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ABSTRACT
In order to model maliciously resizing election districts (a.k.a. ger-
rymandering), Bartholdi et al. [2] introduced control by partition
of voters, which means that an election chair can influence the out-
come of an election to her advantage by partitioning the voters such
that two first-round subelections are created whose winners will
take part in a final run-off. Control by partition of voter groups, due
to Erdélyi et al. [10], refers to the same model with the additional
constraint that a partition of voters into groups is given beforehand,
which the chair’s control action must respect: either all voters of a
group take part in one of the two first-round subelections, or none
of them does. Maushagen and Rothe [25] recently classified some
problems of control by partition of either voters or candidates for
veto elections in terms of their computational complexity, leaving
some other problems open. We solve all these remaining cases. In
addition, we generalize a result of Erdélyi et al. [10] for construc-
tive control by partition of voter groups from plurality elections to
all nontrivial pure scoring protocols by showing NP-hardness, and
we also obtain the analogous result for its destructive variant.

Keywords
Computational social choice; electoral control; scoring rules; veto

1. INTRODUCTION
During the last decade, voting has been studied intensively in

computational social choice. Its applications range from political
elections over recommender systems (designed by Ghosh et al. [17]
for selecting movies according to a number of criteria) and multi-
agent planning (Ephrati and Rosenschein [8]) to webpage ranking
algorithms (Dwork et al. [7]). In particular, it has been suggested to
use computational complexity as a barrier to tampering with elec-
tion outcomes via manipulation, control, and bribery. An overview
of the large body of related literature is given in the recent book
chapters by Conitzer and Walsh [6], Faliszewski and Rothe [15],
and Baumeister and Rothe [3].

We here consider control scenarios in elections only, focusing
in the first part of the paper on various types of control by par-
tition of voters for veto elections. Bartholdi et al. [2] introduced
this control scenario in order to model maliciously resizing voting
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districts (a.k.a. gerrymandering)—though in a rather simplified set-
ting: Only one district will be divided into two.1

In the second part of the paper, we turn to an interesting new
model proposed by Erdélyi et al. [10], which can be considered
more natural to model gerrymandering:2 control by partition of
voter groups, which we will study for nontrivial pure scoring pro-
tocols.

1.1 Related Work
Control for plurality, Condorcet, and approval voting has first

been studied by Bartholdi et al. [2] in the constructive variant and
by Hemaspaandra et al. [19] in the destructive variant. Later on,
control results have been obtained by Faliszewski et al. [14] for
Copeland, by Erdélyi et al. [9] for Bucklin and fallback voting, by
Parkes and Xia [27] for Schulze voting, by Erdélyi et al. [11] and
Menton [26] for certain variants of approval and range voting. A
dichotomy result for constructive control by adding voters is due
to Hemaspaandra et al. [22]. Faliszewski et al. [13] introduced and
studied multimode control attacks on elections that combine vari-
ous standard control scenarios. A study of online voter and can-
didate control in sequential elections is due to Hemaspaandra et
al. [21, 20]. More results on control (and bribery) of elections can
be found in recent book chapters [15, 3].

The veto rule has been studied, for example, by Conitzer et al. [5]
with respect to coalitional weighted manipulation in terms of clas-
sical complexity, by Walsh [28] with respect to the phase transition
when manipulating veto empirically (i.e., in terms of typical-case
complexity), by Faliszewski et al. [12] with respect to bribery, and
by Lin [24] and Chen et al. [4] with respect to control by adding
or deleting candidates or voters in terms of both classical and pa-
rameterized complexity. Recently, Maushagen and Rothe [25] also
obtained results on control by partition of voters or candidates for
veto elections in terms of classical complexity, see Table 1 for an
overview.

1.2 Our Contribution
In Section 3, we settle all cases of control by partition of either

voters or candidates for veto elections that have been left open by
Maushagen and Rothe [25]. In particular, this refers to control by
partition of voters in the ties-promote model and to certain cases of
the unique-winner versus the nonunique-winner model for control
by partition of candidates (see Section 2.2 for definitions). Table 1

1Note, however, that the NP-hardness lower bounds that we will
show in this simple setting will be inherited by more involved mod-
els of gerrymandering such as those proposed by Erdélyi et al. [10].
2For other natural models of gerrymandering, we refer to the re-
cent work of Bachrach et al. [1] and Lewenberg and Lev [23] who
analyze this problem under geographic constraints.
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unique-winner model Rd Rd Rd R♦ Rd Rd Rd R\ Vd Vd R♠ R‡

nonunique-winner model Rd Rd Rd Rd Rd Rd R♣ Rd Vd Vd R♥ R†

Table 1: Overview of complexity results for control by partition in veto elections. Control types are denoted as is standard [3, 15];
they are defined in Section 2.2. “R” means that veto is resistant to this type of control and “V” means it is vulnerable to this type.
Results in boldface are established in this paper: Thm. 1 (marked by ♠), Thm. 2 (♥), Thm. 3 (♣), Thm. 4 (♦), Cor. 1 (†), Cor. 2 (‡),
and Cor. 3 (\). The other results are due to Maushagen and Rothe [25] (marked by d). (Note that DCRPC-TE = DCPC-TE in the
unique-winner model and DCRPC-TE = DCPC-TE and DCRPC-TP = DCPC-TP in the nonunique-winner model [18, Thm. 8].)

gives an overview of results on the computational complexity of
control by partition for veto elections.

In Section 4, we turn to the above-mentioned interesting model
of control by partition of voter groups recently introduced by Erdé-
lyi et al. [10]. Our main findings here are that their result for plural-
ity in the constructive case and in the unique-winner model can be
extended to the class of all nontrivial pure scoring protocols in both
the constructive and the destructive case and in both the unique-
winner and the nonunique-winner model.

2. PRELIMINARIES
While we assume readers to be familiar with the basic notions

of computational complexity (such as the complexity classes P and
NP and the notions of NP-hardness and NP-completeness with re-
spect to the polynomial-time many-one reducibility), we present
the needed background on social choice theory in Section 2.1 and
define the problems of interest, which capture the scenarios of par-
tition of voters and voter groups and of partition of candidates, in
Section 2.2 below.

2.1 Elections and Voting Systems
An election is described by a pair (C,V ), where C is a set of

candidates and V a list of votes specifying the voters’ preferences
over the candidates. Specifically, each vote is a linear order (a strict
ranking) over C, where the left-most candidate is the most preferred
one and the rightmost candidate is the least preferred one. For ex-
ample, if there is a vote of the form c d b a, that means that this
voter prefers c to d, d to b, and b to a.

We here consider only scoring protocols (also referred to as
scoring rules), an important class of voting systems. A scor-
ing protocol for m candidates is specified by a scoring vector
σ = (σ1,σ2, . . . ,σm) with σ1 ≥ σ2 ≥ ·· · ≥ σm, where each σi is
a nonnegative integer specifying the number of points a candidate
receives from being ranked in a vote’s ith position. Summing up all
points a candidate c ∈C receives from all votes in V , we obtain c’s
score in (C,V ), denoted by score(C,V )(c). If the election (C,V ) is
clear from context, we drop the subscript and simply write score(c).
Candidates with the highest score win the election.

Prominent scoring protocols include plurality with scoring vec-
tor σ = (1,0, . . . ,0), veto (a.k.a. antiplurality) with scoring vector
σ = (1, . . . ,1,0), k-veto (a.k.a. (m− k)-approval when there are
m ≥ k candidates) with scoring vector σ = (1, . . . ,1,0, . . . ,0︸ ︷︷ ︸

k

), and

the Borda Count with scoring vector σ = (m−1,m−2, . . . ,0). We
will focus on veto elections in Section 3 and will deal with the class
of nontrivial, pure scoring protocols in Section 4. A scoring proto-
col is said to be pure if we can obtain the scoring vector for m candi-

dates from the scoring vector for m−1 candidates for each m≥ 2 by
inserting one additional score value at any position subject to satis-
fying the constraint σ1 ≥ σ2 ≥ ·· · ≥ σm. This allows us to let, e.g.,
veto refer to the class {(0),(1,0),(1,1,0),(1,1,1,0), . . .} of pure
scoring protocols for any number of candidates. A scoring proto-
col σ = (σ1,σ2, . . . ,σm) is said to be trivial if σ1 = σ2 = · · ·= σm,
i.e., a nontrivial scoring protocal satisfies σ1 > σm. For example,
if we were to consider, say, k-veto for k or fewer candidates, we
would obtain the trivial scoring vector (0, . . . ,0).

2.2 Partition of Voters and Candidates
The following problem has been defined by Erdélyi et al. [10],

for each given voting system E , as a generalization of the origi-
nal problem of constructive control by partition of voters due to
Bartholdi et al. [2].

E -CONSTRUCTIVE-CONTROL-BY-PARTITION-OF-VOTER-GROUPS

Given: An election (C,V ), a partition of V into any number of
groups G1,G2, . . . ,Gk , and a distinguished candidate p ∈C.

Question: Is there a partition of V into V1 and V2 such that each group
Gi is completely contained either in V1 or in V2 and p is the
unique winner of the two-stage election where the winners of
subelection (C,V1) surviving the tie-handling rule compete
against the winners of subelection (C,V2) surviving the tie-
handling rule (with voting system E being used in both first-
stage subelections and in the final run-off)?

The following two tie-handling models have been proposed by
Hemaspaandra et al. [19]: In the ties-eliminate (TE) model, winners
of the two first-stage subelections (C,V1) and (C,V2) proceed to the
final run-off only when they are unique, whereas in the ties-promote
(TP) model, all winners of these two first-stage subelections pro-
ceed to the final run-off. Note that in the run-off subelections, the
votes from V are restricted to the candidates participating in these
run-offs. Depending on which model is applied, we abbreviate the
above problem by either E -CCPVG-TE or E -CCPVG-TP. These
problems will be considered in Section 4 for pure scoring proto-
cols, while the problems defined below will be studied in Section 3
for veto.

The special case where each group Gi is a singleton yields the
original problem E -CONSTRUCTIVE-CONTROL-BY-PARTITION-
OF-VOTERS as introduced by Bartholdi et al. [2] (again, depending
on the tie-handling model used, abbreviated by either E -CCPV-TE
or E -CCPV-TP).

In the destructive variants of the four problems defined above,
instead of asking whether distinguished candidate p can be made
the sole winner, we ask whether p can be precluded from being
a sole winner, and we denote these problems by E -DCPVG-TE,
E -DCPVG-TP, E -DCPV-TE, and E -DCPV-TP.
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Constructive and destructive control by run-off partition of can-
didates is defined similarly to CCPV-TE and DCPV-TE, except
that the two first-round subelections result from a partition of the
candidate set C into C1 and C2, where the votes in V are restricted
to the corresponding subset of candidates, and the winners of both
subelections move forward (according to the tie-handling model
used) to the final-run-off. In our notation scheme, this gives the
problems CCRPC-TE, CCRPC-TP, DCRPC-TE, and DCRPC-
TP.

There is also another variant, dubbed control by partition of
candidates (without “run-off”), where the winner(s) of the first
first-round subelection will face all candidates from the second
first-round subelection (and not only its winner(s)), giving rise to
four additional problems: CCPC-TE, CCPC-TP, DCPC-TE, and
DCPC-TP.3

In addition to the unique-winner model that was used in the def-
inition of CCPVG (and thus, implicitly, in that of the other prob-
lems as well) by requiring p to be a sole winner of the final run-off,
we will also consider the nonunique-winner model where the ques-
tion is either whether p can be made a winner (possibly among
several winners) by the control action at hand in its constructive
variant or whether p can be precluded from being a winner by the
control action at hand in its destructive variant. In Section 3 we
will consider both winner models. In Section 4, while we will fo-
cus on the unique-winner model that Hemaspaandra et al. [19] use
in their definition of control by partition of voter groups, we will
also briefly discuss the nonunique-winner model.

Let C be a control type, such as constructive control by parti-
tion of voters in model TP. We say an election system E (e.g., a
scoring protocol σ ) is immune to C if it is impossible for the chair
to achieve her control goal via exerting control of type C (e.g., for
the constructive case in the unique-winner model, to turn the des-
ignated candidate c into a unique winner via the control action at
hand; or, for the destructive case in the nonunique-winner model,
to ensure via the control action that c will not be a winner). Oth-
erwise, we say E is susceptible to C. For example, it is easy to
see that veto is susceptible to every type of control defined above
(in both winner models); due to space constraints, we omit giving
detailed examples to verify these claims.

If an election system E is susceptible to some control type C,
one commonly is interested in the computational complexity of the
corresponding control problem: E is said to be vulnerable to C if
the control problem corresponding to C can be solved in polynomial
time, and E is said to be resistant to C if C is NP-hard.

3. CONTROL BY PARTITION WHEN TIES
PROMOTE IN VETO

We now turn to the cases of control by partition in veto elections
that Maushagen and Rothe [25] left open. All these cases concern
the ties-promote rule, and we will show that the related problems
each are NP-complete, using (essentially4) just one construction.
This construction will be provided in Section 3.1, we will be con-
cerned with the open questions regarding control by partition of
voters in Section 3.2, while we handle the open cases of control by
partition of candidates in Section 3.3.
3Hemaspaandra et al. [18, Thm. 8 on p. 386] have shown that for
all voting systems, DCRPC-TP = DCPC-TP in the nonunique-
winner model and DCRPC-TE = DCPC-TE in both the unique-
winner and the nonunique-winner model; the difference between
these two winner models is explained in the next paragraph.
4Specifically, except for the proof of Theorem 4 that uses a differ-
ent construction, and up to some minor modifications in some of
the other proofs in this section.

3.1 The Construction
To prove NP-hardness of the problems in Sections 3.2 and 3.3,

we reduce from the problem ONE-IN-THREE-POSITIVE-3SAT,
which is a variant of the well-known NP-complete problem ONE-
IN-THREE-3SAT where the input is a boolean formula whose
clauses have only unnegated variables [16, p. 259]:

ONE-IN-THREE-POSITIVE-3SAT

Given: A set X of boolean variables and a set S of clauses over X ,
each with exactly three unnegated literals.

Question: Is there a truth assignment to the variables in X satisfying
that in each clause of S exactly one literal is set to true?

Given an instance (X ,S) of ONE-IN-THREE-POSITIVE-3SAT,
where X = {x1, . . . ,xm} and S = {S1, . . . ,Sn}, n > 1, with S j ⊆ X
and |S j|= 3 for each j, 1≤ j≤ n, construct an election (C,V ) with
candidate set C = {c,w}∪X and the following votes in V :5

• For each i, 1 ≤ i ≤ m, there are 3n2 + 1+ i(2n2 + 4n) votes
of the form w c · · · xi.

• There are n−1 votes of the form w · · · c.

• For each j, 1 ≤ j ≤ n, and for each xi ∈ S j, we have
c · · · w S j \{xi} (representing three votes for each j as noted
in Footnote 5).

• For each j, 1 ≤ j ≤ n, there are 2n votes of the form
w · · · c S j.

In total, we have m+2 candidates and

2n2 +4n−1+
m

∑
i=1

(3n2 +1+ i(2n2 +4n))

= 2n2 +4n−1+m((m+4)n2 +2(m+1)n+1)

votes. As we will use the same reduction for several proofs, there
will be more voters than actually needed in some proofs. It is obvi-
ous that this transformation can be computed in polynomial time.

3.2 Partition of Voters
We now solve the two cases of partition of voters with the ties-

promote rule for veto that Maushagen and Rothe [25] left open.

THEOREM 1. In the unique-winner model, veto-CCPV-TP is
NP-complete.

Proof. Membership of veto-CCPV-TP in NP is easy to see.
For proving NP-hardness, we reduce from ONE-IN-THREE-
POSITIVE-3SAT by using the construction in Section 3.1 that
transforms a given ONE-IN-THREE-POSITIVE-3SAT instance
(X ,S) with X = {x1, . . . ,xm} and S = {S1, . . . ,Sn}, where n > 1,
S j ⊆ X , and |S j| = 3, 1 ≤ j ≤ n, into an election (C,V ). Let c be
the distinguished candidate.

We will now show that (X ,S) is in ONE-IN-THREE-POSITIVE-
3SAT if and only if (C,V,c) is in veto-CCPV-TP.

5The dots in these votes represent all remaining candidates in an
arbitrary, fixed order (e.g., in lexicographic order). Furthermore,
“c · · · w S j \{xi} for each xi ∈ S j” represents three votes: For exam-
ple, if S3 = {x1,x4,x6}, it stands for c x1 x2 x3 x5 x7 · · · xn w x4 x6,
c x2 x3 x4 x5 x7 · · · xn w x1 x6, and c x2 x3 x5 x6 x7 · · · xn w x1 x4.
On the other hand, whenever a subset S j of the candidates is
given in w · · · c S j, this represents just one vote: For example,
if S3 = {x1,x4,x6}, it stands for w · · · c x1 x4 x6.
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From left to right, let (X ,S) be a yes-instance of ONE-IN-
THREE-POSITIVE-3SAT. Then there is a subset U ⊆ X such that
for each clause S j we have |U ∩S j|= 1. Partition the voters into V1
and V2, where V1 contains exactly one vote of the form w c · · · xi
for each candidate xi ∈ X \U and V2 contains all remaining votes.
In subelection (C,V1), none of the candidates c, w, and xi ∈U is
vetoed and thus they all have the maximum score, whereas all can-
didates xi ∈ X \U score exactly one point fewer. Therefore, candi-
dates c, w, and all xi ∈U proceed to the final run-off from this sub-
election. In the other subelection, (C,V2), each candidate except w
is vetoed at least once, so w moves forward to the run-off alone.
Thus (C′,V ′) is the run-off election with V ′ being V restricted to
the candidates in C′ = {c,w}∪U .

In the run-off, candidate w is vetoed in each vote in V ′ that results
from a vote of the form c · · · w S j \{xi}; these are n vetoes in total.
However, c is vetoed only by the n−1 votes in V ′ that result from
votes of the form w · · · c.6 Each candidate xi, on the other hand,
gets so many vetoes (namely, at least 3n2 + 1+ i(2n2 + 4n)) from
the votes in V ′ that result from votes of the form w c · · · xi that
there is no need to discuss them in detail. It follows that, having the
fewest vetoes, c alone scores the most points in the run-off election
and thus is the unique winner, i.e., (C,V,c) is in veto-CCPV-TP in
the unique-winner model.

From right to left, let (X ,S) be a no-instance of ONE-IN-THREE-
POSITIVE-3SAT. We have to show that (C,V,c) is a no-instance of
veto-CCPV-TP as well. Since w is vetoed by no voter in election
(C,V ), w will always (regardless of which voter partition is cho-
sen) be a winner of either first-round subelection and will move
to the final run-off. Whoever joins w in the final run-off, w will
prevail as a run-off winner (in more detail, one can argue along
the lines of the proof of Theorem 3 when (X ,S) is a no-instance of
ONE-IN-THREE-POSITIVE-3SAT). This implies that c cannot win
alone, i.e., (C,V,c) is not in veto-CCPV-TP in the unique-winner
model. q

As corollary to the proof of Theorem 1, we obtain the following
by changing the distinguished candidate in this proof from c to w.

COROLLARY 1. In the nonunique-winner model, veto-DCPV-
TP is NP-complete.

By a slight modification in the construction from Section 3.1, we
can prove the following result.

THEOREM 2. In the nonunique-winner model, veto-CCPV-TP
is NP-complete.

Proof. NP membership again is clear. For proving NP-hardness,
use the construction from Section 3.1 that maps a given ONE-IN-
THREE-POSITIVE-3SAT instance (X ,S) to the election (C,V ), ex-
cept that now we have n instead of n−1 votes of the form w · · · c.
Again, let c be the distinguished candidate.

For proving the left-to-right direction of the equivalence (X ,S)∈
ONE-IN-THREE-POSITIVE-3SAT ⇐⇒ (C,V,c) ∈ veto-CCPV-
TP, we again have that c, w and all candidates from U ⊆ X with
|U ∩S j|= 1 for each clause S j take part in the final run-off. How-
ever, c and w now have the same number n of vetoes, so they both
are winners.

For proving the right-to-left direction of this equivalence, note
that the additional veto for c ensures that w now is the only win-
ner of the run-off election, no matter how the voters are parti-
tioned. q

6In the 2n2 votes in V ′ that result from votes of the form w · · · c S j,
c always takes the second-to-last position and so only narrowly
evades being vetoed.

Again, as a corollary to the proof of Theorem 2, we obtain the
following by changing the distinguished candidate in this proof
from c to w.

COROLLARY 2. In the unique-winner model, veto-DCPV-TP
is NP-complete.

3.3 Partition of Candidates
Maushagen and Rothe [25] stated without proof that veto-

CCRPC-TP is NP-complete in the unique-winner model, noting
that the omitted proof uses a suitable modification of their proof
that veto-CCRPC-TE is NP-complete. Using the construction
from Section 3.1, which builds on this latter proof, we provide
the missing result for veto-CCRPC-TP in the nonunique-winner
model.

THEOREM 3. In the nonunique-winner model, veto-CCRPC-
TP is NP-complete.

Proof. Membership of veto-CCRPC-TP in NP is obvious.
To prove its NP-hardness, we use the construction from Sec-
tion 3.1 that maps a given ONE-IN-THREE-POSITIVE-3SAT in-
stance (X ,S) to the election (C,V ) stated there, with distinguished
candidate c.

We claim that (X ,S) is in ONE-IN-THREE-POSITIVE-3SAT if
and only if (C,V,c) is in veto-CCRPC-TP.

From left to right, let (X ,S) be a yes-instance of ONE-IN-
THREE-POSITIVE-3SAT. Then there is a subset U ⊆ X such that
for each clause S j we have |U ∩ S j| = 1. Partition the candidates
into C1 = {c,w}∪U and C2 = C \C1. As in the proof of Theo-
rem 1,7 it follows that c alone wins in subelection (C1,V ′) with V ′

being V restricted to the candidates in C1.
The unique winner of the other subelection, (C2,V ), is the can-

didate from X \U with smallest subscript, say xi, because this can-
didate has at most 3n2 + 1+ i(2n2 + 4n)+ 3n+ 2n2 vetoes while
every other candidate in C2 has at least 3n2 +1+(i+1)(2n2 +4n)
vetoes, i.e., at least n vetoes more.

The final run-off, therefore, is ({c,xi},V ′′) with V ′′ being V re-
stricted to {c,xi}. Candidate c can get at most 2n2 + n− 1 vetoes
from the second and fourth voter groups, which is smaller than the
number of vetoes xi must get from the first and third voter groups.
It follows that c alone wins the run-off. Thus (C,V,c) is a yes-
instance of veto-CCRPC-TP (even in the unique-winner model).

From right to left, assuming that (X ,S) is a no-instance of ONE-
IN-THREE-POSITIVE-3SAT, we will now show that for each par-
tition of the candidates, c is not a winner of the final run-off. To
this end, we consider all possible candidate partitions below.
Case 1: Candidates c and w belong to distinct first-round subelec-
tions. Since c and w take the first two positions in the first voter
group, which outnumbers the other three voter groups by far, c and
w win alone their subelections and proceed to the final run-off. In
direct comparison between them, w precedes c in all but the third
voter groups and thus wins, while c is not a winner.
Case 2: C is partitioned into C1 = {c,w} and C2 = X . As discussed
for the run-off in Case 1, w wins the subelection (C1,V ′) with V ′

being V restricted to C1. Since c does not move forward to the
run-off, c does not win.
Case 3: C is partitioned into C1 = {c,w}∪U with /0 6=U ⊆ X and
C2 =C \C1. We consider three subcases that differ in terms of the
7Specifically, in the left-to-right direction of the proof of Theo-
rem 1, recall the argument about the run-off election (C′,V ′) with
C′ = {c,w}∪U and V ′ being V restricted to the candidates in C′;
note that C′ in that proof is C1 in this proof.
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number of clauses S j for which S j ∩U = /0. In what follows, let
Q = m((m+ 4)n2 + 2(m+ 1)n+ 1) denote the number of votes in
the first voter group.

Case 3.1: There is exactly one clause S j with S j ∩U = /0. Then we
have the following bounds on the scores of the candidates in their
subelections:

score(c) ≤ Q+3n+2n2−2n = Q+2n2 +n,

score(w) ≥ Q+n−1+2n−2+2n2 = Q+2n2 +3n−3,

score(xi) ≤ Q− (5n2 +4n+1)+n−1+3n+2n2.

Since n > 1, w scores more points than c in the first subelection,
so c cannot move forward to the run-off and thus cannot win. (w
also defeats each other candidate in the first subelection, moves
on to the final run-off to face the candidate who won the other
subelection—namely, the candidate from X with smallest subscript
in this other subelection—whom w defeats as well.)

Case 3.2: There are at least two clauses S j with S j ∩U = /0. Then
we have the following bounds on the scores of the candidates in
their subelections:

score(c) ≤ Q+3n+2n2−4n = Q+2n2−n,

score(w) ≥ Q+n−1+2n2 = Q+2n2 +n−1,

score(xi) ≤ Q− (5n2 +4n+1)+n−1+3n+2n2.

It is easy to see that w scores at least 2n−1 points more than c.
Again, c doesn’t reach the final run-off and cannot win. (Further-
more, w scores at least 5n2− n− 1 points more than every other
candidate in the first subelection and then wins alone the run-off.)

Case 3.3: S j∩U 6= /0 for each clause S j. Since we have started from
a no-instance (X ,S) of ONE-IN-THREE-POSITIVE-3SAT, there is
at least one clause S j with |S j∩U | ≥ 2. Then we have the following
bounds on the scores of the candidates in their subelections:

score(c) ≤ Q+3n+2n2,

score(w) ≥ Q+n−1+2n+1+2n2 = Q+3n+2n2,

score(xi) ≤ Q− (5n2 +4n+1)+n−1+3n+2n2.

Note that we have score(c) = score(w) in the first subelection
if and only if there is exactly one clause S j with |S j ∩U | ≥ 2. In
this case, both candidates win their subelection and move on to
the final run-off, while in the other subelection, (C2,V ), the candi-
date from X with smallest subscript in this subelection wins alone,
say xi, so c, w, and xi face each other in the final run-off. Since
(X ,S) is a no-instance of ONE-IN-THREE-POSITIVE-3SAT, we
have S j ∩{xi}= /0 for at least one clause S j, which gives the same
election outcome as in Cases 3.1 and 3.2: w is the only winner and,
therefore, c cannot win.

If |S j ∩U | ≥ 2 holds true for more than one clause S j, however,
w scores more points than c in the first subelection. Hence, c does
not win this subelection and does not proceed to the final run-off.

This completes the case distinction. We have shown that, re-
gardless of how the candidates are partitioned, c cannot win. It
follows that (C,V,c) is a no-instance of veto-CCRPC-TP (even in
the nonunique-winner model). q

By changing the distinguished candidate in this proof from c
to w, we obtain the following corollary.

COROLLARY 3. In the unique-winner model, veto-DCRPC-
TP is NP-complete.

For veto-DCPC-TP in the unique-winner model, we need to
use a different construction when we reduce again from ONE-IN-
THREE-POSITIVE-3SAT to show its NP-hardness. The construc-
tion presented by Maushagen and Rothe [25, Thm. 5] for showing
NP-completeness of veto-DCRPC-TE will do; however, we need
to argue here with a different partition of the candidates.

THEOREM 4. In the unique-winner model, veto-DCPC-TP is
NP-complete.

Proof. It is obvious that veto-DCPC-TP is in NP. To prove
NP-hardness, we again reduce from ONE-IN-THREE-POSITIVE-
3SAT. Let (X ,S) be a given ONE-IN-THREE-POSITIVE-3SAT
instance, where X = {x1, . . . ,xm} and S = {S1, . . . ,Sn}, n > 1,
with S j ⊆ X and |S j| = 3 for each j, 1 ≤ j ≤ n. Construct
an election (C,V ) with m + 2 candidates, C = {c,w} ∪ X , and
m(3n+1)+n(2n+6) votes as follows:

• For each i, 1 ≤ i ≤ m, there are 3n + 1 votes of the form
w c · · · xi.

• There are n votes of the form w · · · c.

• For each j, 1 ≤ j ≤ n, and for each xi ∈ S j, we have
c · · · w S j \{xi} (representing three votes for each j as noted
in Footnote 5).

• For each j, 1 ≤ j ≤ n, there are 2n+ 2 votes of the form
w · · · c S j.

Let w be the distinguished candidate. In election (C,V ), c is
vetoed by n voters, w by no voter at all, and each candidate xi by
at least 3n+ 1 voters. Therefore, w is the only veto winner of this
election.

It remains to show that (X ,S) is a yes-instance of ONE-IN-
THREE-POSITIVE-3SAT if and only if (C,V,w) is a yes-instance
of veto-DCPC-TP.

From left to right, assume that (X ,S) is in ONE-IN-THREE-
POSITIVE-3SAT. Then there exists a subset U ⊆ X such that
|S j ∩U | = 1 for each clause S j. Partition the candidates into
C1 = {w} ∪ (X \U) and C2 = C \C1 = {c} ∪U . In subelection
(C1,V ), w is again the only veto winner, with no more than 3n ve-
toes, whereas every other candidate in C1 has at least 3n+1 vetoes.
Thus w moves on to face all candidates from C2 in the final run-off.
In this run-off, we have the following scores:

score(c) = (3n+1)m+(2n+2)n+3n,

score(w) = (3n+1)m+(2n+2)n+n+2n,

score(xi) ≤ (3n+1)(m−1)+(2n+2)+4n.

Since c and w tie for winning the run-off, w is not a unique win-
ner. It follows that (C,V,w) is a yes-instance of veto-DCPC-TP in
the unique-winner model.

From right to left, let (X ,S) be a no-instance of ONE-IN-THREE-
POSITIVE-3SAT. We will show that in every partition of the candi-
dates only w emerges victorious. To this end, it is enough to show
that w is the only winner of every subelection. In what follows, we
consider every possible subelection (C′,V ′), where C′ ⊆C is a sub-
set of the candidates and V ′ is V restricted to the candidates in C′.
Let U ⊆ X denote an arbitrary nonempty subset of X .
Case 1: C′ = {c,w}. In this subelection (C′,V ′), w is the only
winner, since w precedes c in all but 3n votes.
Case 2: C′ = {w}∪U . In this subelection (C′,V ′), w is the only
winner, since w can be vetoed only by the 3n voters from the third
voter group, whereas every xi is vetoed by at least 3n+1 voters in
the first voter group alone.
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Case 3: C′ = {c,w}∪U . Suppose there are k clauses S j such that
S j ∩U = /0. Then the candidates in C′ have the following scores in
subelection (C′,V ′):

score(c) = (3n+1)m+(2n+2)(n− k)+3n,

score(w) ≥ (3n+1)m+(2n+2)n+n+2(n− k),

score(xi) ≤ (3n+1)(m−1)+(2n+2)n+4n.

By the argument from Case 2, we know that score(w) >
score(xi) for all xi ∈ U . To show that score(w) > score(c), we
note that:

score(w) > score(c)

(2n+2)n+n+2(n− k) > (2n+2)(n− k)+3n

2n(1+ k) > 2n,

which is always true for k > 0. For k = 0, however, we can use a
different argument to show that w defeats c. Note that k = 0 means
that there is no clause S j with S j ∩U = /0. But since (X ,S) is a
no-instance of ONE-IN-THREE-POSITIVE-3SAT, there must exist
at least one clause S j such that |S j ∩U | ≥ 2. But then c and w have
the following scores in subelection (C′,V ′):

score(c) = (3n+1)m+(2n+2)n+3n,

score(w) ≥ (3n+1)m+(2n+2)n+3n+1.

Thus, scoring at least one point more than c in this case, w wins
(C′,V ′) alone. It follows that (C,V,w) is a no-instance of veto-
DCPC-TP in the unique-winner model. q

4. CONTROL BY PARTITION OF VOTER
GROUPS FOR SCORING PROTOCOLS

We now turn to control by partition of voter groups, a very in-
teresting model recently introduced by Erdélyi et al. [10]. Since
this model generalizes the original model of control by partition of
voters [2], it is clear that NP-hardness lower bounds in the latter
model are inherited by the former model. For example, since it
is known that plurality is resistant to constructive and destructive
control by partition of voters with the ties-promote rule [19], the
same immediately follows for constructive and destructive control
by partition of voter groups. On the other hand, when we use the
ties-eliminate rule then plurality is vulnerable to this problem [19],
i.e., both plurality-CCPV-TE and plurality-DCPV-TE are in P. By
contrast, Erdélyi et al. [10] proved that the voter group variants of
the problem plurality-CCPVG-TE is NP-complete in the unique-
winner model. In this section, we will extend their result to the
class of nontrivial pure scoring protocols in both the constructive
and the destructive variant and to both the unique-winner and the
nonunique-winner model (although we will focus here on the for-
mer due to space limitations).

In the proof of Theorem 5 below, we reduce from the following
problem that is well known to be NP-complete [16]:

EXACT-COVER-BY-3-SETS (X3C)

Given: A set B = {b1, . . . ,b3m} and a family of subsets of B, S =
{S1, . . . ,Sn}, each Si having three elements.

Question: Does there exist an exact cover of B, i.e., a subfamily S ′ ⊆
S with |S ′| = m such that each element b j ∈ B occurs in
exactly one subset Si ∈S ′?

THEOREM 5. For each nontrivial pure scoring protocol σ , σ -
CCPVG-TE is NP-complete in the unique-winner model.

Proof. For any nontrivial scoring protocol σ , it is obvious that
σ -CCPVG-TE is in NP. To show NP-hardness, we reduce from
X3C. Let k be the minimal number with the property that σ1 > σk;
we will allow only instances of X3C satisfying 3m > k. Our
reduction is based on the reduction of Erdélyi et al. [10] for
plurality-CCPVG-TE. Let (B,S ) be an instance of X3C with
B = {b1, . . . ,b3m}, S = {S1, . . . ,Sn}, and Si = {bi,1,bi,2,bi,3} ⊆ B
for each i, 1 ≤ i ≤ n, where we may assume that m > 1 and
n > m+1 because this restriction of X3C is still NP-complete. We
now construct an election (C,V ) with candidates C = B∪{c,d, p},
where p is the distinguished candidate the chair wants to make a
unique winner.

We now describe V along with its partition into voter groups,
using the following notation. If a vote over C is divided into, say,
two blocks v = v1 v2, where vi is a ranking of the candidates in Ci,
i ∈ {1,2}, with C1∩C2 = /0 and C1∪C2 =C, then we let v1 [v2] de-
note the list of |C2| votes that each start with v1, followed by one of
the cyclic shifts of v2. For example, if v= v1 v2 = p c d b1 b2 · · · b6
for v1 = p c d and v2 = b1 b2 · · · b6, then v1 [v2] stands for the six
votes

p c d b1 b2 · · · b6, p c d b2 b3 · · · b1, p c d b3 b4 · · · b2,

p c d b4 b5 · · · b3, p c d b5 b6 · · · b4, p c d b6 b1 · · · b5.

We define the following n+3 voter groups:

• For each i, 1 ≤ i ≤ n, there is one group Gi with 7(3m+ 2)
votes. Specifically, Gi contains

– two copies of each of the 3m + 2 votes
p [b1 b2 · · · b3m c d],

– the 3m+2 votes bi,1 [B\{bi,1} c d p],

– the 3m+2 votes bi,2 [B\{bi,2} c d p],

– the 3m+2 votes bi,3 [B\{bi,3} c d p], and

– two copies of each of the 3m + 2 votes
d [b1 b2 · · · b3m c p].

The above construction with cyclic shifts has the effect that
p and d score

2(3m+2) ·σ1 +5
3m+3

∑
i=2

σi

points from the votes in Gi, each member of Si scores

(3m+2) ·σ1 +6
3m+3

∑
i=2

σi

points, and each other candidate scores fewer points from the
votes in Gi, namely only

7
3m+3

∑
i=2

σi.

Since we consider only nontrivial scoring protocols σ =
(σ1,σ2, . . . ,σ3m+3), we know that σ1 ≥ σ2 ≥ ·· · ≥ σ3m+3
and σ1 > σ3m+3. Thus, setting X = (3m+ 2) ·σ1 and Y =

∑
3m+3
i=2 σi, we can conclude that X > Y .

• There is one group GB with (3m+2)(6mn−3n+2m) votes:
For each j, 1≤ j ≤ 3m, letting ` j = |{Si ∈S |b j ∈ Si}|, GB
contains

– 2n− ` j copies of the 3m+ 2 votes b j [B \ {b j} c d p]
and
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– 2m copies of the 3m+2 votes p [b1 b2 · · · b3m c d].

• There is one group Gc with (3m + 2)(2(n + m) + 1)
votes, namely 2(n + m) + 1 copies of the 3m + 2 votes
c [b1 · · · b3m d p].

• There is one group Gd with (3m+2)(2n+1) votes, namely
2n+1 copies of the 3m+2 votes d [b1 · · · b3m c p].

Clearly, this σ -CCPVG-TE instance with the 3m + 3 candi-
dates and (3m+ 2)(6mn+ 8n+ 4m+ 2) voters can be constructed
in polynomial time. Note that in (C,V ), with X and Y as de-
fined above, each b j ∈ B scores 2nX + (6mn + 6n + 4m + 2)Y
points, c scores (2(n+m)+ 1)X +(6mn+ 6n+ 2m+ 1)Y points,
d scores (4n+ 1)X +(6mn+ 4n+ 4m+ 1)Y points, and p scores
2(n+m)X +(6mn+ 6n+ 2m+ 2)Y points, so d is the unique σ -
winner in this election because X > Y .

We will now show that there exists an exact cover for S if and
only if p can be made a unique σ -winner of the election via the
CCPVG-TE control action.

From left to right, suppose there is an exact cover S ′ ⊆S of B.
Partition V into V1 and V2 as follows: V2 consists of the m groups
Gi corresponding to S ′ and of the groups Gc and Gd , while V1 =
V \V2 consists of the remaining n−m groups Gi corresponding
to the complement of S ′ and of group GB. It is easy to see that
p is the unique σ -winner of the first subelection, (C,V1): p scores
2(n−m)X+(6mn+2n−5m)Y +2mX = 2nX+5(n−m)Y points, c
scores 0X+(6mn+4n−5m)Y points, d scores 2(n−m)X+(6mn+
2n−3m)Y points, and each b j ∈ B scores (2n−1)X +(6mn+2n−
5m+ 1)Y points. In subelection (C,V2), however, c and d tie for
winning, both with (2(n+m)+1)X +(7m+2n+1)Y points, while
p scores only 2mX + (5m + 2(n + m) + 1 + 2n + 1)Y points and
each b j ∈ B scores X +(9m+4n+1)Y points. Therefore, c and d
eliminate each other according to the TE rule, so p is the only one
in the final run-off and wins alone.

From right to left, suppose that p can be made the sole σ -winner
respectively a σ -winner of the election according to the CCPVG-
TE control action. Since p participates in the final run-off, the
TE rule implies that p must be a unique winner of one of the two
first-round subelections, say of (C,V1). This enforces voter groups
Gc and Gd to be contained in V2, since—no matter which other
groups are added to V1—c and d are ranked higher than p more
often and so would spoil p’s victory in (C,V1). However, since
both c and d would defeat p in the final run-off as well, neither of
them can participate in it; but since they have a higher score than
any other candidate, they have to eliminate each other via the TE
rule in (C,V2). To make this happen, exactly m of the voter groups
Gi must participate in subelection (C,V2) because if fewer than m
voters groups Gi were in V2 then c would win in (C,V2), and if more
than m voters groups Gi were in V2 then d would win in (C,V2).

With only the n−m remaining voter groups Gi participating
in (C,V1) (regardless of which ones), p and d would tie for win-
ning in (C,V1). However, since p emerges victorious alone in
this subelection, voter group GB must be contained in it as well.
Now, p scores 2(n−m)X + 5(n−m)Y + (6mn− 3n)Y + 2mX =
2nX +(2n−5m+6mn)Y points in (C,V1) and the only way to pre-
vent that some b j ∈ B scores exactly as many points in (C,V1) (and
so would spoil p being the unique winner in this subelection) is
to have the m groups Gi in (C,V2) correspond to an exact cover
of B. q

We remark that σ -CCPVG-TE remains NP-complete in the
nonunique-winner model, via essentially a similar reduction, even
though some effort must be made to discuss some technical diffi-
culties arising there.

For the destructive variant of the previous problem, no re-
sult is known even for a scoring protocol as simple as plurality.
We provide the following result that shows NP-completeness of
DCPVG-TE for all nontrivial pure scoring protocols, focusing on
the unique-winner model but again remarking that this problem re-
mains NP-complete in the nonunique-winner model, via essentially
the same proof. We will use a reduction from the following prob-
lem that is well known to be NP-complete [16, p. 259]:

PARTITION

Given: A set A = {1, . . . ,n} and a list s = (s1, . . . ,sn) of positive
integers such that ∑

n
i=1 si is even.

Question: Does there exist a subset A′ ⊂ A such that ∑i∈A′ si =
∑i∈A\A′ si?

THEOREM 6. For each nontrivial pure scoring protocol σ with
at least five candidates, σ -DCPVG-TE is NP-complete in the
unique-winner model.

Proof. Membership of σ -DCPVG-TE in NP is obvious. We
show its NP-hardness by a reduction from PARTITION. Let m ≥ 5
be the number of candidates for σ = (σ1,σ2, . . . ,σm). Since σ is
assumed to be nontrivial, we know that σ1 > σm. Given an instance
(A,s) of PARTITION, where A = {1, . . . ,n} and s = (s1, . . . ,sn) is
a list of positive integers such that ∑

n
i=1 si = 2K for some posi-

tive integer K, we construct the election (C,V ) with candidates
C = {c1,c2,d1,d2, p} ∪Y with Y =

⋃m
j=6 y j, where p is the dis-

tinguished candidate, and with the following voter groups:

• For each i, 1≤ i≤ n, there is a group Gi with (m−1)si votes:
si copies of each of the m−1 votes p[c1 c2 d1 d2 Y ].

• There is a group Gc with 2(m−1)K votes:

– K copies of each of the m− 1 votes c1[c2 d1 d2 p Y ],
and

– K copies of each of the m−1 votes c2[c1 d1 d2 p Y ].

• There is a group Gd with 2(m−1)K votes:

– K copies of each of the m− 1 votes d1[c1 c2 d2 p Y ],
and

– K copies of each of the m−1 votes d2[c1 c2 d1 p Y ].

Let Q = ∑
m
i=2 σi. In election (C,V ), we have the following

scores:

score(c1) = (m−1)Kσ1 +5KQ,

score(c2) = (m−1)Kσ1 +5KQ,

score(d1) = (m−1)Kσ1 +5KQ,

score(d2) = (m−1)Kσ1 +5KQ,

score(p) = 2(m−1)Kσ1 +4KQ,

score(y j) = 6KQ.

Candidate p has the highest score and wins alone since

(2(m−1)K− (m−1)K)σ1 +(4K−5K)Q > 0,

which is equivalent to

(m−1)Kσ1 > K(σ2 +σ3 + · · ·+σm),

which in turn is true because we have σ1 ≥ σ2 ≥ ·· · ≥ σm and
σ1 > σm.
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We claim that (A,s) is a yes-instance of PARTITION if and only
if (C,V, p) is a yes-instance of σ -DCPVG-TE.

From left to right, suppose (A,s) is a yes-instance of PARTITION.
Then there is a subset A′ ⊆ A such that ∑i∈A′ si = ∑i∈A\A′ si.

Now, partitioning V into V1 =
⋃

i∈A′ Gi ∪Gc and V2 = V \V1 =⋃
i∈A\A′ Gi ∪Gd , we will show that p does not win. In the first

subelection, (C,V1), we have the following scores:

score(c1) = (m−1)Kσ1 +2KQ,

score(c2) = (m−1)Kσ1 +2KQ,

score(d1) = 3KQ,

score(d2) = 3KQ,

score(p) = (m−1)Kσ1 +2KQ,

score(y j) = 3KQ.

In the second subelection, (C,V2), we have the following scores:

score(c1) = 3KQ,

score(c2) = 3KQ,

score(d1) = (m−1)Kσ1 +2KQ,

score(d2) = (m−1)Kσ1 +2KQ,

score(p) = (m−1)Kσ1 +2KQ,

score(y j) = 3KQ.

Since no unique winner emerges in any of the two subelections
(p tieing with c1 and c2 in (C,V1) and with d1 and d2 in (C,V2)), no
candidate proceeds to the final run-off. In particular, p does not win
the run-off. Hence, (C,V, p) is a yes-instance of σ -DCPVG-TE.

From right to left, let (A,s) be a no-instance of PARTITION.
We will show that the constructed (C,V, p) is a no-instance of σ -
DCPVG-TE as well, i.e., we will show that p is a unique winner
for every possible partition of voter groups. To this end, we con-
sider the two cases where Gc and Gd belong or do not belong to the
same first-round subelection.
Case 1: Gc and Gd are in the same first-round subelection, say in
(C,V1), i.e., Gc ⊆V1 and Gd ⊆V1. If V2 is empty, (C,V1) = (C,V ),
so p is the only winner of this subelection and thus—being the only
candidate participating in the final run-off—the unique overall win-
ner. If V2 is not empty, V2 contains only some of the voter groups
Gi. In each group Gi, p scores the most points and, therefore, also
the most points in (C,V2), and thus proceeds to the final run-off. In
(C,V1), either p wins alone or c1, c2, d1 and d2 tie for winning in
this subelection. It follows that p again is the only participant of
the final run-off and thus the sole overall winner.
Case 2: Gc and Gd are in different first-round subelections. With-
out loss of generality, we may assume that Gc ⊆ V1 and Gd ⊆ V2.
Let A1 ⊆ A be any subset of A and A2 = A \A1 its complement.
Then we have either ∑i∈A1 si > ∑i∈A2 si or ∑i∈A1 si < ∑i∈A2 si. We
may assume the former inequality to hold (otherwise, we just re-
name A1 and A2 accordingly). It follows that ∑i∈A1 si > K and
∑i∈A2 si < K. Let K̂ = ∑i∈A1 si. Due to symmetry it is enough to
consider the case that all voter groups Gi with i ∈ A1 are in V1 and
all voter groups Gi with i ∈ A2 are in V2. Then we have the follow-
ing scores in subelection (C,V1):

score(c1) = (m−1)Kσ1 +(K̂ + K)Q,

score(c2) = (m−1)Kσ1 +(K̂ + K)Q,

score(d1) = (K̂ +2K)Q,

score(d2) = (K̂ +2K)Q,

score(p) = (m−1)K̂σ1 + 2K Q,

score(y j) = (K̂ + K)Q.

In subelection (C,V1), p is the unique winner since

((m−1)K̂− (m−1)K)σ1 +(K− K̂)(σ2 +σ3 + . . .+σm)> 0,

which is equivalent to

(K̂−K)(m−1)σ1 > (K̂−K)(σ2 +σ3 + . . .+σm),

which in turn is true because we have σ1 ≥ σ2 ≥ ·· · ≥ σm and
σ1 > σm because the scoring vector is nontrivial. This also implies
that

(m−1)Kσ1−Kσ2−Kσ3−·· ·−Kσm > 0
(m−1)Kσ1 > K(σ2 +σ3 + · · ·+σm).

In the second subelection, (C,V2), we have the following scores:

score(c1) = (4K− K̂)Q,

score(c2) = (4K− K̂)Q,

score(d1) = (m−1) K σ1 +(3K− K̂)Q,

score(d2) = (m−1) K σ1 +(3K− K̂)Q,

score(p) = (m−1)(2K− K̂)σ1 + 2KQ,

score(y j) = (3K− K̂)Q.

Since d1 is tieing with d2, no further candidate can be in the final
round and thus p is the only candidate and winner in the run-off.
Hence, (C,V, p) is a no-instance of σ -DCPVG-TE. q

5. CONCLUSIONS
We have studied control by partition of either voters or candi-

dates for veto elections in terms of their computational complex-
ity, settling all cases (for the standard control scenarios) that have
been left open by Maushagen and Rothe [25]. As they suspected,
we have now confirmed that (other than for constructive coalitional
weighted manipulation where veto and plurality behave quite dif-
ferently [5]), veto and plurality here display the same behavior:
The problems of control by partition are exactly the same for them,
namely, control by partition of candidates is hard, whereas control
by partition of voters is easy in the ties-eliminate model [25] and
is hard in the ties-promote model (Theorems 1 and 2), even in the
destructive case (Corollaries 1 and 2).

We have also considered the interesting, more natural model of
control by partition of voter groups due to Erdélyi et al. [10]. In
particular, we have generalized their result for plurality in the con-
structive case and in the unique-winner model to the class of all
nontrivial pure scoring protocols in both the constructive and the
destructive case and in both the unique-winner and the nonunique-
winner model.

Interesting questions remain open, for example, investigating
control by partition of voter groups for other voting systems and
obtaining results not only in terms of classical complexity but also
in terms of parameterized complexity or, even more demanding, in
terms of typical-case complexity.
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