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ABSTRACT
Civic Crowdfunding is emerging as a popular means to mo-
bilize funding from citizens for public projects. A popu-
lar mechanism deployed on civic crowdfunding platforms is
the provision point mechanism, wherein, the total contribu-
tions must reach a predetermined threshold in order for the
project to be provisioned (undertaken). Such a mechanism
has multiple equilibria but unfortunately, in many of these,
the project may not be funded even if it is highly valued
among agents. Recent work has proposed mechanisms with
refund bonuses where the project gets funded in equilibrium
if its net value is higher than a threshold among the agents
who are aware of the crowdfunding effort. In this paper,
we go one significant step further: we formalize the notion
of social desirability of a public project and propose mecha-
nisms which use the idea of referrals to expand the pool of
participants and achieve an equilibrium in which the project
gets funded if its net value exceeds a threshold among all the
agents who value the project. A key challenge in introduc-
ing referrals in civic crowdfunding settings is to ensure that
incentivizing referrals does not dis-incentivize contributions.
A referral mechanism introduced in conjunction with a civic
crowdfunding mechanism must ensure that the project gets
funded at equilibrium. We propose a class of mechanisms
that achieve these and we call this new class of mechanisms
Referral-Embedded Provision Point Mechanisms (REPPM).
In REPPM, by referring others to contribute, an agent can
reduce his/her equilibrium contribution, but only up to a
bound such that the project is funded at equilibrium. We
propose two variants of REPPM and both these mechanisms
have the remarkable property that, at equilibrium, referral
bonuses are offered but there is no need for actual payment
of these bonuses. REPPM can increase in the number of
projects that are funded on civic crowdfunding platforms.

1. INTRODUCTION
Civic crowdfunding platforms like Spacehive [1], Citizin-

vestor [11] and Neighbourly [22] etc., aim to generate fund-
ing for public and community projects from citizens. In the
United Kingdom, Spacehive has generated £5 million for
over 150 projects from citizen contributions across 68 cities.
The process followed on civic crowdfunding platforms is:
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Figure 1: Projects on a civic crowdfunding platform.

1. Requester posts a public project proposal : A requester,
seeking crowdfunding for a public project, posts a pro-
posal. The proposal specifies a target amount of funds
to be raised for the project to be provisioned: the tar-
get amount is known as the provision point. The re-
quester also specifies a deadline by which the funds
need to be raised.

2. Agents arrive: Agents arrive over time to view the
project and observe (a) the target amount, (b) the
amount pending to be funded, and (c) the deadline.

3. Agents contribute: An agent may contribute any amount
to the project.

4. Requester provisions or refunds: If the funding target
is achieved by the deadline, the requester provisions
the project; otherwise, the contributions of all agents
are refunded.

We refer to this as the Provision Point Baseline (PPB) mech-
anism. The class of Provision Point Mechanisms (PPM) we
consider share the following characteristics: (i) if the pro-
vision point is reached, the contributions are collected and
the project is provisioned and (ii) if provision point is not
reached, the project is not provisioned and the contributions
are refunded; in addition, a bonus may be paid to agents.
For a simultaneous move setting, where agents must decide
their contributions without information about the contribu-
tions of other agents, the Provision Point Mechanism with
Refund Bonus (PPR) [26] incentivizes contributions by of-
fering a refund bonus. For a sequential move setting, where
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Figure 2: Referrals can expand the set of agents who
can contribute.

an agent observes the contributions of agents who arrived
before him, the Provision Point Mechanism with Securi-
ties (PPS) [8], incentivizes contributions by offering a re-
fund bonus. Both these mechanisms achieve an equilibrium
(Nash and sub game perfect respectively) at which the pub-
lic project is funded.

2. PROBLEM, RELATED WORK, AND CON-
TRIBUTIONS

2.1 Problem Formulation
Civic crowdfunding has had mixed results with only 44%

of posted projects getting funded[1]. An important question
is to understand why a project does not get funded. There
are at least three distinct challenges:

1. Problem-1: the project is not valued enough in the
agent population it is purported to benefit.

2. Problem-2: the project is valued enough by the agents
but not all the agents who value it were aware of the
crowdfunding effort.

3. Problem-3: the project is valued enough by the agents,
all the agents were aware of the crowdfunding effort,
but some agents chose to free ride on the contributions
of others.

On civic crowdfunding platforms, Problem-3 may be at-
tributed to the use of PPB mechanism which has been shown
to have multiple equilibria, in many of which the project is
not funded [6, 7, 24]. To address Problem-3, Zubrickas
et.al [26] and Chandra et.al. [8] propose PPR and PPS re-
spectively. Our current work is motivated by Problem-2
on crowdfunding platforms, where, a subtle yet critical dis-
tinction must be made between the set of agents who value
the public project (N) and the set of agents who are aware
of the crowdfunding effort (M). The set of agents who can
contribute is M∩N (Figure 1(b)). To solve Problem-2, one
approach is to use a referral mechanism to incentivize agents
who are aware of the crowdfunding effort to refer others who
might value the project. With agents in a social network, re-
ferral mechanisms can expand the pool of participants, thus
increasing the funds created through crowdfunding.

The problem of designing referral mechanisms for civic
crowdfunding is non-trivial because incentivizing referrals

Figure 3: Introducing referrals can disincentivize
contributions

may in fact dis-incentivize contributions towards the pub-
lic project. Consider, for example, Figure 3, where agent
0 refers to the requester who posted the public project.
Agents 10, 11, 7 constitute the set M : agents who are aware
of the project. With the introduction of incentives for refer-
rals, these agents may choose to refer other agents and rely
on their contributions for the project to get funded rather
than contribute themselves. If the referral mechanism is
not well-designed, all agents may act in this fashion and
the project may not get funded at equilibrium. Thus, a
key challenge in introducing a referral mechanism in provi-
sion point mechanisms is to ensure that agents do not free-
ride and the project gets funded at equilibrium. In fact,
the benefit of introducing referrals should be quantified in
terms of the projects that are funded (at equilibrium) with
referrals as compared to the projects which are funded (at
equilibrium) without referrals. Thus, designing mechanisms
which address Problem-2 and Problem-3 together is non-
trivial. A second challenge is that, since the project is public
(non-excludable, non-rival), no agent may be willing to pay
a referral bonus: this is a key difference with other refer-
ral mechanisms in the literature where there exists a center
(henceforth, sponsor) who benefits from the referrals.

2.2 Related Work in Referral Mechanisms
Referral mechanisms have been used in a wide variety of

settings like the red balloon challenge [21, 23], viral mar-
keting [2, 5, 9, 13, 14, 18], and query propagation in social
networks [12, 17]. In these referral mechanisms, a sponsor
incentivizes agents to refer other agents - either to maxi-
mize the spread of information in the network (e.g. viral
marketing) or find an (a set of) agent(s) to achieve an ob-
jective (e.g. red balloon, query propagation). Our approach
of embedding referral mechanisms in provision point mech-
anisms differs from existing referral mechanisms in two key
ways: (i) in civic crowdfunding, since the project is public
(non-excludable), it is not apriori clear who will be willing
to payout a referral bonus so that the public project gets
funded and (ii) unlike traditional referral mechanisms where
the referral bonus must be lower bounded to ensure that an
agent has enough incentive to overcome the cost of refer-
ring, in civic crowdfunding, an agent’s referral bonus must
be upper bounded to ensure that it does not dis-incentivize
agents contribution towards the public project. We address
these challenges in this work.
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Symbol Definition
T Time at which fund collection concludes
t Epoch of time in the interval [0, T ]
h0 Target amount (provision point)
ht Amount that remains to be funded at t;

i ∈ {0, 1, . . .} Agent id; i = 0 refers to the requester
ai ∈ [0, T ] Time at which agent i arrives
θi ∈ R+ Agent i’s value for the project
xi ∈ R+ Agent i’s contribution to the project
ti ∈ [ai, T ] Time at which agent i contributes

Ni Neighbors of agent i in the social network
Mi Set of contributors referred to by agenti
ψi Strategy of agent i

ϑN ∈ R+ Net value for project among agent set N
χ ∈ R+ Net contribution for the project

Table 1: Key notation

2.3 Notation
Let N be the set of agents who value a given public project

and let M be the set of agents who are aware of the crowd-
funding effort. Hence the set of agents who can contribute
funds to the project is M ∩N (See Figure 1(b)). The value
that agent i derives from the public project getting provi-
sioned is θi and the net value for the project among agents

who can contribute is ϑM∩N =
∑|M∩N|
i=1 θi. Let h0 be the

target amount that needs to be collected for the project to
be provisioned. Agent-i’s contribution is xi ∈ [0, h0] and the

net contribution is χ =
∑|M∩N|
i=1 xi. The vector of contribu-

tions is x = (x1, ..., x|M∩N|) ∈ R|M∩N|+ . We use the subscript
−i to represent all agents other than agent i, for example,
x−i refers to the vector of contributions of all agents except
i. Agent i may refer Mi ⊆ Ni other agents, where Ni is set
of his neighbors in the social network.

Extended notation for sequential setting
In a sequential setting, at t = 0, the requester posts a pro-
posal for funding a public project. This includes the target
amount of funds h0 (the provision point) and a deadline T
till which agents may contribute to the project. ht refers
to the target amount that remains to be collected at time
t. Agent-i arrives at time ai ∈ [0, T ] and observes the funds
that have been collected so far (h0 − hai). Agent i may de-
cide to contribute funds xi ∈ [0, hai ] at any time ti ∈ [ai, T ].
Thus, in the sequential setting, agent i’s strategy, ψi, con-
sists of his contribution (xi), his time of contribution (ti) and
the set of agents he refers (Mi) and his utility is ui(ψ; θi).
Table 1 summarizes key notation.

2.4 Related Work in Crowdfunding
There is significant literature on the design of mechanisms

for the private provisioning of public projects [6, 7, 8, 10, 15,
24, 25, 26]. Morgan et. al. [20] study the use of state lotter-
ies to incentivize contributions to public projects, wherein,
a higher contribution leads to a higher likelihood of winning:
the game induced attains a unique equilibrium. Marx et. al.
[19] consider a setting where agents make contributions in
a round-robin fashion and prove the existence of an equilib-
rium where an agent contributes if and only if others make
their equilibrium contributions. Our work is most closely
related to the PPR [26] and PPS [8] mechanisms.

In the class of Provision Point Mechanisms (PPM), an
agent’s utility can be stated as follows:

Definition 1. (Un)Funded Utility: In the class of provision
point mechanisms, the (un)funded utility of agent-i is his
utility if the target amount is (not) collected and the public
project is (not) provisioned.

In the provision point mechanisms we consider, an agent’s
funded utility is always (θi−xi) but mechanisms differ in the
unfunded utility. We let IX be an indicator random variable
which takes the value 1 if X is true and 0 otherwise.

2.4.1 Provision Point Baseline (PPB) Mechanism
In PPB, an agent’s strategy space consists only of contri-

bution to be made, hence ψi = xi ∀i. His unfunded utility
is zero1 and hence his utility is:

ui(x; θi) = Iχ≥h0 × (θi − xi) + Iχ<h0 × 0 (1)

PPB has been shown to have multiple equilibria, many of
which are inefficient [6]: a result which has been verified
empirically too [16].

2.4.2 Provision Point Mechanism with Refund (PPR)
The PPR mechanism is designed for simultaneous move

setting where agents contribute without knowledge of the
other agents’ contributions. In PPR [26], if the funding tar-
get is not achieved, the contributions are refunded and an
additional refund bonus is paid to the agents who volun-
teered to contribute. The refund bonus is xi

χ
B ∀i where

B > 0 is the refund budget specified at the beginning and
is common knowledge among all agents. An agent’s strat-
egy space in PPR consists only of his contribution, hence
ψi = xi ∀i and his utility is:

ui(x; θi) = Iχ≥h0 × (θi − xi) + Iχ<h0 ×
(
xi
χ
B

)
(2)

The set of Pure Strategy Nash equilibria with PPR is char-
acterized as follows:

Theorem 1. [26] Let ϑM∩N > h0 and B > 0. In PPR,

the set of PSNE are {(x∗i ) : x∗i ≤ h0

B+h0
θi∀i;χ = h0} if

B ≤ ϑM∩N − h0. Otherwise the set of PSNE is empty.

2.4.3 Provision Point Mechanism with Securities (PPS)
In a sequential setting where agents arrive over time and

can observe the contributions collected thus far (e.g. civic
crowdfunding platforms), the PPS mechanism is better suited.
In PPS [8], if the funding target is not achieved by the dead-
line T , the contributions are refunded and an additional re-
fund bonus is paid to agents who volunteered to contribute.
The refund bonus is designed so that early contributions are
incentivized. PPS uses a complex prediction market [3] to
determine the refund bonus with the key idea being that
contributors actually buy contingent securities (rtii ) each of
which pay a unit amount if the project is not funded. An
agent’s strategy space in PPS consists of the quantum and
timing of his contribution, hence ψi = (xi, ti) ∀i. Thus,
his utility is given as:

ui(ψ; θi) = Iχ≥h0(θi − xi) + Iχ<h0(rtii − xi) (3)

1We keep zero term in the equation to highlight unfunded
utility
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Figure 4: Referral tree for P2 with agent types.

PPS achieves an equilibrium at which the project is funded
and thus the refund bonus is not paid out at equilibrium [8].

2.5 Our Contributions
This works makes the following contributions

1. We propose a novel class of mechanisms, REPPM for
civic crowdfunding, which incentivize referrals while
ensuring that the aggregate contribution of the agents
is sufficient to fund the project at equilibrium (Theo-
rem 2, Theorem 3). In REPPM, an agent’s equilibrium
contribution is proportional to the agent’s value for the
project, less a referral bonus which depends on the net
contributions due to the agent’s referrals .

2. We instantiate two variants of REPPM: REPP-R and
REPP-S corresponding to PPR [26] and PPS [8] re-
spectively. We define the social desirability (Defini-
tion 2) of a public project and for both REPP-R and
REPP-S, specify which projects get funded in equilib-
rium in terms of their social desirability.

3. We show that if the agent population which will benefit
from the project forms a connected graph via social re-
lations, our mechanisms achieve an equilibrium where
the project is funded (Theorem 2, Theorem 3).

4. To best of our knowledge, our work is the first to design
a referral mechanism which offers a referral bonus that
incentivizes referrals but remarkably does not have to
pay the referral bonus in equilibrium.

The rest of the paper is organized as follows. In Section 3,
we formalize the notion of social desirability, introduce the
notion of embedding a referral bonus function in provision
point mechanisms and specify the conditions that such a
function must satisfy to be used REPPM. In Section 4 and
Section 5, we instantiate REPPM corresponding to PPR and
PPS and study the impact of doing so on the equilibrium.
We conclude in Section 6 with a summary.

3. REFERRAL-EMBEDDED PPM

3.1 Setup and Information Model
Agents in M ∩N can be represented as a directed graph

with the sponsor as the root. If more than one agent refers
the same agent, the earliest referral takes precedence. Agents
who contribute without being referred by another agent form
the sponsor’s single hop neighbors. Thus, the referral graph

Figure 5: Agent’s contributions to projects.

is a tree. Consider, for example, the scenario in Figure 4
where three public projects are requesting funds from 12
agents (|N | = 12). An edge from an agent to a project
represents that the agent is aware of the effort (visited the
project page). The weight of the edge represents an agent’s
contribution to the project: we use a dotted edge to repre-
sent a contribution of value zero. For P2, M = {1, 2, 3, 4, 5}
are aware of the crowdfunding effort and have contributed;
if agents {1, 3, 4, 5} refer their neighbors, we get the referral
tree of Figure 5.

3.2 Assumptions
We make the following assumptions. Assumption-1: Agents

have quasi-linear utility [6, 8, 26]. Assumption-2: Apart
from knowing the history of contributions, agents do not
have any information about the valuations of the other agents
nor do they have any bias to believe whether the project will
get funded or not [8, 26]. Assumption-3 : The set of agents
who have a non-zero value for the project (N) forms a con-
nected graph and the number of agents who arrive directly
on the platform is at least two (|N0| ≥ 2). Assumption-4:
In a sequential setting, agents contribute only once to the
project (agents typically visit the project website once and
contribute if the project has value to them). Our mecha-
nisms ensure that agents have no advantage in delaying or
splitting up their contributions. Assumption-5: An agent’s
value for the public project (θi) is his private information
and T , ht are common knowledge.

3.3 Design of REPPM
In REPPM, the project is provisioned only if the collected

funds reach the provision point. If the provision point is not
reached, contributions are refunded and an additional bonus
is paid to agents who volunteered to contribute. This bonus
consists of two parts (i) a refund bonus and (ii) a referral
bonus. The refund bonus is calculated using the underly-
ing provision point mechanism while the referral bonus is
calculated using a Referral Bonus Function (RBF). The key
intuition is to embed a RBF in a provision point mechanism
such that it impacts only the unfunded utility of agents:
since the unfunded utility is realized only if the project is not
funded, the referral bonus is paid out only if the project is
not provisioned. Thus, REPPM is a two pronged approach:

1. Design a referral mechanism where a referral bonus is
offered but is not paid out if the project is funded.

2. Embed the referral mechanisms in provision point mech-
anism so that the project is funded at equilibrium.
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Advantage of REPPM
To quantify the advantage of REPPM, we first formalize the
notion of social desirability:

Definition 2. (N, τ) Socially Desirable : A public project
is said to be (N, τ) socially desirable if the net value of the
project among agents in the set N is greater than τ , that is,
ϑN =

∑n
i=1 θi > τ .

In Figure 4(b), if the cost of P2 were 2, then the project is
not socially desirable without referrals but is socially desir-
able with referrals. PPR [26] ensures that the project gets
funded at equilibrium if it is (M ∩N,h0) socially desirable.
In a sequential setting, PPS [8] ensures that the project gets
funded at equilibrium if it is (M ∩N,C−1

0 (h0 + C0(0))) so-
cially desirable2. Thus, in both PPR and PPS mechanisms,
the social desirability condition is based on M ∩ N . We
design mechanisms that are (N, τ) socially desirable rather
than (M ∩N, τ ′) socially desirable. We show that this can
be achieved if the RBF satisfies the following:

1. RBF-Condition-1 (Continuous and Differentiable)
This condition requires that the gradient of the RBF
( ds
dR

) is well defined everywhere so that the marginal
increase in referral bonus due to increase referred con-
tribution is well defined.

2. RBF-Condition-2 (Monotonically Increasing) This
condition requires that the gradient of the RBF is pos-
itive (s′(R) = ds

dR
> 0 ∀R ∈ R+) so that an agent has

an incentive to refer all agents in his network.

3. RBF-Condition-3 (Bounded Loss) This condition
requires that the referral bonus is upper bounded (s(R) <
σ ∀R ∈ R+) so that the loss of the sponsor is upper

bounded. To this end, we will required that d2s
dR2 ≤

0 ∀R.

Finally, if an agent does not refer, the agent does not get
any referral bonus (s(0) = 0) so that in the absence of re-
ferrals, the mechanism reduces to the underlying provision
point mechanism. Though this is not strictly required, it
makes the analysis simpler. Some examples of functions

that can be used as RBF are tanh(R),
(

1
1+exp(−R)

− 0.5
)

and 2
π

arctan(R). The choice among these depends on the
minimum bonus that needs to be offered to incentivize re-
ferrals. We now discuss two instantiations of REPPM.

4. REFERRAL EMBEDDED PPR : REPP-R
REPP-R embeds referrals in PPR. In REPP-R, if the pro-

vision point is not reached, the contributions are refunded
and an additional bonus is paid to agents who volunteered
to contribute. This bonus consists of two parts (i) a refund
bonus and (ii) a referral bonus. Let XMi =

∑
j∈Mi xj . In

REPP-R, agent-i’s strategy is ψi = (xi, ti,Mi) and he has a
utility:

ui(ψ; θi) = Iχ≥h0(θi − xi) + Iχ<h0
(
xi
χ
B + s(XMi)

)
(4)

Comparing Equation (4) with Equation (2), we can observe
that the unfunded utility in REPP-R contains an additional
term which depends on the contributions of agents referred
by agent i.
2In Section 5, we will explain the C0 function in more detail.

Figure 6: Some Referral Tree Structures in REPP-S

4.1 Introducing Referral Bonus in PPR
To understand the impact of introducing referrals in REPP-
R, we evaluate the maximum referral bonus that may need
to be paid out: this depends on the RBF and the struc-
ture of the underlying referral tree. We can show (see Ap-
pendix) that the maximum referral bonus needs to be paid
out when the provision point (h0) is achieved by n = |N |
contributions of the smallest possible contribution δ = h0

n
and each contributing agent is referred by a chain of d non-
contributing agents where d is the diameter of the social
network of N agents. The maximum referral bonus paid out
is nd×s(δ) < ndσ. Figure 6(b) shows such a worst case with
d = 1 with the sponsor as the root and the shaded nodes
indicating agents who did not contribute.

4.2 REPP-R Worst Case Analysis
As the number of referrals needed per unit of contribution

increases, more referral bonus needs to be paid out. Since
the exact amount of referral bonus depends on the referral
tree structure, we analyze two possible worst case scenarios
under Assumption-3.

Case-1: The provision point (h0) is achieved by n contri-

butions of the smallest possible contribution δ = h0

n
each -

all of them referred by a different agent. Figure 6(b) shows
such an example where the provision point is met by the
contribution of agents in the set {7, 8, 9, 10, 11, 12} each one
referred by a different agent. In this example, the contri-
bution is inter-mediated by exactly one referring agent: in
general, the path length between a contributor and the spon-
sor may consist of d unique agents who do not contribute -
d being the diameter of the underlying social network. The
total referral bonus paid out is nd× s(δ) < ndσ.

Case-2: The provision point (h0) is achieved by n contri-

butions of the smallest possible contribution δ = h0

n
each -

all of them referred by the same agent. Figure 6(c) shows
such an example where the provision point is met by the
contribution of agents in the set {7, 8, 9, 10, 11, 12} all of
them referred by 6. In this example, the contribution is
inter-mediated by exactly one referring agent: in general,
the path length between a contributor and the sponsor may
consist of d nodes who monopolize the contributions - d be-
ing the diameter of the underlying social network. The total
referral bonus paid out in this case is d× s(nδ) < dσ.
RBF-Condition-3 ensures that the RBF is a concave

function so that the worst case is Case-1.

4.3 Equilibrium Analysis of REPP-R
The REPP-R mechanism induces a game among the agents
{1, 2, . . . , n}. With ψis being agents’ strategies and uis as
their utilities, for a sequential setting, we define Pure Strat-
egy Nash Equilibrium (PSNE) :
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Definition 3. (Pure Strategy Nash Equilibrium) A strategy
profile ψ∗ = (ψ∗1 , . . . , ψ

∗
n) is said to be a Pure Strategy Nash

Equilibrium (PSNE) if ∀i, ∀θi

ui(ψ
∗
i , ψ

∗
−i; θi) ≥ ui(ψ̃i, ψ

∗
−i; θi) ∀ψ̃i.

We now prove the following theorem under Assumption-
2: agents do not have any information about the valuations
of the other agents nor do they have any bias to believe a
whether project will be funded at equilibrium or not.

Theorem 2. Let s() be a referral bonus function that sat-
isfies RBF-Conditions 1-3. If REPP-R is used for crowd-

funding a project with provision point h0 when σ < ϑN−h0−B
nd

,

the strategies in the set

{
(ψ∗i = {x∗i , Ni}) : x∗i ≤ min

(
0, θi−σ

1+ B
h0

)
,

otherwise x∗i = 0; χ = h0)

}
are Nash equilibria.

Proof. First, we claim in Step-0 that it is a (weakly) domi-
nant strategy for all agents to refer so that M ∩N = N . In
Step 1, we show that, at equilibrium, χ = h0. In Step 2, we
characterize the equilibria strategy of agent i (ψ∗i ). Step 3
proves the upper bound on σ.
Step 0: RBF-Conditions-1,2,3 ensure that every agent has
an incentive to refer since an agent’s unfunded utility in-
creases monotonically with his referrals: s(XMi) increases
monotonically with Mi and is independent of his contribu-
tion. Thus, M ∩N = N .
Step 1: If χ > h0, any agent with a positive contribution
can gain in utility by marginally decreasing his contribution.
χ < h0 cannot hold in equilibrium since, in REPP-R the
unfunded utility always increases with contribution (xi

χ
B).3

and ϑN > (ndσ + h0 + B) > h0 means that there exists
at least one agent j ∈ N who can increase his (unfunded)
utility by contributing more so that he get a higher refund
bonus. Thus, in equilibrium χ = h0.
Step 2: Due to Assumption-2, agents do not have any bias
in believing whether the project will be funded, other than
the contributions. From Step 1, the contributions would be
such that the project is funded in equilibrium. Thus, at
equilibrium, an agent will contribute such that his funded
utility is no less than the highest possible unfunded utility,
that is ∀i:

θi − x∗i ≥ x∗i
h0
B + s(X∗Mi) or equivalently

x∗i ≤

(
θi − s(X∗Mi)

1 + B
h0

)
≤

(
θi − σ
1 + B

h0

)
(5)

where the last inequality follows because even if agents are
optimistic about referral bonus and go conservative for xi,
s(X∗Mi) ≤ σ (RBF-Condition-3). Since negative contribu-
tions are not allowed, a negative equilibrium contribution
means that an agent will refer but not contribute.

Step 3: Summing up
(
θi − x∗i ≥

x∗i
h0B + s(X∗Mi)

)
for all agents

and using
∑
i∈N s(X

∗
Mi

) ≤ ndσ (Section 4.1), we require:

ϑN − h0 ≥ B +
∑
i∈N

s(X∗Mi) ⇒ σ <
ϑN − h0 −B

nd

3In Step-3, we show that upper bounding σ ensures that re-
ferral incentives do not override the incentives to contribute.

The upper bound4 on σ has a natural interpretation: if
the referral bonus is higher, it reduces the incentives for
an agent to contribute to an extent that the project does
not get funded at equilibrium. In PPR, the condition for
equilibrium is B < (ϑM∩N − h0), that is, the excess value
(ϑM∩N −h0) is used to incentivize contributions. In REPP-
R, the excess value has to support the incentives for contri-
bution and the incentives for referrals (B + ndσ < ϑN − h0

): with the important difference that the excess value is cal-
culated in a larger pool (N in REPP-R instead of M ∩ N
in PPR). This means that in scenarios where ϑN > ϑM∩N ,
REPP-R can achieve funding for projects which would not
have been funded with PPR as long as the referral bonus is
upper bounded appropriately.

5. REFERRALS EMBEDDED PPS : REPP-S
REPP-S embeds referrals in PPS [8]. PPS uses a pre-

diction market to determine the refund bonus with the key
idea being that contributors are allotted contingent securi-
ties [4] each of which pay a unit amount if the project is
not funded. The authors set up a binary prediction mar-
ket with two outcomes: (i) the project is funded (ii) the
project is not funded. PPS allots securities for the project-
not-funded outcome to agents who contribute. The number
of securities associated with the project-funded outcome is
0 ∀t ∈ [0, T ]. The number of securities allotted to an agent
depends on the contribution and timing of his contribution.
To determine the number of securities to allot, PPS leverages
a complex prediction market [3] created using a cost function
C : R2 → R. To be used in PPS, a cost function must satisfy
the following conditions: (i) Path Independence (ii) Contin-
uous and Differentiable (iii) Information Incorporation (iv)
No arbitrage (v) Bounded Loss [3, 8]. Let qt denote the to-
tal number of securities (associated with project-not-funded
outcome) allotted till time t in PPS. The number of securi-
ties allotted to agent i if he contributes xi at time ti is:

rtii = C−1
0 (xi + C0(qti))− qti (6)

where C0 : R→ R is a function derived from C by setting the
number of the securities associated with the project-funded
outcome to 0 ∀t ∈ [0, T ] [8].

In REPP-S, the project is provisioned only if the collected
funds reach the provision point. If the provision point is
reached, the contributions are collected and neither the re-
fund bonus nor the referral bonus is paid. If the provision
point is not reached, the contributions are refunded and an
additional bonus is paid to agents who volunteered to con-
tribute. This bonus consists of two parts (i) a refund bonus
and (ii) a referral bonus : both of these are determined by
an underlying prediction market. For agent-i, the refund
bonus depends only on his contribution and is determined
using Equation (6). The referral bonus of agent-i depends
on the number of securities awarded to the agents referred
by him; which, in turn, depends on their quantum and tim-
ing of contributions. The total number of securities allocate
to agent i in REPP-S is:

ρi , rtii + s(RMi) (7)

4In theory, no lower bound on referral bonus is needed since
any referral incentive, no matter how small, should incen-
tivize referrals. In practice, a lower bound may depend on
the effort required to contribute.
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where RMi ,
∑
j∈Mi r

tj
j is the total number of securities al-

lotted to agents referred by i. We make two key observations
(i) RMi depends both on the quanta of contributions gener-
ated due to agent-i’s referrals and the timing of those con-
tributions: the earlier the referred contributions, the higher
the referral bonus (ii) the securities associated with the re-
fund bonus are allocated at ti as soon as agent-i contributes
but the securities associated with the referrals are allocated
at T to account for any contributions that may come in
due to agent-i’s referrals. In REPP-S, agent-i’s strategy is
ψi = (xi, ti,Mi) and he has a utility:

ui(ψ; θi) = Iχ≥h0(θi − xi) + Iχ<h0(ρi − xi) (8)

Comparing Equation (8) with Equation (3) shows how REPP-
S differs from PPS due to the securities allocated for referred
contributions.

5.1 Introducing Referral Bonus in PPS
To understand the impact of introducing referrals in REPP-

S, we evaluate the maximum referral bonus that may need
to be paid out: this depends on the total number of secu-
rities issued which in turn, depends on the cost function of
the prediction market, the referral bonus function and the
structure of the underlying referral tree. With an analysis
similar to the REPP-R case, we can show (see Appendix)
that the total number of securities issued is:

qmax =

|M∩N|∑
i=1

ρi =

|M∩N|∑
i=1

(rtii + s(RMi))

< C−1
0 (h0 + C0(0)) + ndσ (9)

A higher qmax means lower liquidity in the underlying pre-
diction market and hence a lower incentive for contribution.
In PPS, to ensure that agents contribute and the project gets
funded at equilibrium, an agent’s unfunded utility must be a
monotonically increasing in his contribution. This, in turn,
requires that the cost function must be sufficiently liquid
[8]. In REPP-S, ensuring that an agent’s unfunded utility is
monotonically increasing in his contribution requires:

∂

∂xi
(ρi − xi) =

∂

∂xi

(
rtii + s(RMi)− xi

)
> 0 ∀qti , ∀xi < h0

Since s(XMi) is independent of xi and rtii monotonically
decreases with qti , this condition translates to:

∂rtii
∂xi
|qmax =

∂

∂xi
(C−1

0 (xi + C0(qmax))− qmax) > 1 (10)

Equation (9) and Equation (10) determine the total bonus
the sponsor must offer in REPP-S which is higher than in
PPS. The advantage of a higher bonus is an increase in the
participant pool and thus a higher likelihood of the project
getting funded which in turn reduces the sponsor’s risk.

5.2 REPP-S Worst Case Analysis
Since the referral bonus depends on the referral tree struc-

ture, we analyze two possible worst case scenarios under
Assumption-3.

Case-1: The provision point is met by the smallest allowed
contributions (δ) and each of these contributions is due to
a referral. Thus, the provision point (h0) is achieved by n

contributions of δ = h0

n
each. Figure 6(b) shows such an

example. The total number of securities issued is
∑n
i=1 ρi =

∑n
i=1(rtii + s(RMi)) which can be expressed in terms of the

cost function used in the prediction market and the RBF as:

n−1∑
i=0

(
C−1

0 (δ + C0(iδ)) + d× s(C−1
0 (δ + C0(iδ)))

)
=

C−1
0 (h0 + C0(0)) + d×

n−1∑
j=0

s(C−1
0 (δ + C0(jδ))))

where the first term follows since the cost function used in
the prediction market is path independent [8]. Since the
RBF and cost function are monotonically increasing:

d×
n−1∑
j=0

s(C−1
0 (δ + C0(jδ)))) ≤ nd× s(C−1

0 (δ + C0(0))))

RBF-Condition-3 ensures that nd× s(C−1
0 (δ+C0(0)))) <

ndσ, so:

n−1∑
i=0

(
C−1

0 (δ + C0(iδ)) + d× s(C−1
0 (δ + C0(iδ)))

)
<

C−1
0 (h0 + C0(0)) + ndσ

Case-2: The provision point is met by the smallest allowed
contributions (δ) and all the contributions are referred by a
single agent. Figure 6(c) shows such an example. The total
number of securities issued is:

n−1∑
i=0

(
C−1

0 (δ + C0(iδ))

)
+ d× s

(
n−1∑
i=0

C−1
0 (δ + C0(iδ))

)
≤

C−1
0 (h0 + C0(0)) + dσ

Which of the two cases is applicable in a given scenario de-
pends on the RBF. Specifically, Case-1 applies when RBF-
Condition-3 ensures that the RBF is a concave function so
that

∑n−1
i=0

(
s(C−1

0 (δ + C0(iδ)))
)
> s

(∑n−1
i=0 C

−1
0 (δ + C0(iδ))

)
and thus the worst case is Case-1.

5.3 Equilibrium Analysis of REPP-S
REPP-S induce a game among the agents {1, 2, . . . , n}.

With ψis being agents’ strategies and uis as their utilities.
For a sequential setting, we define Sub-Game Perfect Equi-
librium (SGPE). Let Ht be the history of the game till time
t, that contains the agents’ arrivals and their contributions,
then we define:

Definition 4. (Sub-game Perfect Equilibrium) A strategy
profile ψ∗ = (ψ∗1 , . . . , ψ

∗
n) is said to be a sub-game perfect

equilibrium if ∀i, ∀θi
ui(ψ

∗
i , ψ

∗
−i|Hai ; θi) ≥ ui(ψ̃i, ψ

∗
−i|Hai ; θi) ∀ψ̃i, ∀Ht

where ψ∗−i|Hai indicates that the agents who arrive after
ai follow the strategy specified in ψ∗−i.

Theorem 3. Let C0 be an appropriate cost function and let
s() be a RBF that satisfies RBF-Conditions 1-3. If REPP-
S is used for crowdfunding a project with provision point
h0 in a social network of n agents with diameter d and if

σ <
ϑN−C

−1
0 (h0+C0(0))

nd
, then the strategies in the set

{
(ψ∗i =

{x∗i , ai, Ni}) : x∗i ≤ min(0, (C0(θi − σ + qai) − C0(qai))) if

hai > 0, otherwise x∗i = 0; χ = h0

}
are sub-game perfect

equilibria.
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Proof. We claim in Step 0 that it is a (weakly) dominant
strategy for all agents to refer so M ∩N = N . In Step 1, we
show that, at equilibrium, χ = h0. In Step 2, we characterize
the equilibria strategy of agent-i. Step 3 proves the upper
bound on σ. We show that these equilibria are sub-game
perfect in Step 4.
Step 0: This is similar to Step 0 of the proof of Theorem 2.

Step 1: In equilibrium, χ > h0 cannot hold since the re-

quester stops collecting the funds at χ = h0. Since, in
REPP-S the unfunded utility always increases with contri-
bution (See Equation (10)) and ϑN > (ndσ + C−1

0 (h0 +
C0(0))) > h0, χ < h0 mean that there is at least one agent
who can increase his unfunded utility by contributing more
and hence at equilibrium χ = h0.
Step 2: Due to Assumption-2, agents do not have any bias
in believing whether the project will be funded, other than
the contributions. From Step 1, the contributions would be
such that the project is funded in equilibrium. Thus, at
equilibrium, an agent will contribute such that his funded
utility is no less than the highest possible unfunded utility.
That is, ρ∗i − x∗i ≤ θi − x∗i or ρ∗i ≤ θi. Using Equation (6)
and Equation (7), we get

C−1
0 (x∗i + C0(qti))− qti ≤ θi − s(R∗Mi) (11)

or equivalently

x∗i ≤
(
C0

(
θi − s(R∗Mi) + qti

)
− C0(qti)

)
≤

(
C0

(
θi − σ + qti

)
− C0(qti)

)
(12)

where the last inequality follows from RBF-Condition-3
since s(RMi) ≤ σ ∀i. Since negative contributions (with-
drawals) are not allowed, a negative equilibrium contribu-
tion means that an agent will refer but not contribute. Now,
note that (i) the RHS of Equation (12) is a monotonically

decreasing function of qt
∗
i and (ii) qt, the number of secu-

rities allotted by the market at time t, is a monotonically
non-decreasing function of t. Thus, an agent with value θi
minimizes the RHS at t∗i = ai, that is, he contributes as
soon as he arrives. Thus, t∗i = ai. Intuitively, if an agent
delays his contribution, to be indifferent between funded and
unfunded utility, the agent needs to contribute more.
Step 3: Summing up (ρ∗i − x∗i ≤ θi − x∗i ) for all agents leads

to the condition
∑n
i=1 ρ

∗
i ≤ ϑN . Using the bound on

∑n
i=1 ρi

from Equation (11), we get

σ <
ϑN − C−1

0 (h0 + C0(0))

nd
(13)

Step 4: These equilibria, specified as a function of the aggre-
gate history (hai), are also sub-game perfect (See Appendix
for definition). Consider agent j who arrives last at aj . If
haj = 0, then his best strategy is x∗j = 0. If haj > 0, ir-
respective of the history of the contributions and haj , his
funded and unfunded utility are the same at x∗j , defined in
the theorem and still it is best response for j to follow the
equilibrium strategy. With backward induction, by similar
reasoning, it is best response for every agent to follow the
equilibrium strategy, irrespective of the history, as long as
others follow the equilibrium strategy. Further, no agent has
an incentive to delay his contribution either (Assumption-
2 and cost of securities never decreases in REPP-S). Thus,
these equilibria are sub-game perfect.

Mech. Equilibrium Contribution Social Desirability

PPR θi
1+ B

h0

(M ∩N, h0 +B)

REPP-R min

(
0, θi−σ

1+ B
h0

)
(N, h0 +B + ndσ))

PPS C0(θi + qai )− C0(qai ) (M ∩ N,C−1
0 (h0 +

C0(0)))

REPP-S min(0, (C0(θi−σ+qai )−C0(qai ))) (N, (C−1
0 (h0 +

C0(0)) + ndσ))

LMSR-
PPS

b ln

 1+exp

(
θi+q

ai

b

)
1+exp( q

ai
b

)

 (M ∩N, h0 + b ln 2)

LMSR-
REPP-S

min

0, b ln

 1+exp

(
θi−σ+q

ai

b

)
1+exp( q

ai
b

)

 (N, h0 + b ln 2 + ndσ)

Table 2: Key Results

In PPS, the condition for equilibrium is ϑM∩N < C−1
0 (h0 +

C0(0)) and the excess value is used to sponsor a prediction
market which issues securities for contributions. In REPP-S,
the excess value has to support the incentive for contribution
and the incentives for referrals but the excess value is calcu-
lated in a larger pool too (N in REPP-S instead of M ∩N
in PPS). The referral incentives can be either carved out
of the same budget (lower liquidity in the prediction mar-
ket) or can be paid out from additional budget (increase in
the sponsor’s budget). Comparing REPPM with the corre-
sponding PPM (Table 2) shows that REPPM increases the
pool of agents who can contribute, at the cost of increasing
the threshold of social desirability. Thus, they are well suited
in scenarios where the increase in the participant pool can
significantly outweigh the increase in threshold as for exam-
ple on web based civic crowdfunding platforms, where the
successful funding of a public project requires a significant
effort to attract contributors and funds. We note that PPS
is a class of mechanisms. One instance of PPS is (Logarith-
mic Market Scoring Rule) LMSR-PPS. In LMSR-REPPS, it
can be shown that the equilibrium contribution of agent i
with value θi who arrives at ai and refers Mi agents is :

x∗i ≤ b ln

(
1 + exp

(
θi − σ + qai0

b

))
− b ln

(
1 + exp(

qai0
b

)

)

6. CONCLUSION
We considered civic crowdfunding, formalized the notion

of social desirability of a public project, and proposed Referral-
Embedded Provision Point Mechanisms (REPPM), a class of
mechanisms that incentivize agents to contribute and refer
other agents to contribute towards a crowdfunded project.
REPPM achieve an equilibrium in which the project gets
funded if it is socially desirable among the agent population.
REPPM solves two problems: (i) agents do not free ride
(every agent’s equilibrium strategy is to contribute in pro-
portion to his true value for the project) and (ii) information
about the crowdfunding effort diffuses in the social network
so that agents who have value for the project have an op-
portunity to contribute. REPPM achieve this with a higher
budget that a sponsor must furnish. However, since neither
the referral nor the refund bonus needs to be paid out at
equilibrium, finding a sponsor who offers these incentives
is more likely. With these advantages, our mechanisms can
significantly improve the success rate of civic crowdfunding.
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