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ABSTRACT
In this paper we study variations of the standard Hotelling-
Downs model of spatial competition, where each agent at-
tracts the clients in a restricted neighborhood, and each
client randomly picks one attractive agent for service.

Two utility functions for agents are considered: support
utility and winner utility. We generalize the results in [9] to
the case where the clients are distributed arbitrarily. In the
support utility setting, we show that a pure Nash equilib-
rium always exists by formulating the game as a potential
game. In the winner utility setting, we show that there ex-
ists a Nash equilibrium in two cases: when there are at most
3 agents and when the size of attraction area is at least half
of the entire space. We also consider the price of anarchy
and the fairness of equilibria under certain conditions.

1. INTRODUCTION
Ever since the seminal works by Hotellings [12] and Downs [5],

the Hotelling-Downs model has been applied to many prob-
lems, ranging from determining the standpoint of a election
candidate to choosing locations for commercial facilities [14,
2, 21]. In the model, two firms choose shop locations in a
street. Customers are distributed along the line. Assume
the products of the firms are equal, so that the customers
always go to the closer shop. Hence, one firm can always
attract more customers by moving towards the competitor’s
location. Therefore, both firms choose the median point in
the unique stable equilibrium, attracting an equal number
of customers. This also sheds light upon the phenomenon
that the candidates’ standpoints in a political election are
often close.

In political election scenarios, the assumption is taken to
model the standpoints of the candidates in [20, 6] that every
candidate has an ideal location in mind and cares about how
close the winner’s location is to the ideal location. Models
with runoff voting are studied in [16, 3, 22], where the voting
takes place in multiple rounds and only a subset of candi-
dates from the previous round enter the next round. In com-
mercial facility location problems, more complex models are
proposed to address other issues. For example, when making
decisions, customers consider the transportation cost caused
by getting service. Such competition that involves both
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location and pricing are considered by Hotelling’s original
model [12], and some other existing works [4, 19, 23, 15, 8].

In this paper, we focus on the pure location game [1].
It sacrifices non-existence of Nash equilibria in the origi-
nal pure location game. Eaton et al. [7] first show there is
no Nash equilibrium when there are 3 agents in the one-
dimensional space. Shaked [17] extends the non-existence
to two-dimensional space. Thereafter Osborne et al. [13]
show the Nash equilibrium does not exist in a wide range
of settings when there are more than 2 agents. However, a
mixed Nash equilibrium is guaranteed to exist [4, 18]. This
result is not obvious considering that the utility functions in
these games are not continuous with the action. Generally,
a mixed Nash equilibrium is not guaranteed to exist in such
games.

The original Hotelling-Downs model suffers from some
problematic assumptions: customers always choose the near-
est shop without considering the distance, contradicting to
the fact that a shop is no more attractive to a customer if
it is too far away. Furthermore, customers choose the shop
without considering competing shops, while in daily life, it
is hard to say which shop attracts more customers if two
shops are close enough with similar products. These issues
are also discussed in [9].

To address the above issues, we consider the Hotelling-
Downs model with limited attraction, proposed in [9]. In
this model, all firms (called agents hereafter) only attract
customers (called clients hereafter) in a limited distance, and
if a client is attracted by multiple agents, the client picks one
from those agents with equal chance.

We analyze the Nash equilibria with two utility functions
for agents: support utility and winner utility (i.e., winner
takes all setting in [9]). In the support utility setting, agents
focus on maximizing the number of its clients, modeling
the commercial competitions. While in the winner utility
setting, the winner in the competition takes all the utility,
which is typical for the political voting.

We extend the results on uniform distribution in [9] to
arbitrary distributions. First of all, we consider the exis-
tence of pure Nash equilibria. In the support utility setting,
when the distribution is uniform and agents have the same
attracting distance(called width hereafter), the existence of
Nash equilibria can be shown by simply constructing one.
However, this method does not work any more under other
distribution. We solve this problem by formulating it as a
potential game. In winner utility maximization setting, to
our knowledge, there is no standard tool to guarantee the
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existence of Nash equilibria. However, we show that a pure
Nash equilibrium does exist in some simple cases.

Secondly, we study fairness[10] and the price of anarchy of
Nash equilibria in the support utility setting (both of which
are straightforward in the winner utility setting). Fairness
characterizes how fairly the utilities are divided among all
agents. The price of anarchy measures how efficiency de-
creases due to agents? selfish behaviors. We give tight
bounds on both criteria.

1.1 Results and Contributions

• In the support utility maximization setting, support
utility is continuous. Applying Glicksberg’s theorem [11],
this continuous game guarantees a mixed Nash equi-
librium. If we let the agents dynamically best respond
to the other’s locations (one agent each round), then
the location profile converges to a Nash equilibrium.
Scrutinizing each agent’s action, each improvement ac-
tually increases a potential function. Thus the game
admits a pure Nash equilibrium.

• In the winner utility maximization setting, the winner
utility is not continuous any more. We restrict the
problem to the case when the agents have the same
width. We prove that when there are at most 3 agents,
there exists a pure Nash equilibrium. The three-agents
case is very special in other variants [7, 17, 18]. The
existence of Nash equilibria complements their results.
Moreover, if the agent’s width is at least half of the
client space, then there also exists a Nash equilibrium
for any number of agents.

• We study fairness and the price of anarchy of Nash
equilibria in the support utility setting (both of which
are straightforward in the winner utility setting). We
show that the fairness criterion can be bounded by

1
2dwM/wme , where wM = max{w} and wm = min{w}.
We also prove that the price of anarchy at least 1

2
.

Both bounds are tight.

The structure of this paper is as follows: In Section 2,
we describe the coined Hotelling-Downs model with limited
attraction in [9]. In Section 3, we prove the existence of the
Nash equilibria in the support-utility maximization setting.
In Section 4, we construct a Nash equilibrium in winner util-
ity maximization setting. In Section 5, the support utilities
in Nash equilibria are compared. In Section 6, the price of
anarchy is given and we give an upper bound on the amount
of clients that have not been served.

2. HOTELLING-DOWNS MODEL
WITH LIMITED ATTRACTION

We consider a one-dimensional location space, represented
by the interval [0, 1]. A continuum of clients are distributed
in the interval according to some density function f(x). Let
N = (1, 2, . . . , n) denote a finite set of agents and each agent
i is associated with an attraction width wi. Each agent
chooses a location in [0, 1] and an attraction interval Ri cen-
tered at the chosen location is formed. The agent obtains
the support from the clients in his attraction interval. If a
client is covered by multiple agents, the client simply ran-
domly choose one, i.e. the support of this client is equally

divided among these agents in expectation. Assume that
agent i chooses location xi then the attraction interval Ri is
[xi−wi/2, xi +wi/2]. We assume that f(x) = 0 outside the
interval [0, 1] and thus each agent will only choose a location
from

[
wi
2
, 1− wi

2

]
Let ~x denote the joint location profile (x1, x2, ..., xn), and

~x−i denote the profile without i, i.e. (x1, ..., xi−1, xi+1..., xn).
Given ~x, let congestion function c(x, ~x) be the the number
of attraction intervals covering point x,

c(x, ~x) = #{xi|x ∈ Ri}

Clearly, the following equation holds:

c(x, ~x) =

{
c(x, ~x−i) x /∈

[
xi − wi

2
, xi + wi

2

]
c(x, ~x−i) + 1 x ∈

[
xi − wi

2
, xi + wi

2

]
For simplicity, we use c(x) instead of c(x, ~x) when there is

no ambiguity.
If a point x is covered by multiple attraction intervals (i.e.,

c(x) ≥ 2), then the support of that point is evenly divided
among all these agents. Agent i’s support si is then defined
to be the total support from his attraction interval:

si(~x) =

∫ xi+wi/2

xi−wi/2

f(x)

c(x)
dx

In our model, we assume that the distribution function
f(x) and the width wi, ∀i are publicly known. We consider
two kinds of utility settings: support utility and winner util-
ity. The support utility setting uses the support function as
agents’ utility function. In the winner utility setting, only
agents with the largest support are considered to be the win-
ners, and share a total utility of 1 equally among them, while
other agents have utility 0. Note that in the winner utility
setting, each agent only cares about whether he is a winner
and the number of winners, since if the agent is a winner,
he has a higher utility when there are less winners.

Formally, an attraction game is defined as follows:

Definition 1. Given the clients’ distribution f(x), an
attraction game is a tuple G = (N,w,L, u), where:

• N = (1, 2, . . . , n) is the set of all agents;

• w = (w1, w2, . . . , wn) is the widths associated to agents;

• L = L1×L2×· · ·×Ln is the set of all possible location
profiles, where Li =

[
wi
2
, 1− wi

2

]
.

• u = (u1, u2, . . . , un) is the utility functions for the
agents, the definition of which depends on the setting
we consider:

– in the support utility setting, ui(~x) = si(~x);

– in the winner utility setting,

ui(~x) =

{
1
|W | i ∈W
0 otherwise

where W denotes the set of winners.

A Nash equilibrium of game G is a stable location profile,
where no agent can deviate to another location to get a
higher utility.
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Definition 2 (Nash equilibrium). Given a game G,
the set of Nash equilibra NE(G) contains all location profiles
~x, such that ∀i ∈ N and ∀x′i ∈ Li,

ui(xi, ~x−i) ≥ ui(x
′
i, ~x−i)

In different utility settings, the definitions of the utility
functions are different, and thus have distinct Nash equilib-
ria. Consider the following example:
Example. Assume that the clients are distributed uni-

formly. There are 3 agents with widths w1 = 0.4, w2 = 0.3,
w1 = 0.4. The location profile is ~x = (0.2, 0.65, 0.8) (see
Figure 1).

Figure 1: example

The corresponding congestion function is

c(x) =


1 x ∈ [0, 0.4]
0 x ∈ (0.4, 0.5)
1 x ∈ [0.5, 0.6)
2 x ∈ [0.6, 0.8]
1 x ∈ (0.8, 1]

The support of the 3 agents are

• s1 =
∫ 0.4

0
f(x) dx = 0.4

• s2 =
∫ 0.6

0.5
f(x) dx+

∫ 0.8

0.6

f(x)
2

dx = 0.2

• s3 =
∫ 0.8

0.6

f(x)
2

dx+
∫ 1

0.8
f(x) dx = 0.3

In the support utility setting, the profile ~x does not form
a Nash equilibrium, since given ~x−2, agent 2 has incentive to
deviate to 0.55. And by doing so, u2 increases as R2 has less
intersection with R3. However, in the winner utility setting,
the profile ~x forms a Nash equilibrium and agent 1 is the
unique winner.

3. EXISTENCE OF NASH EQUILIBRIUM
IN THE SUPPORT UTILITY SETTING

A well known theorem of Glicksberg [11] states that every
continuous game has a mixed Nash equilibrium. By defini-
tion,

ui(xi, ~x−i) =

∫ xi+
wi
2

xi−
wi
2

f(x)

c(x, ~x−i) + 1
dx

Agent i’s support utility is continuous with xi. According to
Glicksberg’s theorem, there exists a mixed Nash equilibrium
in this setting.

However, due to the special structure of our model, we
could further show that a pure Nash equilibrium always ex-
ists. Under the support utility setting, the game can be
viewed as a congestion game where the resources are the
densities associated to each point. It is known that every fi-
nite congestion game has a pure strategy Nash equilibrium.

Although agents’s action space is infinitely in the game, we
can still show that a pure strategy Nash equilibrium exists.

Theorem 1. There exists a pure Nash equilibrium in the
support utility setting.

Proof. Given other agents’ locations ~x−i, agent i’s sup-
port utility can be written as

ui(xi, ~x−i) =

∫ xi+
wi
2

xi−
wi
2

f(x)

c(x, ~x−i) + 1
dx

If agent i prefers x′i to xi, we have∫ x′i+
wi
2

x′i−
wi
2

f(x)

c(x, ~x−i) + 1
dx >

∫ xi+
wi
2

xi−
wi
2

f(x)

c(x, ~x−i) + 1
dx

On both sides of the inequality, we add the following term∫ 1

0

c(x,~x−i)∑
k=1

f(x)

k
dx

The left side of the above inequality becomes∫ 1

0

c(x,~x−i)∑
k=1

f(x)

k
dx+

∫ x′i+
wi
2

x′i−
wi
2

f(x)

c(x, ~x−i) + 1
dx

=

∫ x′i−
wi
2

0

c(x,~x−i)∑
k=1

f(x)

k
dx+

∫ 1

x′i+
wi
2

c(x,~x−i)∑
k=1

f(x)

k
dx

+

∫ x′i+
wi
2

x′i−
wi
2

c(x,(x′i,~x−i))∑
k=1

f(x)

k
dx

=

∫ 1

0

c(x,(x′i,~x−i))∑
k=1

f(x)

k
dx

The right side is similar and the inequality becomes∫ 1

0

c(x,(x′i,~x−i))∑
k=1

f(x)

k
dx >

∫ 1

0

c(x,~x)∑
k=1

f(x)

k
dx (1)

If we start from an arbitrary location profile, many agents’
strategies are not optimal. Then in each round, one agent
chooses a better position according to other agents’ strate-
gies. By equation (1), each time one agent improves his
support utility, he actually improves a potential function,

Φ(~x) =

∫ 1

0

c(x,~x)∑
k=1

f(x)

k
dx

The potential function can be upper bounded,

Φ(~x) =

∫ 1

0

c(x,~x)∑
k=1

f(x)

k
dx ≤

∫ 1

0

n∑
k=1

f(x)

k
dx =

n∑
k=1

1

k
.

Combined the fact Φ(~x) is continuous with ~x, we have that
Φ(~x) has a maximum value. In the location profile ~x∗ =
arg max~x Φ(~x), no agent can improve his support utility and
thus it is a Nash equilibrium.

Noticing that the above proof does not use the fact of one-
dimension space, and the result can be extended to multi-
dimensional space.

Corollary 1. There is a pure Nash equilibrium in the
support utility maximization setting if the location space is
multi-dimensional.
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4. EXISTENCE OF NASH EQUILIBRIUM
IN THE WINNER UTILITY SETTING

In the winner utility setting, the utility of agent i is no
longer continuous with respect to the agent’s location. The
potential function in the support-utility-maximizing setting
does not work.

Definition 3. A game is an ordinal potential game, if
there is a function φ : A → R such that ∀a−i ∈ A−i,
∀a′i, a′′i ∈ Ai,

ui(a
′
i, a−i)− ui(a

′′
i , a−i) > 0⇔ Φ(a′i, a−i)− Φ(a′′i , a−i) > 0

It seems difficult to design a potential function to prove
NE existence, the reason is the following theorem.

Theorem 2. Winner utility maximization game is not an
ordinal potential game.

We prove by contradiction.

Proof. Consider the distribution function is

f(x) =


4/3 x ∈ [0, 1/3)

1/3 x ∈ [1/3, 2/3)

4/3 x ∈ [2/3, 1]

There are three agents with same width w = 1/3. We give
two different paths from the location profile (1/6,1/6,1/6)
to (1/6,1/6,5/6).

Path 1: (1/6, 1/6, 1/6)→ (1/6, 1/6, 5/9)→ (1/6, 5/9, 5/9)→
(1/6, 5/9, 5/6)→ (1/6, 1/6, 5/6)

Path 2: (1/6, 1/6, 1/6)→ (1/6, 1/6, 5/6).
Suppose there exists a potential function Φ. In Path 1, u3

decreases in the first step, u2 decreases in the second step.
The support utility of the deviating agent does not change
in the following steps. By definition of Φ, we should have
Φ(1/6, 1/6, 5/6) < Φ(1/6, 1/6, 1/6).

In Path 2, u3 increases in the first step. By definition, we
should have Φ(1/6, 1/6, 5/6) > Φ(1/6, 1/6, 1/6), contradic-
tion.

In this setting, there exists a new strategy that an agent
increase winner utility by decreasing the support utility of
both winner and himself. Consider the following example.

Example. Let the distribution f(x) be

f(x) =

{
5/4 x ∈ [0, 0.4]
5/6 x ∈ (0.4, 1]

Figure 2: example

There are two agents, and the location profile is ~x =
(0.2, 0.8). The width are equal w1 = w2 = 0.4. In this case,
agent 1 is the winner and u1 = 0.5, u2 = 10/3. However,
agent 2 can move to x1 and share the support from [0, 0.4]
with agent 1. These two agents’ support utility become 0.25
and both agents are winners. Notice that agent 2 becomes
a winner by decreasing both agents’ support utility.

When we consider winner utility maximization setting, we
restrict to the case all agents have the same width wi = w.
First we prove a lemma which will be used frequently. This
lemma roughly gives a situation where two agents have no
incentive to deviate.

Lemma 1. Fix k ≥ 0 agents’ locations ~x at first1. Let X
be the set of maximizers of∫ x+w

2

x−w
2

f(y)

c(y, ~x) + 1
dy

Suppose there are two new agents A and B. If both two agents
choose the two locations xA, xB ∈ X(xA and xB could be
the same) simultaneously, then both agents have the same
support utility, and both A and B cannot have more support
utility than the other by changing location.

Proof. By definition of xA and xB , we have∫ xA+w
2

xA−w
2

f(x)

c(x) + 1
dx =

∫ xB+w
2

xB−w
2

f(x)

c(x) + 1
dx.

When A and B are located at the same time, their attraction
interval may overlap. This will decrease the support from
clients in the intersection interval, but the decrements in
two support utility are the same. We use RA denote the
attraction interval [xA − w

2
, xA + w

2
] and RB denote the

interval [xB−w
2
, xB+ w

2
]. Formally, agent A’s support utility

will be∫
RA−RB

f(x)

c(x) + 1
dx+

∫
RA∩RB

f(x)

c(x) + 2
dx

=

∫
RA

f(x)

c(x) + 1
dx−

∫
RA∩RB

f(x)(
1

c(x) + 2
− 1

c(x) + 1
)dx

=

∫
RB

f(x)

c(x) + 1
dx−

∫
RA∩RB

f(x)(
1

c(x) + 2
− 1

c(x) + 1
)dx

=

∫
RB−RA

f(x)

c(x) + 1
dx+

∫
RA∩RB

f(x)

c(x) + 2
dx.

which is same as agent B’s support utility.
For the second part, we prove by contradiction. Suppose

A moves to xA′ and gets more support utility than B, then

∫
RA′−RB

f(x)
c(x)+1

dx+
∫
RA′∩RB

f(x)
c(x)+2

dx >∫
RB−RA′

f(x)
c(x)+1

dx+
∫
RA′∩RB

f(x)
c(x)+2

dx

⇒
∫
RA′−RB

f(x)
c(x)+1

dx+
∫
RA′∩RB

f(x)
c(x)+1

dx >∫
RB−RA′

f(x)
c(x)+1

dx+
∫
RA′∩RB

f(x)
c(x)+1

dx

⇒
∫
RA′

f(x)
c(x)+1

dx >
∫
RB

f(x)
c(x)+1

dx

which contradicts to the fact that xB is a best location.
Since A and B are symmetric, agent B cannot get more
support utility than A neither.

When there are 2 agents, we put both agents at the same
position where maximizes

∫
[x−w/2,x+w/2]

f(y)dy. By setting

k = 0 in Lemma 1, we know both agents are winners. Either
one cannot become the unique winner by deviating. Thus
the location profile constitutes a Nash equilibrium.

1This does not need to be a Nash equilibrium.
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Theorem 3. There is a pure Nash equilibrium when there
are 2 agents.

When there are 3 agents, the problem becomes quite com-
plicated. Since there is no symmetric property, there are
many cases to consider when we are checking the stable equi-
librium. We propose Algorithm 1 for 3 agents.

• Let u1 denote the largest support utility that the first
player could achieve, i.e. u1 is the maximum value of∫ x+w/2

x−w/2
f(y)dy.

• Case 1: If we can allocate three agents at the same
time such that everyone achieves the support utility
u1, then we allocate them at those three locations.

• Case 2: If we can allocate only two agents at the same
time such that every one achieves the support utility
u1, then we allocate agent 1 at one of the two locations,
the other two agents together at the other location.

• Otherwise, we can allocate only one agent that achieves
the support utility u1. There exists a set of locations
that agent 1 achieves the support utility u1, we allo-
cate agent 1 at the leftmost one, denoted by x1. Given
agent 1’s location, let the largest support utility for
agent 2 be u2.

– Case 3: If agent 2 can achieve support utility u2

at location x1, we allocate agents 2 and 3 together
at x1.

– Case 4: Otherwise, if on both left side and right
side of agent 1, there exists locations where agent
2 achieves support utility u2. We allocate agent
2 at the rightmost position in the left part and
agent 3 at the leftmost position in the right part,
i.e.,

x2 = max
x<x1

{
x

∣∣∣∣ ∫ x+w
2

x−w
2

f(y)

c(y) + 1
dy = u2

}
,

x3 = min
x>x1

{
x

∣∣∣∣ ∫ x+w
2

x−w
2

f(y)

c(y) + 1
dy = u2

}
.

– Case 5: Otherwise, the locations that maximize
agent 2’s support utility lie on the same side of
agent 1. We allocate agent 2 to the closest posi-
tion and agent 3 at the farthest position. Let

t2 = min

{
x

∣∣∣∣ ∫ x+w
2

x−w
2

f(y)

c(y) + 1
dy = u2

}
,

t3 = max

{
x

∣∣∣∣ ∫ x+w
2

x−w
2

f(y)

c(y) + 1
dy = u2

}
.

If t2 < x1, then set x2 = t3, x3 = t2. Otherwise,
set x2 = t2, x3 = t3.

Theorem 4. When there are 3 agents, Algorithm 1 gives
a pure Nash equilibrium.

Here is the intuition of Algorithm 1. Most of the time we
allocate agent 1 where he gets the largest support utility.
Then we allocate agent 2 and 3 to get the largest support

utility as possible. Agent 2 and 3 have the same support
utility and hinder each other. If agent 2 wants to get the
same support utility as agent 1 by decreasing both u1 and
u2, then u3 becomes the largest, and agent 3 is the unique
winner. Thus the location profile forms a Nash equilibrium.

Proof. The proof follows algorithm’s structure. In each
case, we consider who wins and whether the agents’ attrac-
tion intervals intersect. In all cases, we prove no one has
incentive to deviate.

In Case 1, the winner set is {1, 2, 3}. Keeping agent 2’s
location fixed, by Lemma 1, agent 1 cannot get more support
utility than agent 3.

Thus if agent 1 moves, the other two agents have at least
the same support utility. Using similar arguments, no one
gets more support utility than any other player. So on one
has incentive to deviate.

In Case 2, winner set is {1}. Since agent 2 and 3 are at
the same location, we only need to prove agent 2 does not
have incentive to deviate. We prove by contradiction. Let
agent 2 could become a winner by deviating to x′2. Let R′2
denote the corresponding attraction interval. If R′2 does not
intersect with R1, agent 1 always has more support utility
than agent 2. Then R′2 intersects with R1. For same rea-
son, R′2 intersects with R3. Without agent 3, agent 2 has at
most the same support utility as agent 1. But R3 only has
intersection with R′2, this intersection makes agent 2 have
strictly less support utility than the agent 1. So agent 2 can-
not become a winner and nobody has incentive to deviate.

In Case 3, winner set is {1, 2, 3}. Since they have the same
location, we only need to prove agent 3 has no incentive
to deviate. Suppose agent 3 has incentive to deviate to x′3
with attraction interval R′3, then he must become the unique
winner. Formally,

∫
R′3∩R1

f(x)

3
dx+

∫
R′3−R1

f(x)dx ≥∫
R′3∩R1

f(x)

3
dx+

∫
R1−R3

f(x)

2
dx

⇒
∫
R′3∩R1

f(x)

2
dx+

∫
R′3−R1

f(x)dx ≥∫
R′3∩R1

f(x)

2
dx+

∫
R1−R3

f(x)

2
dx

Consider the situation when only agent 1 has been located.
The left side of the inequality is agent 2’s support utility by
choosing x′3. The right side of the inequality is agent 2’s sup-
port utility by choosing x1. That means agent 2 gets more
support utility by choosing x′3 than choosing x1, contradict-
ing to the assumption. Hence agent 3 has no incentive to
deviate.

In Case 4, we have u2 = u3 by Lemma 1. There are 3
possibilities about who the winners are.

Case 4.1: Winner set is {2, 3}. Agent 2 and 3 have no
incentive to deviate by Lemma 1. We next prove agent 1 has
no incentive to deviate. If R2 ∩R1 = ∅, agent 3 cannot have
more support utility than agent 1. So we have R2 ∩R1 6= ∅
and R1 ∩R3 6= ∅. We consider whether R2 ∩R3 is empty.

Case 4.1.1: R2 ∩ R3 6= ∅. Suppose agent 1 benefits by
deviating to x′1. Let R′1 denote the new attraction interval.
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Figure 3: example

If R′1 ∩R3 = ∅, then we have

u′1 =

∫
R′1−R2

f(x)dx+

∫
R′1∩R2

f(x)

2
dx

≤
∫
R′1−R1

f(x)dx+

∫
R′1∩R1

f(x)

2
dx

≤
∫
R3∩R1

f(x)

2
dx+

∫
R3−R1

f(x)dx

<

∫
R3∩R2

f(x)

2
dx+

∫
R3−R2

f(x)dx

This is the agent 3’s support utility after agent 1’s deviation.
Agent 1 cannot become a winner.

If R′1 ∩R3 6= ∅ and R′1 ∩ (R3 −R2) = ∅, then we have

u′1 =

∫
R′1−R2

f(x)dx+

∫
R2−R3

f(x)

2
dx+

∫
R′1∩R3

f(x)

3
dx

≤
∫
R2−R3

f(x)

2
dx+

∫
R′1−R3

f(x)

3
dx+

∫
R2−R′1

f(x)

2
dx

<

∫
R2−R1

f(x)dx+

∫
R1−R3

f(x)

2
dx+

∫
R′1−R3

f(x)

3
dx

+

∫
R2−R′1

f(x)

2
dx

=

∫
R3−R1

f(x)dx+

∫
R1−R2

f(x)

2
dx+

∫
R′1−R3

f(x)

3
dx

+

∫
R2−R′1

f(x)

2
dx

This is the agent 3’s support utility after agent 1’s deviation.
If R′1∩ (R3−R2) 6= ∅. Since agent 1 has at least the same

support utility as agent 2, we have∫
R′1−R2

f(x)

2
dx ≥

∫
R2−R′1

f(x)dx,

contradicting to the definition of agent 2’s location. To sum
up, agent 1 cannot become a winner by deviating in Case
4.1.1.

Case 4.1.2: R2 ∩R3 = ∅. The proof is similar to the that
in Case 4.1.1 and thus omitted.

Case 4.2: Winner set is {1}. Then agent 1 has no incentive
to move. By definition of agent 2’s location, we have∫

R2−R1

f(x)dx+

∫
R1∩R2

f(x)

2
dx >

∫
R1

f(x)

2
dx∫

R2−R1

f(x)dx >

∫
R1−R2

f(x)

2
dx

We claim that R1 ∩R2 ∩R3 = ∅, otherwise we have

u2 =

∫
R2−R1

f(x)dx+

∫
R2−(R1∩R3)

f(x)

2
dx

+

∫
R2∩R1∩R3

f(x)

3
dx

>

∫
R1−R2

f(x)

2
dx+

∫
R2−(R1∩R3)

f(x)

2
dx

+

∫
R2∩R1∩R3

f(x)

3
dx

= u1

Suppose agent 2 deviates to x′2. If x′2 < x2, u2 weakly
decreases and R1 ∩ R2 weakly shrinks. Furthermore, u1

weakly increases. Agent 2 would not be the winner. If x′2 ∈
(x2, x3), by the definition of x2 and x3, agent 2 has less
support utility than agent 3 no matter whether R2 ∩ R3 is
empty. If x′2 ∈ [x3, 1), R′2 ∩R3. By Lemma 1, u′2 is at most
equal to agent 3’s support utility. Now we prove agent 1 has
strictly higher support utility than agent 3 after agent 2’s
deviation. Agent 1’s support utility is∫

R1−R3

f(x)dx+

∫
R3−R′2

f(x)dx+

∫
R1∩R3∩R′2

f(x)

3
dx

>

∫
R3−R1

f(x)dx+

∫
R3−R′2

f(x)

2
dx+

∫
R1∩R3∩R′2

f(x)

3
dx

>

∫
R3−R1

f(x)

2
dx+

∫
R3−R′2

f(x)

2
dx+

∫
R1∩R3∩R′2

f(x)

3
dx

This is the agent 3’s support utility. To sum up, agent 2
would not deviate, neither does agent 3.

Case 4.3: Winner set is {1, 2, 3}. The proof of agent 1
would not deviate is similar to that in Case 4.1. The proof
of agent 2 or 3 would not deviate is similar to that in Case
4.2.

Case 5: First we claim winner set can not be {2, 3}. By
definition, we have R3 ∩ R1 ⊂ R3 ∩ R2. We consider u1, u2

when there are only agent 1 and 2, then we take count into
the impact of agent 3.

u1 =

∫
R1−R2

f(x)dx+

∫
R1∩R2

f(x)

2
dx

+

∫
R1∩R2∩R3

(
f(x)

3
− f(x)

2

)
dx (2)

u2 =

∫
R2−R1

f(x)dx+

∫
R1∩R2

f(x)

2
dx

+

∫
R1∩R2∩R3

(
f(x)

3
− f(x)

2

)
dx

+

∫
(R2∩R3)−R1

(
f(x)

2
− f(x)

)
dx (3)

We have u1 ≥ u2. Thus if agent 2 is a winner, agent 1 is a
winner too.

Case 5.1: Winner set is {1}. In this sub-case, the ar-
gument is independent with the leftmost property of x1.
Then w.l.o.g. we assume x1 < x2 ≤ x3. Agent 1 has no
incentive to deviate. Suppose agent 2 deviate to x′2. If
x′2 ∈ [0, x2) ∪ (x3, 1], agent 3 has strictly more support util-
ity than agent 2. If x′2 ∈ (x2, x3], agent 1’s support utility
weakly increase, agent 2’s support utility is weakly smaller
than agent 3’s. Agent 3’s support utility weakly decreases.
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Then agent 1 has strictly more support utility than agent
2. Thus agent 2 would not deviate. Suppose agent 3 devi-
ates to x′3. If x′3 ∈ [0, x2) ∪ (x3, 1], then agent 2 has strictly
more support utility than agent 3. If x′3 ∈ [x2, x3), agent 3
has weakly less support utility than agent 2. But the sup-
port utility difference between agent 2 and agent 1 becomes
larger. Thus agent 3 would not deviate.

Case 5.2: Winner set is {1, 2, 3}. The proof that agent
2 and 3 have no incentive to deviate is same as in Case
5.1. Since u1 = u2 and by Equation (2) and (3), we have
R2 ∩ R3 = ∅. Since u1 = u2, x2 is also a best choice for
agent 1 at the beginning. By the leftmost property of x1,
we know x1 < x2. Suppose agent 1 deviates to x′1. If x′1 ∈
[0, x1)∪(x1, x2), agent 1 has strictly less support utility than
agent 2. If x′1 ∈ [x2, 1) and R′1∩R3 = ∅, agent 1 has strictly
less support utility than agent 3.

u′1 =

∫
R′1−R2

f(x)dx+

∫
R′1∩R2

f(x)

2
dx

<

∫
R′1−R1

f(x)dx+

∫
R′1∩R1

f(x)

2
dx ≤ u3

If x′1 ∈ [x2, 1) and R′1 ∩R3 6= ∅,

u′1 =

∫
R′1−R2−R3

f(x)dx+

∫
R′1∩(R2∪R3)

f(x)

2
dx

<

∫
R′1−R2

f(x)dx+

∫
R′1∩R2

f(x)

2
dx

This is agent 2’s support utility after deviation. Agent 1 has
strictly less support utility than agent 2. Hence in Case 5.2,
no agent would deviate.

When w = 0.5, the attraction intervals overlap in gen-
eral. We make use of this property and give Algorithm 2 to
construct a Nash equilibrium with width 0.5.

• Let u1 denote the largest support utility that agent 1
could achieve, i.e. u1 = max{

∫
[x−w/2,x+w/2]

f(y)dy}.

• If we can allocate 2 agents at the same time such that
everyone achieves the support utility u1, i.e.∫

[0,0.5]

f(x)dx =

∫
[0,0.5]

f(x)dx = u1.

When there are k agents, we allocate dk/2e agents at
0.25 and k − dk/2e agents at 0.75.

• If we can allocate only one agent that achieves the
support utility u1, then we allocate the first agent at
x1. Define t such that everyone in the first t agents
maximizes the support utility at x1 given the previous
agents’ locations, but this no longer holds for the (t+
1)-th agent.

– When there are k ≤ t+ 1 agent, we allocate them
together at x1.

– When there are k ≥ t+ 2 agent, let ~x = (x, ..., x)
(the number of x is k − 2). We define left largest
support utility ll(x) and right largest support util-
ity rl(x):

ll(x) = max

{∫ z+0.25

z−0.25

f(y)

c(y, ~x)
dy

∣∣∣∣ z ≤ x}

rl(x) = max

{∫ z+0.25

z−0.25

f(y)

c(y, ~x)
dy

∣∣∣∣ z ≥ x}
Here c(y, ~x) = k−2 if |y−x| ≤ w/2 and c(y, ~x) =
0 if |y − x| > w/2. There exists x∗ such that
ll(x∗) = rl(x∗). Let xl ≤ x be a solution of z for∫ z+0.25

z−0.25

f(y)
c(y)

dy = ll(x∗) and xr ≥ x be a solution

of z for
∫ z+0.25

z−0.25

f(y)
c(y)

dy = rl(x∗). We put the first

k − 2 agents at x∗, (k − 1)-th agent at xl, k-th
agent at xr.

When there are k ≥ t+ 2 agents in the second case, based
on the width is one half, the union of the support of (k−1)-
th agent and k-th agent will cover the support of previous
agents. In fact, the (k−1)-th and k-th agents are the unique
two winners.

Theorem 5. When w = 0.5, Algorithm 2 gives a Nash
equilibrium.

The main proof is omitted due to the space. We only prove
that Algorithm 2 could find a location profile, i.e., there
exists x∗ such that ll(x∗) = rl(x∗) when there are k ≥ t+ 2
agents in the second case.

Proof. When the first k−2 agents located at x1, suppose
the support utility of the (k−1)th agent is maximized at x2.
In fact, we can prove x2 6= x1. W.l.o.g, we assume x2 > x1,
then rl(x1) ≥ ll(x1). Moreover

rl(0.75) =

∫ 1

0.5

f(y)

k − 1
dy ≤

∫ x1+0.25

x1−0.25

f(y)

k − 1
dy ≤ ll(0.75)

Since ll(x) is continuous and weakly increasing while rl(x)
is continuous and weakly decreasing, x∗ exists.

For smaller width, the attraction interval may not overlap.
This results new possibilities of the interval intersection re-
lationship, and many possibilities about who is the winner.
Hence the proof does not hold for smaller width.

Theorem 6. If there always exists a Nash equilibrium
when w = 0.5, then it also holds for w ≥ 0.5.

In this case, the interval (1−w,w) belongs to every agent’s
support. The idea is we can remove this interval and the
problem becomes proving the existence of Nash equilibria
with w = 0.5.

Proof. When w > 0.5, we can construct a Nash equi-
librium from an instance with w = 0.5. We let the new
distribution function be

g(x) =



f((2− 2w)x)∫ 1−w

0
f(y)dy +

∫ 1

w
f(y)dy

x ≤ 0.5

f((2− 2w)x+ 2w − 1)∫ 1−w

0
f(y)dy +

∫ 1

w
f(y)dy

x > 0.5

Suppose there is a Nash equilibrium (x1, x2, ..., xn) under
distribution g with width 0.5. We can verify that ((2 −
2w)x1 +w−0.5, (2−2w)x2 +w−0.5, ...(2−2w)xn +w−0.5)
forms a Nash equilibrium in the distribution f and with
width w.
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5. FAIRNESS IN THE NASH EQUILIBRIUM

Definition 4 (Fairness). Given a game G, define the
fairness of the game to be:

FAIR = min
~x∈NE(G)

mini ui(~x)

maxi ui(~x)

Intuitively, given a location profile ~x, the ratio mini ui(~x)
maxi ui(~x)

describes how fairly the utilities are divided among all agents.
We choose the lowest such ratio of Nash equilibria as our
fairness criterion.

In the winner utility setting, The fairness is simply 0 if
there exists a losing agent, or 1 otherwise. In the support
utility setting, the fairness is generally not easy to compute.
However, we give a tight lower bound in such a setting.

We first give a lemma that bounds the ratio mini ui(~x)
maxi ui(~x)

for

any Nash equilibrium.

Lemma 2. The utility of agent i is at least 1
2dwj/wie

frac-

tion of the utility of agent j. The bound is tight.

Proof. In the support utility maximization setting, we
have

ui ≥
∫ s+wi

s

f(x)

c(x, ~x−i) + 1
dx ≥ 1

2

∫ s+wi

s

f(x)

c(x, ~x−i)
dx, ∀s.

The idea is to split the interval (xj − wj/2, xj + wj/2) into
many small intervals with size wj , and apply the inequality
on them:⌈

wj

wi

⌉
ui ≥

1

2

⌈wj
wi

⌉∑
k=1

∫ xi−
wi
2

+wj ·(k−1)

xi−
wi
2

+wj ·(k−1)

f(x)

c(x, ~x−i)
dx

≥ 1

2

∫ xi−
wj
2

+
⌈wj

wi

⌉
·wi

xi−
wj
2

f(x)

c(x, ~x−i)
dx ≥ uj

2

Consider the case distribution

f(x) =

{
2/3 x ≤ 1/2
4/3 1/2 < x

There are two agents with the same width 1/2, (x1 = 0.25, x2 =
0.75) is a Nash equilibrium. We can see the ratio of support
utility between two agent meets the bound 1/2.

Suppose agent 1 has the largest support utility, agent n
has the smallest support utility, we can easily get the ratio
between the largest and smallest support utility is 1

2dw1/wne .

The following theorem is immediate based on Lemma 2.

Theorem 7. The fairness in the support utility setting
is at least 1

2dwM/wme , where wM = max{w} and wm =

min{w}. The bound is tight.

6. PRICE OF ANARCHY AND UPPER
BOUND OF UNCOVERED SUPPORT

The price of anarchy is an important metric that measures
how efficiency decreases due to agents’ selfish behaviors. In
particular, we define the price of anarchy as follows:

Definition 5 (Price of anarchy). Given a game G,
the price of anarchy of the game is

PoA =
min~x∈NE(G)

∑n
i=1 ui(~x)

max~x

∑n
i=1 ui(~x)

If we consider PoA in the winner utility maximization
setting, the sum of the utility is always 1. There is no in-
efficiency. If we consider amount of uncovered support in
the winner utility maximization setting, the upper bound
could reach 1, which has a poor performance. To make the
problem interesting, we mainly consider the support utility
maximization setting.

First, consider the price of anarchy.

Theorem 8. The price of anarchy of the support utility
maximization is at least 1

2
. The bound is tight.

Proof. Suppose the optimal location profile that maxi-
mizes the sum of support utilities is ~x∗ = (x∗1, x

∗
2, ..., x

∗
n), and

the Nash equilibrium location profile is (x1, x2, ..., xn). The
sum of support utilities in ~x∗ is upper bounded by adding n
agents with location ~x,

n∑
i=1

ui(~x
∗) ≤

2n∑
k=1

uk(~x∗, ~x) <

n∑
k=1

uk(x∗i , ~x−i) +

n∑
k=1

uk(xi, ~x−i)

≤
n∑

k=1

uk(xi, ~x−i) +

n∑
k=1

uk(xi, ~x−i) = 2

n∑
k=1

uk(~x)

Thus, PoA ≥ 1/2.

Actually, when n goes to infinity, the PoA can be arbitrarily
close to 1/2. Consider the example, there are n agents with
the same width 1/n.

f(x) =

{
n2

2n−1
x ∈ [0, 1/n]

n
2n−1

x ∈ (1/n, 1]

The optimal location profile is ( 1
2n
, 3
2n
, ..., 2n−1

2n
), i.e., the

union of the support covers the [0, 1] interval. The optimal
support utility is 1. While, consider the Nash equilibrium
( 1
2n
, 1
2n
, ..., 1

2n
), i.e., all the agents are located at point 1

2n
.

The support utility in this Nash equilibrium is n
2n−1

. When

n goes to infinity, the PoA converges to 1/2.
Then we can consider how many clients are not served.

Theorem 9. The support of the uncovered clients is at
most 1

1+
∑

i wi

Proof. We let p denote the “uncovered support”, q de-
note “covered support”. Suppose u1

w1
= min{ ui

wi
}, i.e., agent

1 has the lowest density of the support utility. Then the
sum of all agents’ support utility is at least

q ≥
∑
i

wi ·
u1

w1

We split the interval [0, 1] into pieces with size w1.If we don’t
count agent 1, then in each small pieces, the support of
the uncovered set is at most u1. Otherwise, agent 1 will
deviate to cover this interval. Then the sum of the uncovered
support is at most d 1

w1
e · u1 Since agent 1 has covered u1,

then actually the uncovered support can be limited,

p ≤ (

⌈
1

w1

⌉
− 1) · u1 ≤

u1

w1

At last we have

p =
p

p+ q
=

1

1 + q/p

≤ 1

1 + (
∑

i wi · u1
w1

)/( u1
w1

)
=

1

1 +
∑

i wi
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