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ABSTRACT
Multi-winner voting rules aiming at proportional representa-
tion, such as those suggested by Chamberlin and Courant [9]
and by Monroe [20], partition an electorate into virtual dis-
tricts, such that a representative is assigned to each district;
these districts are formed based on the voters’ preferences.
In some applications it is beneficial to require certain struc-
tural properties to be satisfied by these virtual districts. In
this paper we consider situations where the voters are em-
bedded in a network, and we require each virtual district
to be connected (with respect to the network). We discuss
applications of a corresponding combinatorial problem and
study its computational complexity, identifying several vari-
ants and special cases which can be solved efficiently.

CCS Concepts
•Computing methodologies → Multi-agent systems;
•Theory of computation → Problems, reductions and
completeness;
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1. INTRODUCTION
We study a generalization of proportional representation

multiwinner rules, such as those presented by Chamberlin
and Courant [9] and by Monroe [20]; based on the voters’
preferences, these rules select a committee of k representa-
tives such that (1) each representative represents a subset of
the voters and (2) each voter is represented by exactly one
representative. Thus, in effect, the voters are partitioned
into pairwise disjoint subsets, which we refer to as virtual
districts1, and we assign a representative (i.e., a committee
member) to each such district. Ideally, each voter is repre-
sented by one of her most-desired alternatives.

In this paper we generalize such proportional representa-
tion systems by considering not only the voters’ preferences,
but take into account also external relations between them.

1These are called virtual districts as they resemble electoral
districts, but are based on preferences and not on geography.
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That is, given an election and a network which describes
relations between the voters, our goal is to partition the
electorate into virtual districts, based on the voters’ prefer-
ences (as specified by the election), while also requiring each
virtual district to satisfy some structural properties, based
on the voters’ relations (as specified by the network); con-
cretely, in this paper we require each virtual district to be
connected (with respect to the external network). Indeed,
there are other natural and interesting structural properties
which we might require the districts to satisfy; in this paper
we study connectivity, as one of the most basic properties of
networks; in Section 5 we discuss other structural properties.

Our goal is to get the best of both worlds: we want (1)
our chosen committee (consisting of the representatives of
all the districts) to best represent our electorate (with re-
spect to the satisfaction of the voters from their assigned
representatives) and also to have (2) virtual districts which
conform to structural constraints: specifically, to have each
district be connected, according to the auxiliary network. A
formal definition of the problem considered in this paper,
called SPR, is given in Section 2.

We study the computational complexity of SPR. It turns
out that efficiently achieving our goals is not possible in gen-
eral, therefore we concentrate on identifying several well-
motivated tractable cases. Specifically, we model the net-
work as a graph, and consider different graph classes, such
as trees and graphs with bounded treewidth.

1.1 Motivating Scenarios
Below we describe several scenarios where having con-

nected virtual districts might be beneficial.

Political scenario. Consider a political election to be held,
where a size-k committee is to be elected based on the voters’
preferences, such that each voter is to be represented by a
committee member. In effect, the electorate is partitioned
into k virtual districts, based on the voters’ representatives
(and not based on geography, which is sometimes the case).

We argue that, e.g., prior relationships between voters
in each part might influence the effectiveness of the chosen
committee. For example, since the representatives might
want to discuss various issues with the voters which they rep-
resent, voters from each virtual district might periodically
meet; thus, friendship relations between them might have
an influence on the usefulness of such meetings. Concretely,
each voter might be more satisfied if she knows, directly or
indirectly, all the voters in her virtual district, thus hav-
ing each virtual district to be a connected component with
respect to the voters’ friendship network might be desired.
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Commercial scenario. Consider a factory which can man-
ufacture and ship to consumers at most k product types in
parallel (i.e., assume k production lines). The factory man-
agement might ask for the preferences of their potential cus-
tomers, and choose k products which, if produced, would
satisfy the highest number of people. In effect, the popu-
lation of potential customers is partitioned into k shipping
areas, such that each shipping area contains those potential
customers which, among those k products to be produced
and shipped by the factory, prefer the same product. For
example, a car factory might need to select k colors for its
cars, trying to maximize the number of customers which are
satisfied with at least one color.

Since the factory has to ship its products to the cus-
tomers, it might be desired to have each shipping area be
connected, with respect to a network, modelling geographic
distance between the customers (possibly with some thresh-
old, such that there is an edge between two customers iff
the distance between them is upper-bounded by a certain
threshold). The reason is that shipping the same product
to several customers might be easier if those customers are
close to each other; further, each product might be produced
in a different geographic place, thus it is cheaper to ship only
one product type at a time (say, in each truck).

Multiagent scenario. Consider adding hierarchy to a mul-
tiagent system, where each agent has different preferences
for the agents it would like to see above it in the hierarchy.
In effect, the agents are partitioned into k teams, based on
their preferences, and a leader is assigned to each team.

Since leaders might want to broadcast messages to agents
in their teams, it might be desired to have good communica-
tion properties in each such team. Considering a graph with
one vertex for each agent, and where there is an edge be-
tween two agents iff they can communicate efficiently (e.g.,
they are directly connected via some wire), it is apparent
that having connected teams would boost their effectiveness,
since it would lower the inter-team communication costs.

In each of the scenarios described above, a population of
entities (voters, consumers, agents) is to be partitioned into
parts (political districts, shipping areas, multiagent teams).
When partitioning the population, it is desirable to take
into account both the preferences of the entities (the po-
litical preferences, the product preferences, the hierarchical
preferences), as well as relations between the entities (their
friendships, their geographic closeness, their communication
links). Specifically, we argue that it is desirable to have each
of those virtual districts be connected, with respect to the
corresponding network, to increase even further the total
satisfaction of the voters, or, if you will, the social welfare.

We further discuss those scenarios, as well as others, in
Section 5, where we discuss other structural properties, be-
sides connectivity, to be required from each virtual district.

1.2 Related Work
This paper deals with the computational complexity of

a generalization of proportional representation voting rules,
such as those suggested by Chamberlin and Courant [9] and
Monroe [20] (the difference between these rules is that the
latter imposes size constraints on the virtual districts). Win-
ner determination for these rules is NP-hard [23], but they
can be solved efficiently for elections with few voters or few
alternatives [4] and they can be efficiently approximated [19,
28, 29].

These rules have applications in domains such as recom-
mendation systems [19], resource allocation [29, 27], and fa-
cility location [4, 23]. Other generalizations of proportional
representation rules exist, most notably the generalization
suggested by Skowron et al. [27] (also considered by Aziz
et al. [2, 3]), where voters get utilities from several com-
mittee members (instead of only from their most-prefered
committee member), and the generalization by Elkind and
Ismaili [15] which consider a continuum between the utili-
tarian version and the egalitarian version of these rules.

In this paper we generalize these rules by taking into ac-
count a network, connecting the voters which participate in
the election. Various scenarios of voting in presence of net-
works were studied. For example, Boldi et al. [6] studied
voting systems which let voters specify delegates to repre-
sent them; several researchers [11, 13, 24, 25, 26] studied
how social networks can influence the election winners and
the ability of the population to recover ground-truths; other
researchers [7, 8, 10] studied how social networks can affect
manipulative actions performed by external agents.

Last, we mention the recent paper by Igarashi et al. [17]
which is closely related to the current paper: On one hand,
they consider an election being held on a social network, and
also require some kind of connectivity. On the other hand,
their problem is more constrained, and they study it from a
cooperative game theoretic perspective.

2. PRELIMINARIES
For n ∈ N, we denote the set {1, . . . , n} by [n].

2.1 Elections and Voting Rules
An election E = (A, V ) consists of a set of alternatives

A = {a1, . . . , am} and a collection of voters V = (v1, . . . , vn).
In this paper we concentrate on Approval elections, where a
voter v is associated with a subset Av ⊆ A of the alternatives
which she approves (for simplicity, the voters are females
while the alternatives are males). Such a voter is said to
be an Av-voter and we denote such a situation by writing
“v : Av”. For example, with A = {a1, a2, a3}, by writing v :
{a2, a3} we mean that v approves a2 and a3, but disapproves
a1; we further say that v is an {a2, a3}-voter.

A multiwinner voting rule R is a function that, given an
election E = (A, V ) and an integer k ∈ [m], outputs a set
R(E, k) of k-element subsets of A. Each subset S ⊆ A
of k alternatives is called a committee and each member
of R(E, k) is called a winning committee. A single-winner
rule is a multiwinner rule for k = 1. Under (single-winner)
Approval, each alternative gets one point from each voter
which approves him, and the alternatives with the highest
number of points tie as co-winners.

In this paper we study a generalization of (Approval)
Chamberlin–Courant (in Section 5 we discuss how our algo-
rithmic results transfer to Monroe). Under the Chamberlin–
Courant multiwinner voting rule, for a committee S, we
consider all assignment functions Φ : V → S; that is, an
assignment function Φ assigns a committee member a ∈ S
(a representative) to each voter v ∈ V . The score of a com-
mittee S and an assignment Φ for this committee equals the
number of voters which are assigned to a committee member
which they approve. The score of a committee S is taken to
be the maximum over all its possible assignments Φ, and the
highest-scoring committee wins (if several committees have
the same highest score, then all of them tie as co-winners).
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2.2 Parameterized Complexity
A parameterized problem, where some part of the input

is declared as the parameter, is said to be fixed-parameter
tractable (equivalently, is in FPT) if there is an algorithm

that solves it in time f(k) · |I|o(1), where |I| is the size of
the encoding of the given instance, k is the value of the
parameter, and f is some computable function. There is
a hardness hierarchy of parameterized problems, where it
is widely-believed that a W-hard problem is not FPT. An
algorithm running in time O(nk) shows containment in XP.
For more details on parameterized complexity, we refer to
textbooks on this subject [14, 16, 22].

2.3 The SPR problem
The Structured Proportional Representation prob-

lem (SPR in short), which is the subject of the current pa-
per, can be described as follows. We are given an election,
consisting of a set A of m alternatives and a collection V
of n voters. Each voter corresponds to a vertex in a given
vertex-labeled graph G = (V,E), such that the label on each
vertex corresponds to the vote of the voter (indeed, there is
a slight clash of notation regarding V , but since vertices cor-
respond to voters, we keep it that way). In this paper we
concentrate on approval elections, where each voter specifies
a subset of alternatives: a voter approves the alternatives in
this subset, while she disapproves all the remaining alterna-
tives. Analogously, each vertex v in G (corresponding to a
voter v in the election) is labeled by the subset of alterna-
tives Av ⊆ A approved by the voter v.

Given such a labeled graph, the task is to partition it into
k connected components, which we usually refer to as vir-
tual districts, and to assign a representative a ∈ A to each of
these virtual districts. We define the satisfaction of a virtual
district with respect to its representative to be the number
of voters in the district which approve the district’s repre-
sentative (since vertices correspond to voters, we use voters
and vertices interchangeably). The goal is to maximize the
overall satisfaction, that is, the sum (over the virtual dis-
tricts) of the satisfaction. A more formal definition follows.
(Indeed, while the problem is described as a maximization
problem, the corresponding decision problem can be defined
easily, by supplying another integer input, standing for the
desired total satisfaction, and requiring the total satisfaction
to be lower-bounded by it).

Definition 1. For a voter v approving Av ⊆ A and a
representative a ∈ A, we define score(v, a) = 1 iff a ∈ Av (a
satisfied voter) and 0 otherwise (an unsatisfied voter).

(Approval) SPR
Input: A set of alternatives A, a graph G =
(V,E) where each vertex v ∈ V is labeled by
a subset Av ⊆ A of alternatives, and a desired
number of districts k.
Task: Partition the vertices of G into k con-
nected components, V1, . . . , Vk, and choose k cor-
responding alternatives, rep(V1), . . . , rep(Vk), such
as to maximize

∑
i∈[k]

∑
v∈Vi

score(v, rep(Vi)).

Indeed, the SPR problem corresponds to (Approval)
Chamberlin–Courant with the additional requirement that
each district needs to be connected, with respect to an aux-
iliary graph (which connects the voters participating in the
election).

Two variants of SPR. In the definition above, we al-
low repetitions in the list rep(V1), . . . , rep(Vk) of represen-
tatives, such that, even for i 6= j, it might be the case that
rep(Vi) = rep(Vj). In effect, an alternative might serve as
the representative of several districts; importantly, the num-
ber of different connected components is always k. This vari-
ant is called the non-unique variant and models, for example,
situations where the alternatives correspond to parties, and
so a certain party can win in several districts (since, e.g., it
can nominate different politicians to each district).

We also consider the unique variant, where repetitions
in the list of representatives are not allowed; this variant
models, for example, situations where the alternatives cor-
respond to politicians, and so it is not desirable to have
several districts represented by a single politician.

Recalling the scenarios described at the beginning of Sec-
tion 1, we mention that our commercial scenario seems to
be better modeled using the non-unique variant (since we
might ship the same product to different regions but we
cannot ship more than k product types), while our multia-
gent scenario seems to be better modeled using the unique
variant (since we prefer having each leader leading only one
team, for which it can take full care of).

2.4 Overview of Our Results
We are interested in understanding the computational com-

plexity of (Approval) SPR, especially when restricted to cer-
tain graph classes, both for the non-unique variant and for
the unique variant. Our main results can be summarized as
follows.

• Both the unique variant of SPR and the non-unique
variant of SPR are NP-hard, even when each voter can
approve only one alternative, the number of districts
is two, the number of alternatives is three, and the
graph is planar (planar graphs can model, for example,
geographic relations).

• With respect to trees, there is a sharp contrast be-
tween the unique variant of SPR and the non-unique
variant of SPR: the unique variant is NP-hard even on
paths while the non-unique variant is polynomial-time
solvable on trees.

• The non-unique variant of SPR can be efficiently solved
on graphs with bounded treewidth; for constant num-
ber of districts, the unique variant of SPR can also be
efficiently solved on such graphs.

2.5 Trees and Treewidth
Since our positive algorithmic results are for trees and

graphs of bounded treewidth, it might be useful to briefly
discuss those graph classes.

Trees are important mainly since they can naturally model
hierarchical structures: as an archetypal example, consider
peers in an hierarchical organization. We also mention that
one might first compute a spanning tree for an arbitrary
graph, and then execute our efficient tree algorithms on this
spanning tree. Treewidth (see, e.g., [14]) is a well-accepted
measure of similarity of graphs to trees, where trees have
treewidth 1, and graphs which are similar to trees (in some
specific sense) have small treewidth. Treewidth plays an im-
portant role in the design of many exact and approximation
algorithms for a variety of NP-hard problems and is practi-
cally useful in the context of social networks [1].
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Definition 2 (Treewidth). Let G = (V (G), E(G))
be a graph. Let T = (V (T ), E(T )) be a tree and

B : V (T ) → 2V (G). The pair (T,B) is a valid tree de-
composition of G if it holds that: (1)

⋃
x∈V (T ) B(x) = V (G)

for each x ∈ V (T ); (2) For each {u, v} ∈ E(G), there exists
some x ∈ V (T ) such that u, v ∈ B(x); and (3) For each
v ∈ V (G), the set of vertices x of T for which v ∈ B(x) in-
duces a connected subtree of T . The width of a valid tree de-
composition (T,B) is maxx∈V (T ) |B(x)| − 1. The treewidth
of a graph G, denoted by ω(G), is the minimum width over
all its valid tree decompositions.

3. INITIAL RESULTS
We next prove a hardness result, demonstrating that SPR

is intractable, even when each voter can approve only one
alternative, the number of districts is two, there are only
three alternatives, and the graph is planar. This stands in
contrast to winner determination for Chamberlin–Courant,
which is polynomial-time solvable for constant number of
districts.

Theorem 1. SPR is NP-hard, even when each voter can
approve only one alternative, the number of districts is two,
there are only three alternatives, and the graph is planar.

Proof. We reduce from the following problem.

2-Disjoint Connected Subgraphs (2-DCS)
Input: A graph G = (V,E) and disjoint nonempty
sets of vertices, Z1 and Z2.
Question: Are there vertex-disjoint connected
subgraphs of G, G1 = (VG1 , EG1) and G2 =
(VG2 , EG2), such that Z1 ⊆ VG1 and Z2 ⊆ VG2?

The 2-DCS problem is known to be NP-hard even on
planar graphs [30]. Given an instance of 2-DCS we create an
instance of SPR, as follows. We use the same input graph G,
and create three alternatives: z1, z2, and d; the alternatives
z1 and z2 would correspond to the nonempty sets Z1 and
Z2, while d would act as a dummy alternative. We let each
vertex v ∈ Z1 to approve the alternative z1; we let each
vertex v ∈ Z2 to approve the alternative z2; and we let all
other vertices v ∈ V \ (Z1 ∪ Z2) to approve d. For each
vertex v ∈ Z1, we create n2 − 1 new dummy vertices, and
connect them to v; we let these vertices to also approve the
alternative z1. Similarly, for each vertex v ∈ Z2, we create
n2 − 1 new dummy vertices, and connect them to v; we let
these vertices to also approve the alternative z2. We set
the number of districts k to two. Since, for NP-hardness,
we shall use the decision version of SPR, we set the desired
total satisfaction to be n2 · (|Z1| + |Z2|). This finishes the
polynomial-time reduction.

Next we prove the correctness of the reduction. Given a
solution for the instance of 2-DCS, we let the voters corre-
sponding to the vertices of G1 (that is, VG1), together with
all other dummy vertices approving z1, to form one virtual
district, V1. Similarly, we let the voters corresponding to the
vertices of G2 (that is, VG2), together with all other dummy
vertices approving z2, to form another virtual district, V2.
Notice that the dummy vertices approving z1 are connected
to vertices in G1, while the dummy vertices approving z2
are connected to vertices in G2. Then, since G1 and G2 are
both connected, it follows that the virtual districts V1 and
V2 are connected as well.

In SPR, we are required to assign all vertices to districts,
so we shall assign the remaining vertices in V \VG1∪VG2 : we
assign them arbitrary to either V1 or V2 while making sure
that both V1 and V2 remain connected (this can be done,
e.g., by iteratively assigning these vertices, always making
sure that connectivity is preserved; indeed, we might need
to iterate several times). We set z1 to be the representative
of V1 and z2 to be the representative of Z2. The resulting
solution to SPR has indeed total satisfaction of n2 · (|Z1|+
|Z2|), since each voter in Z1 ∪ Z2, and each corresponding
dummy vertex, is satisfied by her representative.

For the other direction, let us consider a solution for the
instance of SPR, which achieves a total satisfaction of at
least n2 · (|Z1|+ |Z2|). First, consider a vertex v in Z1 and
one of her dummy vertices u. We claim that we can assume,
without loss of generality, that each v and u are in the same
district. If this is not the case, then it means that u is alone
in her district, since u is connected only to v. Then, the
total satisfaction cannot be n2 ·(|Z1|+|Z2|): this can be seen
by considering all possible ways of representing the district
containing v by either z1, z2, or d. Thus, we conclude that
we can assume that, for each vertex v in Z1∪Z2, the dummy
vertices of v are in the same district as v.

Next we claim that each of the vertices in Z1 ∪ Z2 has
to be satisfied. Otherwise, there is at least one vertex in
Z1∪Z2 which is not satisfied, but then, her dummy vertices
would be unsatisfied as well, since they approve the same
alternative and they are in the same district. Since there
are n2 · (|Z1|+ |Z2|) + |V \ (Z1 ∪Z2)| ≤ n2 · (|Z1|+ |Z2|) +n
vertices in the graph, it follows that, in this case, the total
satisfaction will be at most n2 · (|Z1|+ |Z2| − 1) + n < n2 ·
(|Z1|+ |Z2|). Thus, we conclude that all vertices in Z1 ∪Z2

are satisfied.
Since the vertices in Z1 approve z1, while the vertices in Z2

approve z2, it follows that the representatives are z1 and z2,
and then there is one connected district V1, represented by
z1 and containing all vertices in Z1, and another connected
district V2, represented by z2 and containing all vertices in
Z2. Thus, we can partition the graph into two connected
components, thus having a solution for 2-DCS.

Remark 1. Notice that in the election constructed by the
reduction presented above, each voter approves only one al-
ternative. Thus, the above reduction shows that SPR is NP-
hard even for the Plurality version of SPR (under Plurality,
each voter gives one point to her most-prefered alternative,
and the alternative with the highest number of points wins;
that is, for each v, it holds that |Av| = 1). We mention that
the reduction can be modified (specifically, by adding further
dummy alternatives) to show NP-hardness for t-Approval
(where |Av| = t) and t-Veto (where |A \Av| = t).

Remark 2. The proof presented above also shows that the
task of partitioning the graph into virtual districts is hard,
even when the committee members are given. (Technically,
this holds since we can enumerate all possible committees of
size two.)

To gain some further intuition concerning SPR, we next
consider very special graphs, namely complete graphs. It
is clear that on complete graphs, SPR is equivalent to win-
ner determination for Chamberlin–Courant (since, roughly
speaking, the graph structure does not matter). Based on
the work of Procaccia et al. [23] and Betlzer et al. [4], we
conclude the following.
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Corollary 1. On complete graphs, SPR is (1) NP-hard,
(2) XP and W-hard wrt. the number of districts k, and (3)
FPT wrt. to either the number n of voters or the number m
of alternatives.

Indeed, Theorem 1 proves that SPR is NP-hard even for
three alternatives, thus presumably not fixed-parameter trac-
table for the number m of alternatives. For completeness,
we mention that for the number n of voters, however, SPR
is fixed-parameter tractable (for any graph): this follows by
considering each of the O(nn) possible partitions of the vot-
ers into districts.

4. UNIQUE REPRESENTATIVES AND
NON-UNIQUE REPRESENTATIVES

The results presented in Section 3 hold both for the unique
variant and the non-unique variant of SPR; as described in
Section 2, these two variants are motivated by different sce-
narios. In this section, we do distinguish between these two
variants, and show that, for some graph classes, the choice
of variant has critical consequences on the computational
complexity of SPR. A path graph of length n is composed
of vertices {v1, . . . , vn} and edges {{vi, vi+1} : i ∈ [n− 1]}).
The following theorem shows that the unique variant of SPR
is intractable even on path graphs.

Theorem 2. The unique variant of SPR is NP-hard,
even on path graphs, at least for 2-Approval.

Proof. A coloring of a graph is said to be convex if each
color class forms a connected component in it. We provide
a reduction from the following problem.

Convex Recoloring
Input: A graph G = (V,E) with a vertex color-
ing C : V → C (where C is the set of colors) and
a budget b.
Question: Can the coloring of G become convex
by recoloring at most b vertices?

That is, in the Convex Recoloring problem, we are
given a vertex-colored graph, and the task is to recolor a
minimum number of vertices in order to make the coloring
convex. Convex Recoloring is known to be NP-hard even
on path graphs [21]. Given an instance of Convex Recol-
oring on path graphs, we create an instance for the unique
variant of SPR, as follows.

We use the same graph G. We create an alternative for
each color, another n dummy alternatives, and let the ith
voter to approve the alternative corresponding to her (ver-
tex’s) color and the ith dummy alternative. We set the
number k of districts to be equal to the number of colors
(that is, k = |C|). Since, for NP-hardness, we shall use the
decision version of SPR, we set the total satisfaction to be
n− b. This finishes the description of the reduction. which
is computable in polynomial time. Notice that, since the
original graph is a path graph, we have that the generated
instance for SPR is a path graph as well.

Next we prove the correctness of the reduction. First,
given a solution to the instance for SPR, we recolor each of
the unsatisfied voters with the color of their representative.
That way, we color at most b vertices (since there are at most
b unsatisfied voters), and each color class forms a connected
component, as needed for Convex Recoloring.

For the other direction, consider a solution for the instance
of Convex Recoloring, such that each color class in the
recolored graph forms a connected component. We declare
each of these connected component to be a district in our
solution for SPR. Further, we select the representative of
each such district to be the representative corresponding to
the color class of the corresponding connected component.
Then, all the vertices, besides those that were recolored, are
now satisfied. Thus, we have a total satisfaction of n − b.
The above works if the solution for the instance of Convex
Recoloring used all k colors; if this is not the case, i.e.,
if there are k′ < k connected components in the solution
for the instance of Convex Recolors, then we can split
single vertices from some components, as we describe next.
First, if we have some connected components where the to-
tal number of vertices in them is at most k − k′, then we
split these vertices to have one vertex in each new district,
and we let the unique dummy alternative approved by this
vertex to represent the district. Then, if we did not reach
k districts, then we take a component with more vertices
than needed, and remove some of its vertices to make each
of them a singleton district (as before); importantly, this
can be done while preserving connectivity (for example, by
iteratively removing a vertex while preserving connectivity;
this would take polynomial time even when implemented
naively). Notably, the total satisfaction of the electorate
would be still n− b, as needed.

The situation for the non-unique variant is different, since
it can be efficiently solved even on trees.

Theorem 3. On trees, the non-unique variant of SPR is
polynomial-time solvable.

Proof. We describe an algorithm based on applying dy-
namic programming twice, in a nested way. The first dy-
namic program is used for traversing the tree, while the sec-
ond dynamic program is used for iterating over children of
inner nodes. First, we arbitrarily root the tree. Then, start-
ing from the leaves, we proceed in a bottom-up fashion, and
consider different subtrees, until we reach the root.

Let T denote the whole tree, and let root(T ) denote its
arbitrarily-chosen root. Similarly, let us denote the root of a
subtree T ′ of T by root(T ′). In particular, if T ′ is composed
of only one vertex, then this vertex is denoted by root(T ′)
(that is, T ′ is a subtree, while root(T ′) is a node: its root).

For a subtree T ′, an integer k′ ∈ [k], and an alterna-
tive a′ ∈ A, let the value Rec(T ′, k′, a′) be the score of an
optimal way of partitioning the vertices in the subtree T ′

into k′ parts, such that the upper-most part (that is, the
part where root(T ′) is in) is represented by the alternative
a′. For ease of presentation, let us define Rec(T ′, k′) :=
maxa′∈A(Rec(T ′, k′, a′)). The algorithm will eventually re-
turn the value of Rec(T, k). Let us describe how to compute
different values of Rec(T ′, k′, a′) by considering several cases,
differentiated by the number of children that root(T ′) has.

Case 1: root(T ′) is a leaf. In this case, Rec(T ′, 1, a′) is
1 if the voter corresponding to root(T ′) is an a′-voter, and
is 0 otherwise. That is:

Rec(T ′, 1, a′) = score(root(T ′), a′).

Case 2: root(T ′) has one child. In this case, we take
the maximum between two possibilities, differentiated by
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whether root(T ′) and her child are in the same district or in
different districts. That is:

Rec(T ′, k′, a′) = max
(

Rec(T ′ \ root(T ′), k′ − 1) + score(root(T ′), a′),

Rec(T ′ \ root(T ′), k′, a′) + score(root(T ′), a′)
)
.

Case 3: root(T ′) has at least two children. This
case is more involved, and we solve it with another dynamic
program. Using our second dynamic program, we can effi-
ciently decide how to distribute the k′ districts assigned to
T ′ between the children of root(T ′). Next we describe our
second dynamic program.

For ease of presentation, let us arbitrarily order the chil-
dren of root(T ′). For a subtree T ′ and an integer c′, let us
denote the subtree containing all vertices contained in the
first c′ children of root(T ′), including root(T ′) itself, by T ′

c′ .
For a subtree T ′, an integer c′, an integer k′ ∈ [k], and an
alternative a′ ∈ A, let the value Rec′(T ′, c′, k′, a′) be the
score of an optimal way of partitioning the vertices of T ′

c′

into k′ parts, such that the upper-most part (that is, the
part where root(T ′) is in) is assigned to the alternative a′.
Indeed, if root(T ′) has c children, then Rec(T ′, k′, a′) =
Rec′(T ′, c, k′, a′). Let us describe how to compute the values
of Rec′(T ′, c′, k′, a′). If c′ = 1, then we proceed similarly to
the case where root(T ′) has one child (indeed, when c′ = 1,
we consider only one child of T ′). Otherwise, if c′ > 1, then
we proceed as follows. Since we have k′ districts to partition
T ′ into, we shall decide how to distribute these k′ districts
between the different children of root(T ′). The main obser-
vation we use now is that, when considering the c′th child
of root(T ′) (whose subtree is denoted by c′-child(T ′)), it is
enough to consider only the number of districts which are
already assigned to former children of root(T ′). Formally:

Rec′(T ′, c′, k′, a′) = maxk′′∈[k′]

(
(1)

Rec′(T ′, c′ − 1, k′ − k′′, a′) (2)

+ max(Rec(c′-child(T ′), k′′), (3)

Rec(c′-child(T ′), k′′ + 1, a′))
)

(4)

In the above equation, k′′ stands for the number of dis-
tricts assigned to c′-child(T ′). For each value of k′′, we com-
pute the optimal partition of the former children of root(T ′)
(in (2)), and consider two possibilities, differentiated by
whether root(C′) and root(c′-child(T ′)) are in different dis-
tricts (in (3)) or in the same district (in (4)).

This finishes the description of our algorithm. Next we
prove its correctness and provide an analysis of its running
time. We begin with a correctness proof.

Intuitively, our dynamic programs check all possibilities,
thus, in particular, consider all solutions. More formally,
consider a solution. In induction, we assume that the algo-
rithm is correct for trees of size at most n, and we consider
trees with n vertices.

For the base, if the tree has only one vertex, then, since we
consider each alternative a′ when we compute Rec(T ′, k′, a′),
it follows that for the right alternative, we will return the
correct total satisfaction, which is 1.

If the root has only one child, then there are only two
possibilities for the situation in the solution: either the root
is in the same district as her child, or the root is in her own
singleton district. We check both possibilities in Case 2.

Last, if the root has at least two children, then we employ
our second dynamic program. In this case, it holds that
there must be a division of the districts into the children of
the root, and our second dynamic program considers each
of these possible divisions. To conclude, we see that our
algorithm checks all possible partitions, and takes the one
with the highest total satisfaction; thus correctness follows.

For the running time, let us first compute the size of the
table of the first dynamic program. Since we have a cell
for each node root(T ′) in the tree, for each number k′ of
districts, and for each alternative a′, it follows that the size
of the table of the first dynamic program is n · k ·m.

Next, we compute the time we spend in the computation
of each node, for the first dynamic program. The amount of
work for a leaf is O(1), and for a node with only one child is
O(m), since we consider all possible representatives for its
child. To compute the time we spend in the computation
of a node with at least two children, let us first compute
the size of the table of the second dynamic program. Since
we have a cell for each node root(T ′) in the tree, for each
number c′ of children, for each number k′ of districts, and
for each alternative a′, it follows that the size of the table
of the second dynamic program is n · n · k · m. For each
node in the second dynamic program, the time we spend is
k ·m, since we consider each k′′ ∈ [k′] and we consider all
representatives for its c′-child. Thus, naturally, the amount
of work for a node in the first dynamic program is the highest
for nodes with at least two children, and in this case it is
n · n · k ·m · k ·m.

To conclude, we have that the total running time is
nkmnnkmkm, which equals to (nmk)3.

Intuitively, the reason for the computational complexity
difference between the non-unique variant of SPR (which
is shown, in Theorem 3, to be polynomial-time solvable on
trees) and the unique variant of SPR (which is shown, in
Theorem 2, to be NP-hard even on paths), is the following:
for the non-unique variant, we do not need to remember the
exact committee members that represent certain subtrees, as
it is sufficient to only count the number of committee mem-
bers already assigned. For the unique variant, however, this
is not the case, since committee members that are already
assigned to districts cannot represent any further voters.

It turns out that the efficient algorithm presented in the
proof of Theorem 3 for the non-unique variant of SPR on
trees can be generalized to graphs with bounded treewidth
(see Section 2.5 for a brief introduction on treewidth).

The overall idea of the efficient algorithm for graphs with
bounded treewidth is the following: since graphs with
bounded treewidth have small separators, it is enough to
consider all possible assignments of alternatives to the ver-
tices in each separator, corresponding to bags in the com-
puted tree decomposition; then, it is sufficient to keep track
of the number of districts already assigned to vertices corre-
sponding to bags inside the subtree rooted in the separator.

Theorem 4. On graphs with bounded treewidth ω, the
non-unique variant of SPR is polynomial-time solvable.

Proof. We use the concept of a nice tree decomposi-
tion [5]: in short, a tree decomposition can be efficiently
converted into a nice tree decomposition, with O(nω) nodes,
the same treewidth, and with the special property that there
are only the following four types of nodes:
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Leaf node: Only one vertex is associated with this node.

Introduce Node: The node has one child, and if B is the
set of vertices associated with its child, then there exist some
v /∈ B for which it holds that the set of vertices associated
with the node is B ∪ {v}.
Forget Node: The node has one child, and if B is the set
of vertices associated with the node, then there exist some
v /∈ B for which it holds that the set of vertices associated
with its child is B ∪ {v}.
Join Node: The node has two children, and if B is the
set of vertices associated with the node, then each of the
children is also associated with the same set B.

Given a nice tree decomposition, we next describe a dy-
namic program for solving SPR on it. To this end, for a
node T ′ associated with z vertices, let us arbitrarily or-
der those z vertices and denote them by [v1, . . . , vz]. For
a node T ′ (in the tree decomposition), a number k′ of dis-
tricts, and z alternatives, [a1, . . . , az], possibly with dupli-
cates, let us define Rec(T ′, k′, [a1, . . . , az]) to be the optimal
total satisfaction for the vertices in the subtree rooted at T ′,
when partitioning them into k′ districts, such that, for each
i ∈ [z], vi is represented by the alternative ai. Notice that
the alternatives [a1, . . . , az] are also ordered, to match the
vertices [v1, . . . , vz]. For ease of presentation, let us define
Rec(T ′, k′) := max[a1,...,az ]∈Az (Rec(T ′, k′, [a1, . . . , az]) (re-
call that A is the set of alternatives). The algorithm would
return Rec(T, k) for the root T of the tree.

To describe the dynamic program, it is enough to describe
how to compute Rec(T ′, k′, [a1, . . . , az]) for each of the four
different types of nodes in the nice tree decomposition.

T ′ is a leaf node: Let T ′ be a leaf node, associated with the
vertex v. First, if k′ = 0 or z 6= 1, then there is no solution;
thus, in this case, we define Rec(T ′, k′, [a1, . . . , az]) := −∞.
Otherwise, if k′ = 1 and z = 1, then we shall check whether v
is satisfied by a1; thus, in this case, we define Rec(T ′, 1, [a1])
to be 1 if a1 ∈ Av and 0 otherwise (recall that Av is the set
of alternatives approved by v).

T ′ is an introduce Node: Let T ′ be an introduce node,
associated with the vertices [b1, . . . , bx+1] (ordered in this
arbitrary order), with one child, denoted by child, which
is associated with the vertices [b1, . . . , bx] (ordered in this
arbitrary order).

First, we shall check whether it is possible to assign the
alternatives [a1, . . . , ax+1] to the vertices [b1, . . . , bx+1], us-
ing at most k′ districts. To this end, we shall compute the
number of connected districts induced by assigning each al-
ternative ai to his corresponding vertex bi. If such an as-
signment results in more than k′ connected districts, then
we define Rec(T ′, k′, [a1, . . . , ax+1]) := −∞.

Otherwise, we compute the satisfaction of the vertices
[b1, . . . , bx+1] from this assignment of the alternatives
[a1, . . . , ax+1]; let us denote this value, which is equal to
|{i ∈ [x + 1] : ai ∈ Abi}|, by score(T ′).

We have two possibilities to consider now. First, if bx+1

(the vertex which is introduced in T ′) is in her own district
(that is, there is no other vertex bi, for i ∈ [x], which is ad-
jacent to bx+1 and for which ax+1 = ai), then, in this case,
we define Rec(T ′, k′, [a1, . . . , ax+1]) := score(bx+1, ax+1) +
Rec(child, k′ − 1, [a1, . . . , ax]), since one of the districts is
“used” by bx+1 (recall that score(bx+1, ax+1) is 1 iff bx+1

approves ax+1); otherwise, if bx+1 is not defining his own

district (that is, there is another vertex bi, for i ∈ [x], which
is adjacent to bx+1, and for which ax+1 = ai), then, in
this case, we define Rec(T ′, k′, [a1, . . . , ax+1]) to be equal
to score(bx+1, ax+1) + Rec(child, k′, [a1, . . . , ax]).

T ′ is a forget Node: Let T ′ be a forget node, associated
with the vertices [b1, . . . , bx] (ordered in this arbitrary or-
der), with one child, denoted by child, which is associated
with the vertices [b1, . . . , bx+1] (ordered in this arbitrary or-
der). We check all options of assigning an alternative to the
vertex bx+1 (the vertex that was forgotten), and take the
maximum over these options; that is, in this case, we define
Rec(T ′, k′, [a1, . . . , ax] := maxa∈A(Rec(child, k′, [a1, . . . , ax, a]).

T ′ is a join Node: Let T ′ be a join node, associated
with the vertices [b1, . . . , bx] (ordered in this arbitrary or-
der), with two children, denoted by child1 and child2, both
associated with the same vertices (in the same arbitrary or-
der). We check all options of distributing the k′ districts
between the two children of T ′; that is, we define

Rec(T ′, k′, [a1, . . . , ax] := max
k′′∈[k′]

(

Rec(child1, k
′′, [a1, . . . , ax]) +

Rec(child2, k
′ − k′′, [a1, . . . , ax]) − score(T ′)).

Recall that score(T ′) is the total satisfaction that the ver-
tices [b1, . . . , bx] get by assigning [a1, . . . , ax] to them; we
decrement the value by score(T ′) since it is incremented al-
ready twice, once in each child of T ′.

This concludes the description of the algorithm. For cor-
rectness, it can be observed, and formally proven in induc-
tion, that we preserve correctness for each of the node types.
We omit these straight-forward arguments.

For the time complexity, we shall first compute the size
of the table. We have a cell for each node T ′ in the tree
decomposition, for each number k′ of districts, and for each
vector [a1, . . . , az], where z ≤ ω + 1, where each ai is taking
values from A. Thus, the size of the table is n · k · mω+1.
The amount of time spent for each cell is different for each
node type: for leaves, we spend O(1) time; for introduce
nodes, we spend O((ω + 1)2) time, since we compute the
number of districts induced by the assignment; for forget
nodes, we spend O(m) time, since we consider all possible
representatives for the forgotten node; for join nodes, we
spend O(k) time, since we consider all possible distributions
of the k′ districts between the two children. All in all, we
have time complexity of n · k ·mω+1 · max((ω + 1)2,m, k),
which is generally governed by O(mω · n).

A similar result as stated in Theorem 4 for the non-unique
variant of SPR is, presumably, not possible for the unique
variant of SPR (recall that Theorem 2 shows that the unique
variant of SPR is NP-hard even on paths). However, if we
consider only constant number of districts, then it turns out
that the unique variant of SPR is polynomial-time solvable
on graphs with bounded treewidth.

The algorithm is, in a sense, a modification of the algo-
rithm described in the proof of Theorem 4. Specifically, for
the unique variant of SPR it is not sufficient to keep track
only of the number of districts already assigned to a subtree
in the tree decomposition, since we do not allow an alter-
native to represent several (disconnected) districts. Thus,
instead of keeping track of that number, we keep track of
the exact alternatives which are used as representatives for
the vertices inside the subtree rooted in each separator.
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Theorem 5. On graphs with bounded treewidth ω, the
unique variant of SPR is polynomial-time solvable for con-
stant number of districts.

Proof. We use an algorithm which has a lot of simi-
larities with the algorithm described in the proof of The-
orem 4. Here, however, instead of computing the value
Rec(T ′, k′, [a1, . . . , az]), corresponding to the maximum to-
tal satisfaction when assigning the alternatives [a1, . . . , az]
to the vertices of T ′, while using k′ alternatives as the rep-
resentatives for the vertices corresponding to the subtree
rooted at T ′, we compute the following. For a node T ′ (in the
tree decomposition), a set of alternatives S′ ⊆ A, and a list
of alternatives [a1, . . . , az], we define Rec(T ′, S′, [a1, . . . , az])
to be the maximum total satisfaction when assigning the al-
ternatives [a1, . . . , az] to the vertices of T ′, while using the
alternatives in S′ as representatives for the vertices corre-
sponding to the subtree rooted at T ′.

Indeed, this corresponds to keeping track of the exact rep-
resentatives of the subtree, and not only of the number of
such representatives, which is sufficient for the non-unique
variant of SPR, but is not sufficient for the unique variant
of SPR.

Due to space constraints, we defer the full description of
the algorithm, together with its proof of correctness and
analysis of its running time, to the full version (the proof is
available upon request).

Let us end the technical part of the paper by mentioning
that Theorems 3, 4, and 5 might follow by expressing SPR
in Monadic Second Order Logic and applying corresponding
meta-theorems [12, 18]. Anyhow, our proofs are combinato-
rial and thus give more insight to the problem structure and
are generally more efficient.

5. OUTLOOK
We mention some directions for future research.

Requiring other structural properties. One of the
main points of this paper is that imposing structure on vir-
tual districts might be beneficial for some applications re-
lated to systems of proportional representation. That is,
in certain cases where proportional representation is desir-
able, it might make sense to take into account underlying
networks; then, one might try to require certain structural
properties from the virtual districts, to hopefully gain more
desirable societal outcomes.

As one of the most basic structural properties of graphs,
in this paper we chose to require each virtual district to be
connected. It is natural to impose other structural restric-
tions on the virtual districts.

As examples, we might require each virtual district to:

1. have a small diameter or a small sum of distances: this
might model geographical closeness, e.g., as described
in the commercial scenario in Section 1.1;

2. be highly-connected: this might be quantified, e.g., us-
ing vertex connectivity, edge expansion, or graph den-
sity: the resulting districts might be more noise-robust;

3. have a light spanning tree, according to some given
edge weights: a corresponding partition would have
good communication properties, since broadcasting,
e.g., would be easier (recall the multiagent scenario,
described in Section 1.1.

Size-constrained districts. It is natural to consider SPR
on top of the Monroe rule [20] (instead of on top of the
Chamberlin–Courant rule), by requiring all virtual districts
to be of roughly the same size.

We mention, importantly, that our algorithmic results
seem to transfer to this model as well. Specifically, we can
enforce specific district sizes in our dynamic programs used
in the proof of Theorem 3 and we can make sure, at least
for constant number of districts, that the districts created
by the algorithm presented in the proofs of Theorem 4 and 5
would be of the required sizes.

Approximation and heuristics. It is not clear whether
SPR can be efficiently approximated. Even if we cannot
prove approximation guarantees, studying heuristics is of
interest. Below we briefly discuss two heuristic ideas.

Using spanning trees. We might get good approximation al-
gorithms by first finding a spanning tree for the given graph,
and then operating only on that spanning tree (recall that,
at least for the non-unique variant, we can efficiently solve
SPR for trees).

Using diffusion processes and local search. Consider the fol-
lowing process. We start from k arbitrary vertices, called
initiators, such that each initiator defines its own district.
Then, in each iteration, we perform a diffusion step, where
each initiator selects one vertex to be added to her district
while still preserving connectivity (naturally, if possible, the
initiator would select a vertex with similar preferences to
her own). We end the diffusion process when the partition
into districts is finalized. Further, it might be worthwhile
to perform local improvement steps, moving voters between
districts while preserving connectivity.

Egalitarian variant. In this paper we study a maxsum
variant of SPR, where our goal is to maximize the sum of
satisfaction, or, equivalently, to minimize the sum of dissat-
isfaction. In certain situations, however, it might be desir-
able to minimize the maximum dissatisfaction, thus studying
a minmax variant of SPR. Indeed, this would be the egal-
itarian variant of SPR (instead of the utilitarian variant,
which is the subject of the current paper).

The egalitarian variant might be computationally easier,
as, for example, a greedy algorithm which keeps adding vot-
ers to a district until the given upper bound on the dissatis-
faction has been reached, might work in some cases (at least
for trees, but possibly for other graph classes and variants
as well).

Scoring-based SPR. In this paper we study SPR for Ap-
proval elections, where each over is associated with a subset
of her approved alternatives. It is natural to study SPR for
scoring-based voting rules, where each voter is associated
with a ranking over the alternatives (thus, correspondingly,
each vertex would be labeled with a permutation over the
alternatives). Not surprisingly, SPR for scoring-based vot-
ing rules remains NP-hard, as can be seen by introducing
further dummy alternatives to the construction described in
the proof of Theorem 1. Further, there is some hope for effi-
cient approximation algorithms, since scoring rules, such as
Borda, offer smoother distinction between alternatives; as a
result, problems defined on scoring rules sometimes tend to
be easier to approximate than on Approval elections.
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