
New Approximation for Borda Coalitional Manipulation

Orgad Keller
Department of Computer Science

Bar-Ilan University
Israel

orgad.keller@gmail.com

Avinatan Hassidim
Department of Computer Science

Bar-Ilan University
Israel

avinatan@cs.biu.ac.il

Noam Hazon
Department of Computer Science

Ariel University
Israel

noamh@ariel.ac.il

ABSTRACT
We study the problem of Borda Unweighted Coalitional Ma-
nipulation, where k manipulators try to manipulate an elec-
tion on m candidates under the Borda protocol. This prob-
lem is known to be NP-hard. While most recent approaches
to approximation tried to minimize k, the number of manip-
ulators needed to make the preferred candidate win (thus
assuming that the number of manipulators is not limited
in advance), we focus instead on minimizing the maximum
score obtainable by a non-preferred candidate. We provide a
randomized, additive O(k

√
m logm) approximation to this

value; in other words, if there exists a strategy enabling the
preferred candidate to win by an Ω(k

√
m logm) margin, our

method, with high probability, will find a strategy enabling
her to win (albeit with a possibly smaller margin). It thus
provides a somewhat stronger guarantee compared to the
previous methods, where the addition of an extra manip-
ulator implied (with respect to the original k) a strategy
that provides an Ω(m)-additive approximation to a runner-

up’s score: when k is o(
√
m/ logm), our strategy provides a

stronger approximation. Our algorithm can also be viewed
as a (1 + o(1))-multiplicative approximation since the value
we approximate has a natural Ω(km) lower bound.

Our methods are novel and adapt techniques from multi-
processor scheduling by carefully rounding an exponentially-
large configuration linear program that is solved by using the
ellipsoid method with an efficient separation oracle. We be-
lieve that such methods could be beneficial in approximating
coalitional manipulation in other election protocols as well.

CCS Concepts
•Computing methodologies → Multi-agent systems;

Keywords
Elections, Borda Voting Protocol, Coalitional Manipulation

1. INTRODUCTION
Elections are one of the pillars of democratic societies, and

are an important part of social choice theory. In addition
they have played a major role in multiagent systems, where

Appears in: Proc. of the 16th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2017),

S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),

May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

a group of intelligent agents would like to reach a joint deci-
sion [9]. In its essence, an election consists of n agents (also
called voters) who need to decide on a winning candidate
among m candidates. In order to do so, each voter reveals
a ranking of the candidates according to his preference and
the winner is then decided according to some protocol.

Ideally in voting, we would like the voters to be truthful,
that is, that their reported ranking of the candidates will be
their true one. However, almost all voting rules are prone
to manipulation: Gibbard and Satterthwaite [11, 18] show
that for any reasonable preference-based voting system with
at least 3 candidates, voters might benefit from reporting a
ranking different than their true one in order to make sure
that the candidate they prefer the most wins. Furthermore,
several voters might decide to collude, to form a coalition
and then to coordinate their votes in such a way that a
specific candidate p (hereafter the preferred candidate) will
prevail. Such a setting is reasonable especially when the
voters are agents that are operated by one party of interest.

For some time, the hope for making voting protocols im-
mune to manipulations at least in practice relied on compu-
tational assumptions: for several common voting protocols,
it was shown that computing a successful voting strategy for
the manipulators is NP-hard [3, 6, 22, 10]. However, as it is
many times the case, approximation algorithms and heuris-
tics were devised in order to overcome the NP-hardness al-
beit with some compromises on the quality of the resulting
strategy. This paper fits within this scheme.

In this paper we focus on the Borda voting rule and study
the problem of Borda (constructive) unweighted coalitional
manipulation (Borda-UCM )1: assume that k additional vot-
ers (hereafter the manipulators), all of them preferring a spe-
cific candidate p, can be added to the voting system, thus
forming a coalition. Also assume that all n original voters
(hereafter the non-manipulators) voted first (or equivalently,
that the non-manipulators are truthful and that their pref-
erences are known). Find a strategy for the manipulators
telling each one of them how to vote so that p wins, if such
strategy exists.

Borda-UCM was conjectured and then proven to be NP-
hard [7, 4]. As a way of overcoming this, recent research [23]
focused on an approximation to the minimum number of
manipulators needed to be added to the system in order to
guarantee that the preferred candidate p would win. They
showed that if there exists some strategy for k manipulators

1The problem was called Borda-CCUM, for “constructive
coalitional unweighted manipulation”, in [23].

606



making p win, then they will find a strategy making her win
with at most one additional manipulator.

This kind of approximation might seem a bit problematic:
while in some cases it might be reasonable that the party be-
hind the manipulators can add another manipulator to the
system, in many cases we do not expect this to be true. In-
stead, it is interesting to ask what can we assert—assuming
that the number of manipulators cannot be changed—on
the ability to promote a specific candidate p given the non-
manipulator scores of all candidates and the value k.

We provide a positive result of the following type:

Main Result: If there exists a manipulation
strategy enabling p to win by a large-enough mar-
gin, we efficiently find a successful manipulation
strategy making p win.

Specifically, assume that we can provide, for some function
f(k,m), an f(k,m)-additive approximation to the maximum
difference obtainable between p’s final score and the final
score of the highest-scoring non-preferred candidate. Then,
if there exists a strategy such that this difference is at least
f(k,m), we can be rest-assured that the algorithm will find
a strategy enabling p to win.

This, in turn, boils down to approximating an upper-
bound to the score of the highest-ranked candidate who is
not p. Earlier research of this flavor only focused on the
case where the number of candidates is bounded: for the
weighted case, Brelsford et al. [5] provide an FPTAS to that
upper bound (to be exact, they provide an FPTAS to the
same exact value we defined, and then use it to provide
another FPTAS to another value, which is their value-of-
interest.2) For the ordinary unweighted case, if the number
of candidates is bounded, the entire problem becomes easy
and polynomial-time solvable [6, Proposition 1].

1.1 Our Results and Contributions
Let T ∗ be the minimum possible score (ranging over all

possible manipulation strategies S) of the highest scoring
candidate who is not p. Formally, it is defined as T ∗ =
minS maxc′∈C\{p} s(c

′), where s(c′) is the final score of a
candidate c′, and C is the candidate set. Our main contri-
bution is a constructive proof to the following theorem:

Theorem 1. There exists a randomized Monte Carlo al-
gorithm for Borda-UCM which provides an O(k

√
m logm)-

additive approximation to T ∗ with an exponentially-small
failure probability.

In other words, if there exists a strategy enabling p to
win by a margin of Ω(k

√
m logm) compared to the score

of the highest-scoring non-preferred candidate, our method
will find a strategy enabling p to win (albeit with a possibly
smaller margin). Notice that such an approximation can
also be seen as a (1 + o(1))-multiplicative approximation on
the score of the highest-scoring non-preferred candidate, and
thus is superior to an FPTAS; to see that, notice that the
overall ‘voting mass’ given by the manipulators is Ω(km2),
and so the highest scoring candidate has score of at least

2They are interested in the difference between the score
of the preferred candidate and the highest-scoring non-
preferred candidate when including the manipulator votes,
minus the same difference when not including the manipu-
lator votes. Notice that the upper-bound we defined is the
only non-trivial value in this computation.

Ω(km). Therefore Õ(k
√
m) 3 is a lower order term. This is

an advantage over the previous methods:

• Opposed to the heuristics in [8], we provide provable
guarantees.

• Consider the reverse algorithm of [23], and assume
that adding extra manipulators is not allowed. We
will show that their method implies no better than
an Ω(m)-additive approximation to the score of the
highest-scoring non-preferred candidate. Our approx-
imation is thus superior when k is o(

√
m/ logm).

The following claim analyzes reverse according to our
metric. It is proven in Section 3.

Claim 2. For any m, when the addition of more than k
extra manipulators is not allowed, there are cases in which
the optimal strategy enables p to win by a margin of at least
m/3, but reverse fails to find a strategy enabling p to win.

Our techniques are novel: they employ the use of configu-
ration linear programs (C-LP), a method that is also used in
the scheduling literature, namely for two well-studied prob-
lems, the problem of scheduling on unrelated machines [21],
and the so-called Santa Claus problem [2]. See Section 1.2
for a discussion of these problems. It is important to note
that the solutions to the two above problems and to ours all
differ from one another with respect to how the algorithm
proceeds once the C-LP result is computed.

C-LPs are used for the generation of an initial, invalid
strategy, which is later modified to become valid. They are
unique in the sense that they are linear programs that have
an exponential number of variables, an issue which we solve
by referring to the LP dual and using the ellipsoid method
with a polynomially-computable separation oracle [16, 12].
We also implemented our algorithm: as a result of not find-
ing a library which enables solving an LP this way, we simu-
lated this by an iterative use of a general LP-solving library,
each time adding a violated constraint based on running the
separation oracle externally.

1.2 Related Work
The Borda voting mechanism was introduced by Jean-

Charles de Borda in 1770. It is used, sometimes with some
modifications, by parliaments in countries such as Slovenia,
and competitions such as the Eurovision song contest, se-
lecting the MVP in a major league baseball, Robocup robot
soccer competitions and others. The Borda voting mecha-
nism is described as follows: every agent ranks the candi-
dates from 1 to m, and awards the candidate ranked i-th a
score of m − i. Notice that this makes the scores given by
each single voter a permutation of 0, . . . ,m− 1. Finally, the
winning candidate is the one with the highest aggregated
score.

The computational complexity of Borda coalitional ma-
nipulation was studied extensively. For the more general
case in which each voter can have an associated weight, the
problem was shown to be NP-hard [6, 13]. However, the
natural, unweighted case still remained open for quite some
time, until shown to be NP-hard as well [7, 4] in 2011, even
for the case of n = 3 and adding 2 manipulators.

3The Õ notation suppresses poly-logarithmic factors.

607



Several approximation algorithms and heuristics [20] were
devised. Zuckerman et al. [23] present reverse4, a greedy
method which works as follows: after the non-manipulators
had finished voting, we go over the manipulators one by one,
and each manipulator will rank the candidates (besides p)
by the reversed order of their aggregated score so far (can-
didate with the highest score so far gets the lowest ranking).
As mentioned, reverse can be seen as an additive +1 ap-
proximation for the objective of finding the minimum num-
ber of manipulators needed for Borda manipulation; in the
weighted case, the added manipulator should have weight
max`=1,...,k w`, where w` is the weight of manipulator `.
Davies et al. [8] present two additional heuristics: iteratively,
assign the largest un-allocated score to the candidate with
the largest gap (Largest Fit), or to the candidate with the
largest ratio of gap divided by the number of scores yet-to-
be-allocated to this candidate (Average Fit).

As discussed, configuration linear programs were also used
in scheduling literature, for example for the following two
problems which were extensively studied before:

• In the so-called Santa Claus problem [2], Santa Claus
has t presents that he wishes to distribute between m
kids, and pi,j is the value that kid i has to present
j. The goal is to maximize the happiness of the least
happy kid: mini

∑
j∈Si

pi,j , where Si is the presents
allocated to kid i.

• In the problem of scheduling on unrelated machines [21].
We need to assign t jobs between m machines, and
pi,j is the time required for machine i to execute job j.
The goal is to minimize the makespan maxi

∑
j∈Si

pi,j ,
where Si is the jobs assigned to machine i.

Both papers researched a natural and well-researched ‘re-
stricted assignment’ variant of the two problems where pi,j ∈
{pj , 0}. In [2], they obtained an O(log logm/ log log logm)-
multiplicative approximation to the first problem and in [21],
they obtained a (33/17+ε) -multiplicative approximation to
the second.

2. PRELIMINARIES

2.1 Problem Definition
With a slight change of notation, let C = {c0, c1, . . . , cm}

be a candidate set consisting of the preferred candidate p =
c0 and the other m candidates c1, . . . , cm. Note that we
changed the notation so that the overall number of candi-
dates is m+ 1; this will help streamline the writing.

An election is defined by a candidate set C and a set of
voters V , where each voter submits a ranking of the can-
didates. Then, some decision rule R is applied in order
to decide on the winner. In the specific case of a posi-
tional scoring rule R~α, the rule is described by a vector
~α = (α0, α1, . . . , αm), used as follows: each voter awards αi
to the candidate ranked i-th. Finally, the winning candi-
date is the one with the highest aggregated score. In this
paper we will focus on the Borda scoring rule, in which
~α = (m,m− 1, . . . , 0).

In the Borda (constructive) unweighted coalitional manip-
ulation (Borda-UCM) problem, we are also given as input
an integer k representing the number of manipulators and

4This name was given in [7].

a score profile vector (σ0, σ1, . . . , σm) representing the ag-
gregated scores given so far to each candidate in C by the
non-manipulators. It should then be determined if either (a)
no strategy exists in which p wins, or that (b) there exists
a voting strategy under Borda such that p can win. In this
case, the algorithm should find it.

Note that in case (b), the output is a voting strategy S
which can be represented as a k×(m+1) matrix in which the
entry St,i describes the score given by voter t to candidate
ci, and where each row of S is a permutation of {0, . . . ,m}.
Such a representation is also called a manipulation matrix.
We can relax the requirement that each row of S is a permu-
tation, and replace it by the requirement that each score-type
j, is repeated exactly k times in S. Such a matrix is called
a relaxed manipulation matrix. We can perform this relax-
ation as Davies et al. [8, Theorem 7] show that each relaxed
manipulation matrix can be rearranged to become a valid
manipulation matrix while preserving each candidate’s final
score.

Throughout the paper, when we use the term ‘with high
probability’, we mean an arbitrarily-chosen polynomially-
small failure probability, i.e., success probability of the form
1−m−d where d ≥ 1 is a constant that can be chosen without
affecting the asymptotic running time. ‘Failure’ refers to
the event that the algorithm does not provide the desired
approximation guarantee.

2.2 Reduction to a Pure Min-Max Problem
Since we know what will be the final score of p (non-

manipulator votes are known and each manipulator will give
p the maximum score possible), we can effectively discard p
and treat the problem as a minimization problem on the
final scores of c1, . . . , cm only. In other words, we focus
on finding minS maxc′∈C\{p} s(c

′) = minS maxi=1,...,m s(ci),
where s(c′) is c′’s final score. Thus the output S is actually
a k ×m relaxed manipulation matrix.

Another thing to note is that we can not assume anything
about the values in the initial score profile (σ0, σ1, . . . , σm);
this follows from [8, Lemma 1], where it is shown that in the
context of Borda, for any given non-negative integer vector
(σ0, σ1, . . . , σm), we can define a set of non-manipulators
(along with their preferences) and an additional candidate
cm+1 that will induce an initial score profile (T+σ1, . . . , T+
σm, y) for some values T and y < T . Since such an addi-
tive translation and the addition of a candidate that will
be awarded less than any other candidate have no influence
on the winner (and on the difference between each two can-
didates’ final scores), and since our results are concerned
with an additive approximation, we should assume no prior
limitation on the nature of values in (σ0, σ1, . . . , σm).

3. LOWER BOUND FOR REVERSE
We start by showing that there are cases in which the

reverse algorithm for Borda only gives an Ω(m)-additive
approximation to minimum final score of the highest-scoring
non-preferred candidate.

Proof of Claim 2. We provide an infinite family of cases
where the claim holds.

Let k = 3 and let m = 3t for some integer t. Consider the
case where after the non-manipulators voted, all candidates
(but p) have the same score σi = s for all i. Effectively this

can be normalized to (σ1, . . . , σm) = ~0.

608



By the reverse algorithm, the first manipulator can award
c1, . . . , cm with 0, . . . ,m − 1 respectively, after which the
second manipulator will be obliged to award c1, . . . , cm with
m−1, . . . , 0 respectively. Repeat this process with the rest of
the manipulators, until the final one. It can be verified that
cm will end up with the maximal score of dk/2e(m − 1) =
2(m− 1).

Conversely, as an upper bound for an optimal solution,
consider the following strategy: place all scores to be given
in a descending sequence, that is the sequence 〈m− 1,m−
1,m − 1,m − 2,m − 2,m − 2, . . . , 0, 0, 0〉. Give the first m
scores in the sequence to c1, . . . , cm respectively, the next m
to cm, . . . , c1 respectively, and the last m to c1, . . . , cm re-
spectively. Since every score-type has 3 copies, we have just
described a relaxed manipulation matrix and therefore by
Davies et al. [8, Theorem 7] it can be rearranged to become
a valid manipulation matrix without changing the final score
of each candidate. Now notice that the score given to any
candidate is of the form (m− r) + (m/3 + r−1) + (m/3− r)
for some r ∈ {1, . . . ,m/3}. As this is at most 5m/3 − 2
(when r = 1), the difference is thus m/3 = Ω(m).

4. LINEAR PROGRAMMING
We will begin by providing a “natural” way to formulate

the min-max version of the problem as an Integer Program
(IP). As solving IPs is NP-hard, we will relax it to the equiv-
alent Linear Program (LP). However, such a natural LP will
not be useful in our setting, and we will thus introduce a to-
tally different LP formulation, called Configuration Linear
Programming (C-LP). The number of variables in the C-LP
is exponential in the size of the input. Nevertheless, we show
that our C-LP can be solved in polynomial time.

Let [m] = {1, . . . ,m} and [m]0 = {0, . . . ,m− 1}. We de-
fine the variables xi,j for (i, j) ∈ [m]× [m]0, and the variable
T , with the intent that xi,j will equal the number of times
candidate ci received a score of j, and T will serve as the
upper-bound on each candidate final aggregate score. The
IP can then be stated as follows:

min
~x
T

subject to:

m∑
i=1

xi,j = k ∀j ∈ [m]0 , (1)

m−1∑
j=0

xi,j = k ∀i ∈ [m] , (2)

m−1∑
j=0

j · xi,j ≤ T − σi ∀i ∈ [m] , (3)

xi,j ∈ {0, . . . , k} ∀i ∈ [m], j ∈ [m]0 , (4)

where (1) guarantees that every score was awarded k times,
(2) guarantees that every candidate was given k scores, and
(3) guarantees that every candidate gets at most T points.

It should be noted that when treating the problem as a
min-max problem, we need to take T as a variable that we
wish to minimize (this is done by the objective function).
However, if we consider the original definition in which our
aim is to make the preferred candidate p win, T can be set
to σ0 + km (the final score of the preferred candidate), and
the IP will not have an objective function.

While we can relax this IP into an LP by replacing the set
in the last constraint to be the continuous interval [0, k], it
will not be helpful: for an intuition notice that the sys-
tem is somewhat under-determined with Θ(m) equations
and Θ(m2) variables; it can assign each candidate a simi-
lar mixture of score-types, where the only difference will be
in the average of this mixture for each candidate. Therefore,
a solution would not give us any guidance on how manipu-
lators should vote.

In order to alleviate this we will have to resort to a totally
different approach, in which variables no longer represent
score types, and instead represent the set of scores (config-
uration) that can be awarded to a candidate.

Formally, a configuration C for some candidate ci is a vec-
tor of dimensionm in which Cj represents a number of scores
of type j that i has received, and for which

∑m−1
j=0 Cj = k,

that is, the overall number of scores awarded is k. For a
candidate ci and a bound T , let Ci(T ) be the set of con-
figurations that do not cause the candidate overall score
to surpass T , i.e., the set of configurations C for which∑m−1
j=0 Cj · j ≤ T − σi.
We formulate the configuration LP is as follows:∑

C∈Ci(T )

xi,C ≤ 1 ∀i ∈ [m] , (5)

∑
i,C

C∈Ci(T )

Cjxi,C ≥ k ∀j ∈ [m]0 , (6)

xi,C ≥ 0 ∀i ∈ [m], C ∈ Ci(T ) . (7)

where we wish that the xi,C ’s would serve as indicator vari-
ables indicating whether or not ci was awarded with con-
figuration C, (5) guarantees that every candidate was given
at most 1 configuration and (6) guarantees that every score
was awarded at least k times. The choice of inequalities over
equalities will be explained soon.

Example 1. Consider the case where k = 2, m = 5
and (σ1, . . . , σ5) = (5, 6, 6, 6, 7). We are omitting the non-
manipulator votes that provided ~σ, however recall that there
is a possible non-manipulator voting yielding any ~σ up to
an additive factor and an addition of a candidate. Now
assume T = 10 (this is indeed the optimum). Let us fo-
cus on the last candidate c5. C5(T ) should therefore con-
tain all configurations which award c5 at most T − σ5 =
3 points. Those configurations are (2, 0, 0, 0, 0) (0 points),
(1, 1, 0, 0, 0) (1 point), (0, 2, 0, 0, 0), (1, 0, 1, 0, 0) (2 points),
and (1, 0, 0, 1, 0) (3 points).

When solving the C − LP , only two of her configurations
will get non-zero value: x5,(1,0,0,1,0) u 0.7 and x5,(0,1,1,0,0) u
0.3. We omit the variables corresponding to the rest of the
candidates.

After solving the LP, we will execute a rounding proce-
dure that will transform the fractional LP solution into a
valid solution for the original problem. This procedure can
increase the score of some of the candidates, and hence we
wish to start with the smallest possible T (so that even af-
ter the increase the final score will hopefully be bounded by
σ0 + km).

To find the smallest possible T , we perform a one-sided
binary search on the value of T . For this purpose, for each
possible value of T that we come across during the binary
search, we redefine the LP and then solve the new LP from

609



scratch, and see if it has a valid solution. The reason we
do not add T as a variable in an objective function (instead
of the binary search) is that the number of summands in
Equations (5,6) depends on T .

This formulation has the obvious drawback that the num-
ber of variables is exponential in k. However, following the
approach of [2], if we find a polynomially-computable sepa-
ration oracle we can solve the LP by referring to the LP dual
and using the ellipsoid method. Such an oracle will require
a solution to the following seemingly unrelated problem as
a subroutine: a variant of the classic Knapsack problem.

4.1 k-Multiset Knapsack
Let {1, . . . ,m} be a set of distinct items, where each item

has an associated value vj and a weight wj . We also obtain
a weight upper-bound W and a value lower-bound V . As
opposed to ordinary knapsack, we also obtain an integer k.
We are required to find a multiset S of exactly k items (i.e.,
we can repeat items from the item-set), such that S’s overall
weight is at most W and S’s overall value is greater than V
(or to return that no such multiset exists).

Lemma 3. The k-multiset knapsack can be solved in time
polynomial in k and W (which is pseudo-polynomial due to
the dependence on W ).

Proof. We fill out a table Q[w, `], for w = 0, . . . ,W and
` = 0, . . . , k, in which Q[w, `] is the highest value obtainable
with a size-` multiset of items of aggregate-weight at most
w. Notice that Q can be filled using the following recursion:

Q[w, `] =

{
0 if ` = 0,

maxj vj +Q′(w − wj , `− 1) otherwise,
(8)

where Q′(w, `) = Q[w, `] if it is defined, i.e., w ≥ 0 and
` ≥ 0, and otherwise is −∞.

Therefore Q can be filled-out using dynamic program-
ming. Finally, the entry Q[W,k] contains the highest value
obtainable with overall weight at most W . Therefore, if
Q[W,k] > V , we have found a required multiset; otherwise
such does not exists. The resulting multiset itself can be
recovered using backtracking on the table Q.

4.2 Solving the C-LP
We return to our problem. The choice of inequalities over

equalities is motivated by our use of the LP dual in Theo-
rem 5. However, they have the same effect as equalities, as
shown by the following lemma:

Lemma 4. In a solution to the above C-LP, Equations (5,6)
will actually be equalities.

Proof. Notice that by Equation (6):

km ≤
m−1∑
j=0

m∑
i=1

∑
C∈Ci(T )

Cjxi,C (9)

=

m∑
i=1

∑
C∈Ci(T )

xi,C

m−1∑
j=0

Cj (10)

= k

m∑
i=1

∑
C∈Ci(T )

xi,C (11)

≤ km (12)

where (12) holds by plugging (5) into (11). We therefore get
that

∑m−1
j=0

∑m
i=1

∑
C∈Ci(T ) Cjxi,C = km which forces both

above non-trivial LP inequalities to be equalities.

Theorem 5. Given a fixed value T , the C-LP can be
solved in polynomial time.

Proof. We need to refer to the LP dual for our C-LP in
order to solve it; we briefly repeat some LP duality concepts
here, refer to [19] for complete definitions and discussion.

The dual of a maximization problem is a minimization
problem. In order to define it we can treat our primal pro-
gram as a maximization problem having all coefficients 0 in
its objective function. In the dual there is a variable for
every constraint of the primal, and a constraint for every
variable of the primal. Therefore, we define a variable yi
for each candidate ci and a variable zj for each score-type j
(since the primal has a constraint for each candidate ci and
score-type j). However, since our primal has an exponen-
tial number of variables, the dual will have an exponential
number of constraints. We will show how to address this.

In short, the non-trivial constraints are then obtained by
transposing the constraint-coefficient matrix of the primal,
using the primal objective function coefficients as the right-
hand side of the dual constraints, and using right-hand side
of the primal constraints as the coefficients of the dual ob-
jective function.

The process yields the following dual:

min
~y,~z

m∑
i=1

yi − k
m−1∑
j=0

zj

subject to:

m−1∑
j=0

Cjzj ≤ yi ∀i ∈ [m], C ∈ Ci(T )

yi ≥ 0 ∀i = 1, . . . ,m

zj ≥ 0 ∀j = 1, . . . ,m

As mentioned, the dual has an exponential number of con-
straints. However it is solvable; the ellipsoid method [16] is
a method for solving an LP which iteratively tries to find a
point inside the feasible region described by the constraints.
However, we do not need to provide all the constraints in
advance. Instead, the algorithm can be provided with a
subroutine, called a separation oracle, to which it calls with
a proposed point, and the subroutine then either confirms
that the point is inside the feasible region or that it returns
a violated constraint [12]. The ellipsoid method algorithm
performs a polynomial number of iterations, therefore if the
separation oracle runs in polynomial time as well, the LP is
solved in overall polynomial time. Notice that the polyno-
mial number of iterations performed by the ellipsoid method
implies that the number of constraints that played a part in
finding the optimum (known as active constraints) was poly-
nomial as well. In other words, we could effectively discard
all the constraints but a polynomial number of them.

As discussed, a separation oracle for the dual, given a
proposed solution (~y; ~z), needs to find in polynomial time a
violated constraint, if exists. It remains to show that such
a separation oracle is polynomial-time computable.

Observe that a violated constraint to this program is a pair
i, C for which C ∈ Ci(T ) (and therefore

∑m−1
j=0 Cj ·j ≤ T−σi)

and at the same time
∑m−1
j=0 Cjzj > yi. Fortunately, for a

610



specified i, finding a configuration C that induces a vio-
lated constraint can be seen as finding a k-multiset (since∑m−1
j=0 Cj = k) given by a solution to our knapsack vari-

ant: [m]0 is the item set (over which j ranges), the value
for the item j is zj , while its weight is j. The given value
lower bound is yi, and T − σi is the given upper bound on
the weight. Effectively, we use the possibly-tighter weight
bound min{km, T − σi} instead, as km bounds the overall
weight obtainable with a size-k multiset. As now the weight
bound is polynomial in m and k, the solution to our knap-
sack variant becomes polynomial.

We repeat this knapsack-solving step for each i until we
find a violated constraint, or conclude that no constraint is
violated. Once we have solved the dual using the ellipsoid
method with the separation oracle, we can discard all vari-
ables in the primal that do not correspond to violated con-
straints of the dual, since the inclusion of those constraints
(resp. their corresponding variables) did not have any ef-
fect on the dual optimum (resp. the primal optimum).5 The
primal now contains only a polynomial number of variables
and can be solved directly using the ellipsoid method or any
other known polynomial solvers for LP, such as [15].

5. ALGORITHM
Solve the above mentioned configuration-LP formulation

as described in Section 4. As mentioned, while both con-
straints are inequalities, in any solution they will actually
be equalities. For each candidate ci, observe the variables
xi,C , C ∈ Ci(T ). Since

∑
C∈Ci(T ) xi,C = 1, treat the xi,C ’s

as a distribution over the configurations for i and randomly
choose one according to that distribution. For the time be-
ing, give i this configuration.

While every candidate now has a valid configuration (and
her score does not exceed T ), it is possible that the number
of scores of a certain type is above or below k. Formally, if
the candidate ci received a configuration Ci, let the array
H such that H[j] =

∑m
i=1 C

i
j be the histogram of the scores.

It is then possible that H[j] 6= k. If we would translate the
configuration given to each candidate to the list of the scores
awarded within it, and would write this list as the column of
a matrix, this matrix might not be a relaxed manipulation
matrix. In order to solve this, we need to replace some of
scores in this matrix with others such that the number of
scores of each type will be k. On the other hand, we need
to make sure this process does not add much to the score of
each candidate.

Let t = (i, j) be a tuple representing the event that can-
didate ci received a score of j in its configuration. Place all
such tuples in a single multiset (if j is awarded to i more
than once, repeat (i, j) as needed). Now sort this multiset
according to the j value (break ties between candidates arbi-
trarily) thus creating the event-sequence t0, . . . , tkm−1, i.e.,
the tuples are now indexed by their rank in this sequence.
For each tuple t` = (i, j) having rank ` in the list, change
its score from j to b`/kc. Notice that now every score is
repeated k times. Finally, for each tuple return its score to

5In other words, the dual of the dual without the discarded
constraints is the primal without their corresponding vari-
ables. Another way to explain this is that this is exactly
the complementary slackness condition of the Karush-Kuhn-
Tucker conditions [17], a necessary condition for obtaining
the optimum.

Algorithm 1: Approximation algorithm.

1 Solve the C-LP as described in Section 4
2 foreach i do define distribution q s.t. q(C) = xi,C for

all C ∈ Ci(T ) and randomly choose Ci ∼ q.
3 L← 〈〉 /* L is the empty list */

4 foreach i ∈ [m], j ∈ [m]0 do
5 Append Cij copies of (i, j) to L
6 Sort L in an ascending order by score(·) /* score(t) = j

if t = (i, j) */

7 Re-index L such that L = 〈t0, . . . , tkm−1〉
8 for ` = 0, . . . , km− 1 do
9 Let t` = (i, j)

10 t` ← (i, b`/kc)
11 Assign the score b`/kc to ci
12 return the resulting relaxed manipulation matrix

its candidate, such that every candidate now obtained a new
configuration. The process is summarized as Algorithm 1.

Lemma 6. Let C ∈ {C1, . . . , Cm} be a configuration ob-
tained for some candidate by the rounding process, and let C′

be its corrected version given by the process described above.
Then there exists a constant d such that with arbitrary-chosen
polynomially-small failure probability,

m−1∑
j=0

jC′j ≤
m−1∑
j=0

jCj + d · k
√
m lnm .

.

Proof. Let H be the histogram of the original config-
urations C1, . . . , Cm, and let the array G be the array of
histogram partial sums, i.e., G[j] =

∑j
j′=0H[j′]. In a simi-

lar manner, define Di[j] =
∑j
j′=0 C

i
j′ to be the partial sums

array w.r.t. each candidate ci. We will show that with high
probability, G[j] ≤ (j + 1)k + dk

√
m lnm.

Fix a specific j. Notice that

E[G[j]] =

j∑
j′=0

E[H[j′]] =

j∑
j′=0

∑
i,C

C∈Ci(T )

Cj′xi,C = (j + 1)k

according to the LP constraints, and thatG[j] =
∑m
i=1D

i[j],
that is, G[j] is a random variable which is the sum of the
independent random variables Di[j] for i = 1, . . . ,m. In ad-
dition, for every candidate ci, it holds that Di[j] ∈ [0, k], as
a configuration contains at most k scores. Therefore, using
the generalized Hoeffding inequality [14, Theorem 2]:

Pr [G[j]− E[G[j]] ≥ εm] ≤ exp

(
− 2ε2m2∑m

i=1 k
2

)
= exp

(
−2ε2m

k2

)
.

Setting ε = d′k
√

lnm/
√
m, for some arbitrary constant d′,

we get that Pr[G[j]− E[G[j]] ≥ d′k
√
m lnm] ≤ 1/md′ , that

is, the probability that we deviate from E[G[j]] by more

than Õ(k
√
m) can be made arbitrarily polynomially small.

Using the union bound, the same can be made to hold for
all j = 0, . . . ,m− 1 simultaneously.

Now observe a tuple t` = (i, j′) before being possibly cor-
rected by the algorithm. Since its rank ` in the sorted se-
quence is at most the number of scores whose type is at

611



most j′, which is by definition G[j′], we get that ` ≤ G[j′] ≤
(j′ + 1)k + d′k

√
m lnm, where the second inequality holds

with high probability. Therefore by the algorithm chang-
ing the score j′ to b`/kc, the score increases by at most

b`/kc − j′ ≤ (j′ + 1) + d′
√
m lnm− j′ ≤ d′

√
m lnm+ 1.

Now observe some candidate ci with a given configura-
tion Ci corrected to become a configuration C′ by the al-
gorithm. Since at worst case, all of ci’s k scores where af-
fected as such, her overall score has increased by at most
O(k
√
m logm).

Corollary 7. The above algorithm provides an additive
Õ(k
√
m) approximation with high probability. By repeat-

ing the randomized rounding procedure a linear number of
times, the failure probability becomes exponentially-small.
The overall running time is polynomial.

Proof. Let T ∗ be the optimal value for the original prob-
lem, and let TCLP be the best bound obtainable via the above
CLP combined with the binary search on T . Notice that
TCLP ≤ T ∗, as the optimal solution is also a valid solution for
the CLP. Now observe the highest scoring candidate in the
CLP. When the algorithm terminates, we get that with high-
probability her score is TCLP + Õ(k

√
m) ≤ T ∗+ Õ(k

√
m). If

we repeat the randomized rounding procedure a linear num-
ber of times and pick the iteration yielding the minimum
addition to TCLP, the probability of not getting a Õ(k

√
m)-

approximation becomes exponentially-small.
As the additional score given by the algorithm to any other

candidate is also Õ(k
√
m), the bound T ∗+Õ(k

√
m) holds for

all candidates. We conclude that this is indeed an Õ(k
√
m)

additive approximation.
As discussed, solving the C-LP is done in polynomial

time (by the polynomial number of iterations of the ellip-
soid method and the polynomial runtime of the k-multiset
knapsack separation oracle). The rounding is dominated by
going over a polynomial number of non-zero variables of the
C-LP and is therefore polynomial as well. It is repeated a
linear number fo times in order to provide an exponentially-
small failure probability.

5.1 Implementation
We implemented our algorithm and uploaded the code to

a public repository6. The main subroutine is solving the
LP dual we have defined. However, the dependence on an
LP solver using the ellipsoid method with a separation or-
acle proved difficult as to the best of our knowledge there
is no library which enables solving an LP this way. Instead
we simulated this by using a general LP-solving library [1]
and running the separation oracle externally as described in
Algorithm 2.

Our practical running time is dominated by solving the
C-LP. Therefore, we can perform the randomized part of
rounding process several times, and pick the best one, while
incurring only a negligible overhead to the runtime.

6. EXPERIMENTS
We have run experiments on sets of values for n, k and

m. As mentioned, our algorithm is theoretically competitive
when k = o(

√
m/ logm). We have wished to verify this also

in an empirical setting, and we have thus chosen k ≈
√
m

6https://github.com/okeller/BordaManipulation

Algorithm 2: Simulating the ellipsoid method with a
separation oracle.

Input: A linear program P = (f, S) with an objective
function f and a separation oracle S (instead of
an explicit list of constraits)

1 Let R← ∅ /* R will be a list of effective

constraints */

2 Let P ′ ← (f,R) /* P ′ is P without any

constraints */

3 ~x← LP-solve(P ′)
4 while S(~x) returns a violated constraint r do
5 R← R ∪ {r}
6 P ′ ← (f,R)
7 ~x← LP-solve(P ′)

8 return ~x

or smaller, as these are the values for which our algorithm
is known to be theoretically superior to reverse. Lower k
values are also the cases which are more difficult to Aver-
age Fit heuristic of [8]. We have chosen n = 2k; for each
n, k,m combination, we have run 8 experiments in which we
have drawn the non-manipulator votes from a uniform dis-
tribution. We have compared our results to those obtained
by Average Fit, that was shown empirically to outperform
reverse [8], and to the fractional solution, TCLP. The re-
sults are summarized in Figure 1.

As can be seen, our algorithm performs well in practice.
In the vast majority of the cases, both the C-LP and Aver-
age Fit were known to be identical to the optimal solution,
as depicted in Figure 1a: these are the instances in which
the C-LP solution did not increase when performing the LP
rounding. Therefore, in those cases we know what is the real
optimal solution, as TCLP (resp. our final algorithm result)
provides a lower (resp. an upper) bound for it, and both are
equal. Thus our formulation in many times provides a very
efficient method for verifying whether our algorithm (or any
other algorithm) finds an optimal solution.

In all other cases, i.e., where the C-LP solution increased
when performing the LP rounding, C-LP either beats or
equals Average Fit, as depicted in Figure 1b. For instance,
consider our example from before, this time with p: k = 2,
m = 5 and (σ0, . . . , σ5) = (0, 5, 6, 6, 6, 7). Obviously both
methods will award p with 5 + 5 = 10. However in ours
the top score of a candidate who is not p will be 10, and in
Average Fit it is 12. Therefore, the choice of algorithm
determines if p wins or not by a difference of 2.

7. CONCLUSIONS
We have presented an Õ(k

√
m)-additive approximation to

the score of the highest-scoring non-preferred candidate. It
enables us to find a winning strategy for p in cases where
other methods would not necessarily have found one. Our
method employs new techniques based on configuration lin-
ear programs. There are several interesting directions for
future work, which vary from the concrete to the general:

1. Understand in which instances different manipulation
strategies outperform others.

2. Find algorithms that can guarantee victory even if the
margin is smaller, or prove NP-hardness even if there
is a solution with margin

√
m.

612



(a) Number of cases for various value of m and k (out of 8 exper-
iments carried out for each m, k), where our algorithm provided
results equal to the fractional solution TCLP (and therefore, to
the optimum T ∗).

(b) Number of cases for various value of m and k (out of 8 ex-
periments carried out for each m, k), where the C-LP provided
strictly better results compared to Average Fit.

Figure 1: Experimental results.

3. Apply a C-LP to other voting methods. The appli-
cation to some scoring rules seems like an easy first
step.

4. Apply a C-LP to other problems in computational so-
cial choice, such as fair division of multiple indivisible
goods.

Acknowledgments
We thank Sarit Kraus and Ariel Procaccia for insightful dis-
cussions.

This work was supported by the Israel Science Founda-
tion, under Grant No. 1488/14 and Grant No. 1394/16.

REFERENCES
[1] M. S. Andersen, J. Dahl, and L. Vandenberghe.

CVXOPT: A Python package for convex optimization,
version 1.1.9. cvxopt.org, 2016.

[2] N. Bansal and M. Sviridenko. The Santa Claus
problem. In Proceedings of the 38th Annual ACM
Symposium on Theory of Computing, pages 31–40,
2006.

[3] J. J. Bartholdi III, C. A. Tovey, and M. A. Trick. The
computational difficulty of manipulating an election.
Social Choice and Welfare, 6(3):227–241, 1989.

[4] N. Betzler, R. Niedermeier, and G. J. Woeginger.
Unweighted coalitional manipulation under the Borda
rule is NP-hard. In IJCAI 2011, Proceedings of the
22nd International Joint Conference on Artificial
Intelligence, pages 55–60, 2011.

[5] E. Brelsford, P. Faliszewski, E. Hemaspaandra,
H. Schnoor, and I. Schnoor. Approximability of
manipulating elections. In Proceedings of the
Twenty-Third AAAI Conference on Artificial
Intelligence, pages 44–49, 2008.

[6] V. Conitzer, T. Sandholm, and J. Lang. When are
elections with few candidates hard to manipulate? J.
ACM, 54(3):14, 2007.

[7] J. Davies, G. Katsirelos, N. Narodytska, and T. Walsh.
Complexity of and algorithms for Borda manipulation.
In Proceedings of the Twenty-Fifth AAAI Conference
on Artificial Intelligence, AAAI, 2011.

[8] J. Davies, G. Katsirelos, N. Narodytska, T. Walsh,
and L. Xia. Complexity of and algorithms for the
manipulation of Borda, Nanson’s and Baldwin’s voting
rules. Artificial Intelligence, 217:20–42, 2014.

[9] E. Ephrati and J. S. Rosenschein. Multi-agent
planning as a dynamic search for social consensus. In
Proceedings of the 13th International Joint Conference
on Artificial Intelligence, pages 423–431, 1993.

[10] P. Faliszewski and A. D. Procaccia. Ai’s war on
manipulation: Are we winning? AI Magazine,
31(4):53–64, 2010.

[11] A. Gibbard. Manipulation of voting schemes: a
general result. Econometrica: journal of the
Econometric Society, pages 587–601, 1973.

[12] M. Grötschel, L. Lovász, and A. Schrijver. The
ellipsoid method and its consequences in combinatorial
optimization. Combinatorica, 1(2):169–197, 1981.

613



[13] E. Hemaspaandra and L. A. Hemaspaandra.
Dichotomy for voting systems. J. Comput. Syst. Sci.,
73(1):73–83, 2007.

[14] W. Hoeffding. Probability inequalities for sums of
bounded random variables. Journal of the American
statistical association, 58(301):13–30, 1963.

[15] N. Karmarkar. A new polynomial-time algorithm for
linear programming. Combinatorica, 4(4):373–396,
1984.

[16] L. G. Khachiyan. Polynomial algorithms in linear
programming. USSR Computational Mathematics and
Mathematical Physics, 20(1):53–72, 1980.

[17] H. Kuhn and A. Tucker. Nonlinear programming. In
Proceedings of 2nd Berkeley Symposium. Berkeley:
University of California Press, pages 481–492, 1951.

[18] M. A. Satterthwaite. Strategy-proofness and Arrow’s
conditions: Existence and correspondence theorems
for voting procedures and social welfare functions.
Journal of economic theory, 10(2):187–217, 1975.

[19] A. Schrijver. Theory of linear and integer
programming. John Wiley & Sons, 1998.

[20] S. Sina, N. Hazon, A. Hassidim, and S. Kraus.
Adapting the social network to affect elections. In
Proceedings of the 2015 International Conference on
Autonomous Agents and Multiagent Systems, pages
705–713. International Foundation for Autonomous
Agents and Multiagent Systems, 2015.

[21] O. Svensson. Santa Claus schedules jobs on unrelated
machines. SIAM J. Comput., 41(5):1318–1341, 2012.

[22] L. Xia, M. Zuckerman, A. D. Procaccia, V. Conitzer,
and J. S. Rosenschein. Complexity of unweighted
coalitional manipulation under some common voting
rules. In IJCAI 2009, Proceedings of the 21st
International Joint Conference on Artificial
Intelligence, pages 348–353, 2009.

[23] M. Zuckerman, A. D. Procaccia, and J. S.
Rosenschein. Algorithms for the coalitional
manipulation problem. Artificial Intelligence,
173(2):392–412, 2009.

614




