribution4, we randomly generate two approval probabilities,
p1 and p2, for each candidate, uniformly between 1 and 0.
The voters are then divided into three groups: 40% approve
each candidate with probability p1, another 40% with prob-
ability p2, and the remaining 20% with probability 0.5. This
biased distribution reflects a bipartite electorate with some
uncertain voters.

An appealing way to characterize the fairness of a w-AV
is its orness measure, which calculates its proximity to min-
imax. Introduced in [25], the orness measure of an OWA
operator with weight vector w is defined as:

orness(w) =
1

n− 1

n∑
j=1

(n− j)wj .

3Ties are broken in the following way: between two com-
mittees, the prior is the one containing the most prior can-
didates based on lexicographic order.
4For example, this distribution has been used in previous
work [19].
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Minimax, parameterized by weights w = (1, 0, . . . , 0), gets
an orness of 1, while minisum, corresponding to the average
operator, has an orness of 0.5. Arguably, OWA operators
with an orness exceeding 0.5 are considered fair5, and fairer
when they get closer to 1. However, a given orness level does
not characterize a unique weight vector.

We study a family of rules, f i-AV, defined in [1], which is
parameterized by weight vector f in = 1

n−i (1, . . . 1, 0, . . . , 0),
where i is the number of 0. This family generalizes both
minisum and minimax, corresponding respectively to f0 and
fn−1. Given n voters, each f in corresponds to a specific
orness measure, which is orness(f in) = n+i−1

2(n−1)
.

Figure 1 presents the proportion of manipulable uniform,
respectively biased, elections depending on the orness mea-
sure of the f in-AV rules, when considering 25 voters and
small numbers of candidates. We obtained these propor-
tions by randomly generating a population of 104 elections6

for each distribution and checking with a brute force algo-
rithm whether there exists a manipulation by any voter. In
both cases, we observe that the proportion of manipulable
elections increases when the orness measure increases from
minisum orness to minimax orness. The conjecture seems
verified and a clear trade-off appears between fairness (prox-
imity to minimax) and sensitivity to manipulation. How-
ever, we observe a slight fall for rules close to minimax in
the case of biased elections, but notice that the proportion
of manipulable elections remains high, which means that al-
most any election is potentially manipulable by at least one
voter.

Now, we address study a particular w-AV rule, the B-
AV rule, parameterized by a weight vector proportional to
the Borda vector. For example, with six voters, the weight
vector is ( 6

21
, 5
21
, 4
21
, 3
21
, 2
21
, 1
21

). We compare it with three

rules of the f i-AV family, for i ∈ {n
3
, n
2
, 2n

3
}. The B-AV

rule is interesting because it satisfies the Pigou-Dalton prin-
ciple since its weight vector is strictly decreasing, whereas
the f i-AV rules only satisfy it in a weak sense. Thus, we ex-
pect it to be more sensitive to manipulation than the f i-AV
rules. However, the orness of B-AV is 2/3 for any number

of voters, whereas for fn/3-AV, fn/2-AV, and f2n/3-AV, it
is respectively 0.67, 0.75, and 0.84 when considering 70 vot-
ers. This measure suggests that since the B-AV rule is less

5For a discussion on fairness in optimization, see [21].
6The size of the population leads to a margin of error strictly
lower than 0.01 with a confidence of 95% for any point of
any chart in this paper.

fair than the three above f i-AV rules, it is less sensitive to
manipulation.

Figure 2 shows the proportion of manipulable uniform
elections depending on the number of voters for the four
above rules with five candidates. We first observe that the
f2n/3-AV rule has a proportion much higher than B-AV,
which tends to confirm the conjecture that manipulability
increases with the orness. However, this result is tempered
by the fact that, despite having quite different orness mea-
sures, fn/2-AV and B-AV appear to be equally manipulable.
Moreover, with 20 voters or more, B-AV is slightly more ma-
nipulable than fn/2-AV. Finally, when the number of voters
increases, the proportion of manipulable elections globally
decreases. This result is not surprising since when the num-
ber of voters increases, each voter has a lower impact on the
outcome. We also compared these rules with the biased elec-
tions model and obtained similar results with a noticeably
faster decrease when the number of voters increases.

6. CONCLUSION
We analyzed the manipulation of a family of Hamming-

based approval voting rules for committee elections and mul-
tiple referenda using ordered weighted averaging. This fam-
ily ranges from a candidate-wise majority to a minimax with
a continuum of rules inbetween, which are fairer when closer
to minimax. We first proved that minisum is the only fair
rule of this family to be strategyproof to resolute and irres-
olute manipulation, using extension principles or the uni-
formly randomized tie-breaking mechanism. Through an
experimental study, we explored the link between manipula-
bility and fairness, and showed that the rules that are closer
to minimax are more sensitive to manipulation. This study
could be extended to non-monotonic weight vectors, such
as the Olympic weight vector that drops extreme scores, or
to additional models of preferences, in particular to Candi-
date/Voter Interval profiles introduced in [10].
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