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ABSTRACT
Since 2003, the U.S. government has spent $850 million on
the Megaport Initiative which aims at stopping the nuclear
smuggling in international container shipping through ad-
vanced inspection facilities including Non-Intrusive Inspec-
tion (NII) and Mobile Radiation Detection and Identifica-
tion System (MRDIS). Unfortunately, it remains a signifi-
cant challenge to efficiently inspect more than 11.7 million
containers imported to the U.S. due to the limited inspection
resources. Moreover, existing work in container inspection
neglects the sophisticated behavior of the smuggler who can
surveil the inspector’s strategy and decide the optimal (se-
quential) smuggling plan. This paper is the first to tackle
this challenging container inspection problem, where a novel
Container Inspection Model (CIM) is proposed, which mod-
els the interaction between the inspector and the smuggler
as a leader-follower Stackelberg game and formulates the s-
muggler’s sequential decision behavior as a Markov Decision
Process (MDP). The special structure of the CIM results
in a non-convex optimization problem, which cannot be ad-
dressed by existing approaches. We make several key contri-
butions including: i) a linear relaxation approximation with
guarantee of solution quality which reformulates the mod-
el as a bilinear optimization problem, ii) an algorithm in-
spired by the Multipleparametric Disaggregation Technique
(MDT) to solve the reformulated bilinear optimization, and
iii) a novel iterative algorithm to further improve the scal-
ability. Extensive experimental evaluation shows that our
approach can scale up to realistic-sized problems with ro-
bust enough solutions outperforming heuristic baselines sig-
nificantly.
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1. INTRODUCTION
Maritime container shipping has been a critical measure

for terrorists and smugglers to transport illegal goods in-
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cluding weapons of mass destruction (WMD) and even nu-
clear materials. To prevent nuclear smuggling activities, var-
ious initiatives are deployed by governments at ports, such
as Container Security Initiative (CSI) [9], Megaports ini-
tiative [21] and Secure Freight Initiative (SFT) [11] of the
U.S. government, which inspect containers at foreign and
domestic ports with advanced inspection facilities and secu-
rity officers. However, since there are around 17.5 million
containers imported into the U.S. per year [19], only a small
percentage (less than 20%) can be inspected thoroughly by
security agencies with sophisticated facilities such as radia-
tion and spectroscopic portal monitors, while most contain-
ers are under non-intrusive inspection1 which cannot ensure
the detection of nuclear material whose amount is under
some threshold, especially when they are shielded. There-
fore, it is extremely critical to decide how to allocate the
limited inspection resources over shipping lines and ports.

However, the inspection strategy at ports can be learnt
by the sophisticated smuggler through extensive surveillance
and the shipping lines with the minimal risk will be chosen.
Therefore, how to optimally deploy the limited inspection
resources becomes an extremely challenging task for securi-
ty agencies for several reasons: i) the smuggler can choose
multiple containers to transport illegal items through several
shipping lines, which causes an exponentially large number
of possible actions; ii) it is not necessary for the smuggler
to ship all the illegal containers at the same time due to
the high risk of being detected, rather, the long-term plan
and sequential decisions are preferred, making the resulting
decision process of the smuggler even more difficult to in-
fer; iii) the inspection may operate under different modes
to quickly respond to an emergency when illegal contain-
ers are interdicted; and iv) the security resource allocation
has complicated impact on the smuggler’s decision-making
process and the large-scale non-convex optimization, a no-
torious class of hard problems, is unavoidable to design the
optimal inspection strategy.

Container inspection has drawn the attention of re-
searchers from several fields. Some research applied the
optimization models to design more efficient inspection ap-
paratus to provide more reliable inspection results [7, 24].
Some proposed advanced inspection protocols to maximally
utilize the limited resources at ports to speed up the in-
spection process [4] while others applied game theoretical

1Non-intrusive inspection uses X-rays or gamma rays to s-
can a container and creates images of the container’s con-
tents without opening it to help the inspector to identify
anomalies among other goods.



methods to help the inspector to select which containers to
be inspected [3, 6, 15]. However, previous works ignore the
smuggler’s strategic sequential decision-making process and
the allocation of inspection resources may be far from opti-
mal.

Different from previous works, we tackle the challenge of
optimally preventing sophisticated smugglers in a novel way
and make several key contributions in this paper. First, we
propose a realistic container inspection model (CIM) where
the inspector randomly chooses containers from different
shipping lines to inspect while the smuggler makes a long-
term plan with the knowledge of the inspection strategy, and
the corresponding decision-making problem of the smuggler
is modeled as a Markov Decision Process (MDP). Second,
we formulate the inspector’s optimization problem as a non-
convex program with an exponential number of constraints.
Third, to address the nonconvexity and scalability issues,
several novel approaches are proposed, including a linear re-
laxation approximation with guarantee of solution quality,
an algorithm inspired by the Multipleparametric Disaggre-
gation Technique (MDT) [26] to address the bilinear terms,
and a novel heuristic iterative method to deal with the expo-
nential number of constraints. Finally, we conduct extensive
experimental evaluations on both simulated and real-world
shipping networks and show that our approaches can solve
realistic-sized problem instances with good enough and ro-
bust solutions.

2. RELATED WORK
Container inspection has been investigated in many as-

pects [3, 4, 6, 7, 15]. Bakshi et al. [4] estimated the opera-
tional impact of container inspection at the ports where the
inspector inspects all containers at ports. Bakir [3] proposed
a Stackelberg game model for resource allocation on one or
multiple but independent routes in cargo container security.
Haphuriwat et al. [6, 15] identified the number of contain-
ers to be inspected where the inspector inspects containers
uniformly. However, in the real-world, only a small percent-
age of containers is inspected at ports and both the inspector
and the smuggler can behave strategically to maximize their
utility.

There is also abundant literature in the network interdic-
tion problem [10], where we are given a weighted, directed
or undirected graph, and various objectives are studied, in-
cluding minimizing the network flow, maximizing the short-
est path and increasing detection probability via deletion of
edges/nodes or decreasing edge capacity [1, 5, 16, 30]. Oth-
er works study stochastic network interdiction where the in-
terdiction action is successful with some known probability
p [23]. Recently, the randomized resource allocation to in-
terdict the escape path or illegal network flow has drawn
extensive attention of security game researchers [14, 17, 27].
Unfortunately, none of them tackles the sophisticated smug-
gling activities and sequential decisions, and the smuggling
activity is assumed to be one-shot.

Several recent works in security games study the long-
term planning and model the sequential decision-making of
attackers as an MDP [2, 31]. An et al. [2] studied the ad-
versary’s sequential observations of the realization of the
defender’s random allocation before taking the attacking ac-
tion where the number of states of the smuggler’s MDP is
linear to the number of defender’s pure strategies and the
time horizon; Zhao et al. [31] computed the optimal thresh-

olds of different users for the email filtering system to pre-
vent the long-term sequential cyber attacks where the state
of the smuggler’s MDP is linear to the number of targets.
Both problems are categorized in target protection scenarios
where the smuggler’s actions in states is simple. Therefore,
the MDPs in both works can be solved efficiently by the
dynamic programming algorithm. While in our network se-
curity domain, both the state space and action space of the
smuggler’s MDP are exponentially large, which requires us
to come up with novel and efficient algorithms to address
the scalability issues.

3. MOTIVATION

(a) Container shipping lines.

IN THE U.S.
 » More than 11 million cargo containers arrive on ships and 
are offloaded at U.S. Seaports each year.

 » CBP uses risk-based analysis and intelligence to pre-screen, 
assess, and examine 100% of suspicious containers.

 » Remaining cargo is cleared for entry to the U.S. using 
advanced inspection technology.

 » The Customs-Trade Partnership Against Terrorism ensures 
another layer of secure treatment for cargo entering the U.S.

OVERSEAS
 » Shipping companies are required, 24 hours in advance, to provide 
manifest data for all cargo containers destined for the U.S.

 » 100% of this data is then transmitted to the U.S. National Targeting 
Center Cargo for screening to identify high-risk cargo.

 » Under the Container Security Initiative, CBP partners with foreign 
customs authorities to target and examine U.S.-bound high-risk cargo 
while it is still at foreign ports.

 » Halifax, Montréal, and 
Vancouver, Canada

 » Rotterdam, The Netherlands

 » Le Havre, France

 » Marseille, France

 » Bremerhaven, Germany

 » Hamburg, Germany

 » Antwerp, Belgium

 » Zeebrugge, Belgium

 » Singapore

 » Yokohama, Japan

 » Tokyo, Japan

 » Hong Kong

 » Gothenburg, Sweden

 » Felixstowe, United Kingdom

 » Liverpool, Thamesport, 

Tilbury, and Southampton, 
United Kingdom

 » Genoa, Italy

 » La Spezia, Italy

 » Livorno, Italy

 » Naples, Italy

 » Gioia Tauro, Italy

 » Pusan, Korea

 » Durban, South Africa

 » Port Klang, Malaysia

 » Tanjung Pelepas, Malaysia

 » Piraeus, Greece

 » Algeciras, Spain

 » Nagoya and Kobe, Japan

 » Laem Chabang, Thailand

 » Dubai, United Arab Emirates

 » Shanghai, China

 » Shenzhen, China

 » Kaohsiung

 » Santos, Brazil

 » Colombo, Sri Lanka

 » Buenos Aires, Argentina

 » Lisbon, Portugal

 » Port Salalah, Oman

 » Port of Cortes, Honduras

 » Chi-Lung

 » Valencia, Spain

 » Caucedo,  
Dominican Republic

 » Barcelona, Spain

 » Kingston, Jamaica

 » Freeport, Bahamas

 » Qasim, Pakistan

 » Balboa, Panama

 » Cartagena, Colombia

 » Ashdod, Israel

 » Haifa, Israel

 » Colón and Manzanillo, 
Panama

 » Port Alexandria, Egypt
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Container Security Initiative

(b) CSI ports.

Seizure of 1,555 lbs. marijuana

(c) Gamma-ray for NII. (d) MRDIS.

Figure 1: Nuclear smuggling and its prevention.

In this section, we use the nuclear smuggling as a motivat-
ing example, while our model can be applied to a variety of
illegal container smuggling scenarios. Figure 1a shows the
global shipping network where more than 34 million con-
tainers are transported all around the world per year [19].
To prevent nuclear smuggling through maritime container
shipping, The U.S. government has launched several inter-
national initiatives, such as Container Security Initiative (C-
SI), Megaport Initiative (MI) and Security Fright Initiative
(SFI) to inspect containers at ports. Figure 1b shows the
worldwide 58 CSI ports, which cover more than 80 percent
of containers imported into the U.S. [9]. As there are enor-
mous containers arriving at ports per day, most containers
are under non-intrusive inspection (NII) using the system
shown in Figure 1c. However, if the amount of nuclear ma-
terial is small2 or the material is shielded by other goods,
NII cannot provide reliable inspections.

Therefore, the U.S. government installed Mobile Radia-
tion Detection and Identification System (MRDIS) as shown
in Figure 1d, which is more sensitive and reliable. Howev-
er, as using MRDIS is time consuming, only less than 20%
containers are inspected by MRDIS [21]. Besides, the gov-
ernment has developed emergency plans to quickly respond
to the emergency when illegal containers are interdicted by
adding more manpower to execute the inspection. For ex-
ample, seven different government agencies will coordinate
2Different from other illegal goods such as guns or cigarettes,
small amount of nuclear material is of concern. As little as
25 kilograms of highly enriched uranium or 8 kilograms of
plutonium could be used to build a nuclear weapon known
as an improvised nuclear device [13].



to respond to a radioactive emergency in Jamaica in its e-
mergency plan [12].

On the other hand, in order to avoid the risk of being
interdicted by NII, the smuggler would divide his illegal ma-
terial into several small units (e.g., 1 kg) and shield them
with other goods [22]. Furthermore, the sophisticated smug-
gler may choose multiple shipping lines after making enough
surveillance to the inspector’s strategy and stop to smuggle
when the government’s emergency plan is triggered. Thus,
a long-term sequential plan is preferred by the smuggler,
which makes it even more difficult for the inspector to detect
the smuggling activities. Therefore, optimally allocating the
limited reliable inspection resources such as MRDIS and re-
sponding to the emergency is an extremely challenging task.
In this paper, we aim to compute the optimal allocation of
inspector’s resources to combat the nuclear smuggling after
the inspector knows a number of containers will be shipped
to some ports.

4. MODEL
We now illustrate our Container Inspection Model (CIM)

which models the interaction between the inspector and s-
muggler as a Stackelberg game where the inspector moves
first and decides her allocation of inspection resources at
various ports and shipping lines, while the smuggler chooses
the optimal trafficking plan with knowledge of the inspec-
tor’s inspection strategy with extensive surveillance.

CIM models the ocean shipping network as a tuple N =
〈L,P〉 where L is the set of shipping lines and P is the set
of ports. Let α : L × P → {0, 1} be the indicator of ports
that a shipping line passes through, where αlp = 1 if port
p ∈ P is on shipping line l ∈ L and αlp = 0 otherwise. The
containers flow on the network is represented by f = 〈fl〉
where fl denotes the number of containers shipping through
line l ∈ L within certain time period. As we consider the
sequential actions of both the smuggler and the inspector, we
set τ as the unit time period of shipping an illegal container3

and the smuggler makes decisions at times {0, τ, ..., t · τ, ...}
where t is the time step.

The smuggler with m (m ≤ |L|) illegal containers can
strategically ship them over different shipping lines where
m can be estimated by the amount of nuclear material lost
by the governments and institutions. Analogous to existing
literatures in security games [14, 17, 27, 29], we focus on
the game where the inspector is minimizing the smuggler’s
utility. Assume that the payoffs are zero for both players
if an illegal container shipped through l is interdicted. We
denote by ual and udl the payoffs for the smuggler and the in-
spector respectively when an illegal container is successfully
shipped through shipping line l and udl = −ual . W.l.o.g.,
assume ual > 0 for all shipping lines4.

Inspector’s Strategy: The inspector with limited in-
spection resources decides the proportion of containers in-

3The time to smuggle a container is different for different
shipping lines varying from a week to more than a month.
For easy of analysis, we take the average time as the value
of τ and the assumption can be easily relaxed.
4The smuggler will try to smuggle the nuclear material in a
container as much as possible without triggering the alarm of
NII inspection system. Therefore, we assume the containers
are identical and the payoff of a container could depend on
the price in the black market where the smuggler tries to
sell the nuclear material.

spected of each shipping line on each port. In realistic ship-
ping scenarios, extra inspection power can be implemented
when illegal containers are interdicted [12]. However, the
emergency inspection cannot last long due to the high cost
of inspection facilities and officers. Therefore, the inspec-
tor’s strategy consists of two modes: normal mode without
emergency inspection and emergency mode with extra re-
sources. Let Θ = {normal, emergency} be the two modes
and the transition of different modes is as follows: if an il-
legal container is interdicted at normal mode at time step
t, the emergency mode is triggered at t+ 1 and will last for
one time step as long as no illegal container is interdicted.
Otherwise, the emergency mode will last for another time
step. Figure 2 illustrates the transitions between modes.

emergency

normal

emergency

normal

container interdicted

no container interdicted

t t+ 1

Figure 2: Mode transition.

Let np denote the inspection capability of port p ∈ P
which represents the maximum number of containers in-
spected at port p within τ . The capabilities of ports are
fixed in both modes, as the inspector will maximally utilize
the existing equipment to inspect containers. We denote by
C : Θ×P×L → [0, 1] the allocation of security resources at
ports such that Cθpl represents the proportion of containers

on shipping line l inspected at port p at mode θ, and Cθpl = 0
for the pair (p, l) with αlp = 0. A valid allocation C satisfies
the capability constraint at each port:∑

l∈L
Cθplfl ≤ np ∀p ∈ P, θ ∈ Θ. (1)

Let c : L → [0, 1] represent the emergency inspection s-
trategy such that cl denotes the proportion of containers on
shipping line l being inspected by the emergency inspection
resources. Let ne denote the emergency inspection capa-
bility, i.e., the maximal number of containers inspected by
emergency resources within τ . Emergency resource alloca-
tion c satisfies: ∑

l∈L
clfl ≤ ne (2)

Overall, we denote by X : Θ × L → [0, 1] the inspector’s
strategy:

Xθ
l =

∑
p∈P

Cθpl + clI{θ = emergency} ∀l ∈ L, (3)

where Xθ
l represents the proportion of containers on ship-

ping line l inspected at mode θ and I{θ = emergency} is
the indicator function indicating whether θ is emergency5.

Smuggler’s strategy: The smuggler may not ship all
illegal containers immediately to avoid the risk of being in-
terdicted in emergency mode, instead, sequential plans are

5As the inspection resources are limited and the inspection
result is reliable, we assume the container is inspected at
most once through the shipping line. Even if we add some
failure probability of the inspection, the inspector will prefer
to inspect the containers not inspected before.



preferred. On the other hand, the smuggler is willing to
ship the illegal containers as soon as possible with the fear
of being detected by the local security agency. Therefore,
we denote by γ the discount factor such that the payoff of
successful shipped container at time step t is discounted by
γt. We model the long-term planning process of smugglers
as a Markov Decision Process (MDP), which is represented
as a tuple (S,A, T,R, π). S is the state space of the MDP
and each state s ∈ S is denoted by s = 〈t, θ, m̃〉 where t is
the time step, θ is the current mode of inspection strategy at
state s and m̃ is the number of illegal containers waiting to
be shipped. The process is initiated at s0 = 〈0, normal,m〉
and terminated at s = 〈∗, ∗, 0〉 where all illegal containers
are shipped, which is called a terminal state. Let ST ⊂ S
denote the set of all terminal states. A represents the smug-
gler’s action space. In particular, an action a = 〈al〉 denotes
the allocation of illegal containers over shipping lines such
that al ∈ {0, 1} represents the number of containers shipped
on l6. Assume that the probabilities of being detected are
independent among different shipping lines. We denote by
As ⊆ A the set of all possible actions at state s = 〈t, θ, m̃〉:

As = {a ∈ {0, 1}|L| :
∑

l∈L
al ≤ m̃} ∀s ∈ S.

A = As0 and we denote as when needed.
There are two reachable states by taking action a ∈ As

at state s = 〈t, θ, m̃〉: s′ = 〈t + 1, normal, m̃′〉 and s′ =
〈t+ 1, emergency, m̃′〉 where m̃′ = m̃−

∑
l∈L al. Given the

inspector’s strategy X, T (s,a, s′) represents the transition
probability of reaching state s′ = 〈t + 1, θ′, m̃′〉 from state
s = 〈t, θ, m̃〉 by taking action a ∈ As:

T (s,a, s′) =

{
Φ(θ,X,a) θ′ = normal;
1− Φ(θ,X,a) θ′ = emergency.

(4)

where Φ(θ,X,a) =
∏
l∈L(1 − Xθ

l )al represents the proba-
bility that smuggling action a is successful and no shipped
illegal container is inspected when inspection strategy is at
mode θ. R(s,a, s′) denotes the reward of taking action a at
state s and reaching state s′, taking into account the dis-
count factor:

R(s,a, s′) =

{
γt
∑
l∈L alu

a
l θ′ = normal;

γt
∑
l∈L(1−Xθl −Φ(θ,X,a))alu

a
l

1−Φ(θ,X,a)
θ′ = emergency.

(5)

The reward for θ′ = emergency is deduced by the fact that
the expected reward of taking action a at state s equals to
γt

∑
l∈L(1−Xθ

l )alu
a
l .

The smuggler’s policy is denoted by π : S → A such that
π(s) returns the action a ∈ As to play at state s which is
not the terminal state. We denote by the value function
V π : S → R such that V π(s) represents the expected utility
of the smuggler following policy π when current state is s.

Utility & Equilibrium: Given the profile of both play-
ers’ strategies 〈X,π〉, the expected utility Ua(X,π) of the
smuggler is defined as: Ua(X,π) = V π(s0); Given the zero-
sum assumption, the expected utility of the inspector is
Ud(X,π) = −Ua(X,π). We adopt the Stackelberg equilib-
rium as our solution concept [18, 28], which is the strategy
profile 〈x∗, π∗〉 which satisfies:

6Normally, the goods are packed by the shipping companies
at container fright stations. To avoid the occasion where
two or more units of nuclear material are packed into a con-
tainer, which can be easily interdicted by the NII inspection,
the smuggler will only smuggle at most an unit through a
shipping line at a time step.

1. Ua(X∗, π∗) ≥ Ua(X∗, π) for any other policy π,

2. Ud(X
∗, π∗) ≥ Ud(X,π) for any other strategy X where

π is the best response policy against X.

5. SOLUTION APPROACH
In this section, we illustrate our solution approach to solve

the equilibrium 〈X∗, π∗〉 efficiently. First, a large-scale non-
convex program is proposed based on the linear program
of solving the smuggler’s MDP, where the number of con-
straints grows exponentially with respect to the size of game
instance. To address the nonconvexity of the formulation, a
linear relaxation approximation of transition probability T is
adopted and the Multiparametric Disaggregation Technique
with binary base is developed to relax the remaining bilinear
terms and the linear formulation approximation is obtained,
with theoretical guarantees of approximation quality. Fi-
nally, a novel constraint generation approach is provided to
improve the scalability of the formulation.

5.1 LP for smuggler’s MDP
Given the inspector’s strategy X, the smuggler’s MDP can

be solved by the following linear program which enumerates
all states and actions and adds them as constraints [25]:

min
V

V (s0) (6a)

s.t. V (s) ≥
∑

s′∈S
T (s,a, s′)[R(s,a, s′) + V (s′)]

∀a ∈ As,∀s ∈ S \ ST (6b)

V (s) = 0, ∀s ∈ ST (6c)

Let V ∗ denote the optimal solution of formulation (6). The
smuggler’s optimal policy π∗ can be obtained by:

π∗(s) = arg maxa∈As Q(s,a), ∀s ∈ S \ ST

where Q(s,a) =
∑
s′∈S T (s,a, s′)[R(s,a, s′) + V ∗(s′)]. We

say a ∈ π∗ if π∗ selects the action a.

5.2 Nonconvex program for optimal inspec-
tion

Recall that the inspector’s strategy X consists of the al-
location C of resources at each port and the deployment of
emergency inspection c, as defined in Eq.(3). We propose a
non-convex optimization formulation for solving the optimal
inspection strategy as follows:

min
C,c,X,V

V (s0) (7a)

s.t. Eqs.(1)–(3) (7b)

Eqs.(6b)–(6c) (7c)

Constraint (7b) ensures that the inspector’s strategy X is
valid. Constraint (7c) restricts value function V to be opti-
mal given the minimization objective of V (s0).

To make the formulation (7) practical to solve, we first
need to know the horizon of the smuggler’s MDP in ad-
vance. Lemma 1 implies that in the optimal policy π∗, the
smuggler’s long-term and sequential planning terminates in
finite number of steps.

Lemma 1. The smuggler will smuggle all containers no
more than 2m time steps.

Proof sketch. The proof is based on the fact that the
smuggler will smuggle at least a container at each time step



under normal state. If not, the inspection will stay in nor-
mal state and the smuggler’s utility will decrease because
of the discount factor. Therefore, the maximum number of
time steps for the smuggler to smuggle all containers is 2m
where the smuggler smuggles at least a container every 2
time steps.

Unfortunately, even if we restrict the smuggler’s MDP hori-
zon within 2m time steps, the nonconvexity of formula-
tion (7) makes it impossible to solve for the optimal so-
lution for large-scale game instances, which originates from
two terms: Φ(θ,X,a) in transition probability T and re-
ward function R and the term T (s,a, s′) · V (s′) in Eq.(6b).
To make the formulation scalable, we first relax the smug-
gler’s MDP which is the same as original MDP expect that
Φ(θ,X,a) is replaced with its first order Taylor expansion
in transition probability (4) and reward function (5), and
the program (6) for solving such a relaxed MDP becomes a
linear program when X is fixed.

5.3 Linear relaxation of Φ

Notice that with huge number of containers shipping per
day, the proportion of inspected containers is very smal-
l. Therefore, the first order Taylor expansion of Φ(θ,X,a)
gives a good approximation which is linear to X:

Φ(θ,X,a) =
∏

l∈L
(1−Xθ

l )al ≈ 1−
∑

l∈L
al ·Xθ

l

Replacing Φ(θ,X,a) in transition probability (4) and reward
function (5) with above linear approximation, the attacker’s
MDP is relaxed, and the formulation (7) for computing the
equilibrium becomes:

min
C,c,X,V

V (s0) (8a)

s.t. Eqs.(1)–(3) (8b)

V (s) ≥ γt
∑

l∈L
(1−Xθ

l )alu
a
l + (1−

∑
l∈L

alX
θ
l )V (sn)

+
∑

l∈L
alX

θ
l V (se) ∀a ∈ As, ∀s ∈ S \ ST (8c)

V (s) = 0, ∀s ∈ ST (8d)

In Eq.(8c), state s = 〈t, θ, m̃〉. sn and se are the two
states reachable from taking action a in s, where sn =
〈t + 1, normal, m̃′〉 and se = 〈t + 1, emergency, m̃′〉, and
m̃′ = m̃ −

∑
l∈L al. Theorem 2 provides a bound of the u-

tility computed by the approximation formulation (8) com-
pared with the optimal utility.

Theorem 2. Given the inspector’s strategy X, let π∗ be
the optimal attacker policy and π be the smuggler policy
which is optimal for the relaxed MDP. Let V ∗ and V be the
value functions corresponding to π∗ and π in original MD-
P and relaxed MDP respectively. The following inequality
holds:

V ∗(s0)− V (s0) ≤ m2 ·
κ2 · γ
1− γ

· V̄

where V̄ = m ·maxl∈L u
a
l and κ = maxl∈L,θ∈Θ X

θ
l .

Proof. According to the Taylor theorem, given the in-
spector’s strategy Xθ

l ∈ [0, 1], we have:∏
l∈L

(1−Xθ
l )al − (1−

∑
l∈L

al ·Xθ
l )

≈
∑

l,l′∈L,l 6=l′
alal′ ·Xθ

l X
θ
l′

≤ m2 · κ2

where three and higher order terms are neglected. Given
the inspector’s strategy, there are two cases C1 and C2 to
consider.

C1: Assume that the smuggler has the same optimal pol-
icy π in regardless of whether transition probability Φ is lin-
ear relaxed. Further, we assume that the policy terminates
at T time step, i.e., the smuggler transports all containers
in T time steps. It is easy to verify that V ∗(s) ≥ V (s) when
the smuggler follows the same policy from current state s,
as in original MDP, the probability to transit to the state of
normal mode is higher than that in the relaxed MDP, while
the reward of transition to the state of normal mode and
the expected reward of taking an action remain the same in
both MDPs. We use induction method to iteratively bound
the value V ∗(s) − V (s) at each time step from T − 1 and
finally give the bound of V ∗(s0)− V ′(s0).

(1) It is obvious that V ∗(s) = V (s) where s = 〈T−1, θ, m̃〉.
(2) We assume 0 ≤ V ∗(s)−V (s) ≤ ε where s = 〈t+1, θ, m̃〉.

then we can write down the explicit expressions:

V ∗(s) =
∏

l∈L
(1−Xθ

l )al · V ∗(sn)

+(1−
∏

l∈L
(1−Xθ

l )al ) · V ∗(se) + γt
∑

l∈L
(1−Xθ

l )alu
a
l

V (s) =(1−
∑

l∈L
al ·Xθ

l ) · V (sn)

+(
∑

l∈L
al ·Xθ

l ) · V (se) + γt
∑

l∈L
(1−Xθ

l )alu
a
l

where s = 〈t, θ, m̃〉, sn = 〈t + 1, normal, m̃′〉, se = 〈t +
1, emergency, m̃′〉 and m̃′ = m̃−

∑
l∈L al. Then,

V ∗(s)− V (s) =(
∏

l∈L
(1−Xθ

l )al ) · (V ∗(sn)− V (sn))

+ (1−
∏

l∈L
(1−Xθ

l )al )) · (V ∗(se)− V (se)))

+ δθ(V (sn)− V (se))

≤ε+ δθ(γt+1V̄ )

≤ε+m2 · κ2 · γt+1V̄

where δθ =
∏
l∈L(1−Xθ

l )al − (1−
∑
l∈L al ·X

θ
l ).

Then we have:

V ∗(s0)− V ′(s0)

≤ m2 · κ2
∑T−1

t=1
γtV̄

≤ m2 · κ
2 · γ

1− γ V̄ (9)

C2: If the smuggler’s optimal policy π in the relaxed MDP
differs from the optimal policy π∗ in original MDP, which
implies V ∗(π∗) − V (π) ≤ V ∗(π∗) − V (π∗) where V ∗(π) and
V (π) represent the values at initial state following policy π
in the original MDP and relaxed MDP respectively. Thus,
Eq.(9) also holds, which concludes the proof.

Although formulation (8) is much simpler than the origi-
nal formulation (7), it is still a non-convex program due to
the bilinear terms Xθ

l ·V (sn) and Xθ
l ·V (se) in Eq.(8d). To

further linearize the formulation, we adopt the Multipara-
metric Disaggregation Technique (MDT).

5.4 Linearization based on MDT
The basic idea of MDT is to replace Xθ

l · V (s) with an
auxiliary variable wθl (s) and add several linear constraints
involving wθl (s), Xθ

l and V (s) to approximate the equality
relationship wθl (s) = Xθ

l · V (s). In particular, since Xθ
l ∈



[0, 1]7, we approximate Xθ
l with a binary number with Z

digits located at powers {−Z, ...,−1}. We define one binary
variable λθlz for each power −z and Xθ

l can be represented
as follows:

XZ
l =

∑Z

z=1
2−zλθlz + X̃θ

l , (10)

where X̃θ
l ∈ [0, 2−Z ] is the slack variable. Since wθl (s) =

Xθ
l · V (s), we have:

wθl (s) =
∑Z

z=1
2−zηθlz(s) + w̃θl (s), (11)

where ηθlz(s) = λθlz · V (s), which can be ensured by the fol-
lowing constraints with a large enough constant M :

0 ≤ηθlz(s) ≤ V (s)

V (s)− (1− λθlh)M ≤ηθlz(s) ≤ λθlzM
(12)

w̃θl (s) = X̃θ
l · V (s) which, however, cannot be represented

exactly with finite linear constraints. Therefore, the Mc-
Cormick Envelope [20] is adopted to approximate the rela-

tionship w̃θl (s) = X̃θ
l ·V (s) with following linear constraints:

0 ≤w̃θl (s) ≤ 2−ZV (s)

2−ZV (s) + V̄ (X̃θ
l − 2−Z) ≤w̃θl (s) ≤ V̄ X̃θ

l

(13)

where V̄ is an upper bound of V (s) which can be rough-
ly estimated as the maximal possible utility m ·maxl∈L u

a
l .

Overall, MDT applies the linear system (10)–(13) to ap-
proximate all the bilinear terms Xθ

l · V (s) with wθl (s) in
formulation (8), and the resulting MILP is as follows:

min
C, c, X, V

λ, η, X̃, w

V (s0) (14a)

s.t. Eqs.(1)–(3) (14b)

V (s) ≥ γt
∑

l∈L
(1−Xθ

l )alu
a
l + V (sn)

−
∑

l∈L
alw

θ
l (sn) +

∑
l∈L

alw
θ
l (se)

∀a ∈ As, ∀s ∈ S \ ST (14c)

V (s) = 0, ∀s ∈ ST (14d)

Eqs.(10)–(13). (14e)

Notice that since slack variable w̃θl (s) is allowed to take any
value in [0, 2−ZV (s)] in the worst case, wθl (s) is not strictly
required to be equal to Xθ

l · V (s), rather, it is restricted to
take values close to Xθ

l · V (s):

|wθl (s)−Xθ
l · Ṽ (s)| ≤

Ṽ (s)

2Z
. (15)

Hence, given the minimization objective of program 8, the
solution Ṽ returned by MILP 14 serves as a lower bound
of the optimal value function V of program 8. Furthermore,
with a larger number of digits Z, wθl (s) takes values closer to

Xθ
l · V (s) and the lower bound Ṽ will approach the optimal

value function V . On the other hand, for each valid inspec-
tor’s strategy X, Program (6) computes an upper bound V̂
of V . Thus, we propose Algorithm 1, Binary-Based MDT
for CIM (BBC), which iteratively increases the number of
digits Z in MDT until the upper bound and lower bound are
close enough. Theorem 3 analyzes the relationship between
the gap V̂ (s0)− Ṽ (s0) and the number of digits Z.

7In practice, the upper bound can be tightened by taking
into account the capability of each port.

Theorem 3. The bounds obtained by Algorithm 1 satisfy
the following inequality:

V (s0)− Ṽ (s0) ≤
|L|

2Z−1
·
γ(1− (2γ)2m)

1− 2γ
V̄

where V̄ = m ·maxl∈L u
a
l .

Proof. The proof utilizes the bound between wθl (s) and

Xθ
l · Ṽ (s) shown in (15).

It is obvious that V (s) = Ṽ (s) where s ∈ ST . For the

non-terminal states, we assume 0 < V (s)− Ṽ (s) ≤ ε where
s = 〈t + 1, θ, m̃〉. For the state s = 〈t, θ, m̃〉, the related
constraints in Program (8) and Program (14) are as follows:

V (s) ≥ γt
∑

l∈L
(1−Xθ

l )alu
a
l + (1−

∑
l∈L

alX
θ
l )V (sn)

+
∑

l∈L
alX

θ
l V (se) (16)

Ṽ (s) ≥ γt
∑

l∈L
(1−Xθ

l )alu
a
l + Ṽ (sn)

−
∑

l∈L
alw

θ
l (sn) +

∑
l∈L

alw
θ
l (se) (17)

where sn = 〈t+ 1, normal, m̃′〉, se = 〈t+ 1, emergency, m̃′〉
and m̃′ = m̃ −

∑
l∈L al. The difference between the right

hands of Eq.(16) and Eq.(17) is upper bounded by:

ε−
∑

l∈L
al(X

θ
l V (sn)− wθl (sn)) +

∑
l∈L

al(X
θ
l V (se)− wθl (se))

≤ ε+
∑

l∈L
al(

1

2Z
(Ṽ (sn) + Ṽ (se)))

+
∑

l∈L
al ·Xθ

l ((V (se)− Ṽ (se))− (V (sn)− Ṽ (sn)))

≤ 2ε+
|L|

2Z−1
γt+1V̄ (18)

Note that
∑
l∈L al ·X

θ
l ≤ 1 is naturally ensured by the linear

approximation because the transition probability always be
positive. As our problem is a minimization problem, the
increment from Ṽ (s) and V (s) is also upper bounded by:

V (s)− Ṽ (s) ≤ 2ε+
|L|

2Z−1
γt+1V̄

So that we can find the following inequality of the bounds
obtained from Algorithm 1:

V (s)− Ṽ (s) ≤
|L|

2Z−1
·

2m∑
t=1

2t−1γtV̄

≤
|L|

2Z−1
·
γ(1− (2γ)2m)

1− 2γ
V̄ (19)

Specifically, when γ < 0.5, Eq.(19) becomes:

V (s)− Ṽ (s) ≤
|L|

2Z−1
·

γ

1− 2γ
V̄

which concludes the proof.

5.5 Improving the scalability
Program (14) involves too many auxiliary (binary) vari-

ables and constraints to relax the problem into a MILP,
which makes it unscalable. Therefore, we propose an algo-
rithm, State and Action Generation for BBC (SAG-BBC),
depicted in Algorithm 2 to compute the global optimal solu-
tion iteratively, which is based on the observations that the
smuggler intends to smuggle all the containers in the first
several time steps because of the discount factor and there



Algorithm 1: Binary-based MDT for CIM

1 Initialize H, ε;
2 repeat

3 〈X, Ṽ 〉 ← Program (14);

4 V̂ ← Program (6), given X;
5 Z = Z + 1;

6 until (V̂ (s0)− Ṽ (s0))/V̂ (s0) < ε;

7 return 〈X, V̂ 〉;

are many abundant actions for each state which are never
selected by the smuggler. The basic idea of Algorithm 2 is
as follows: Instead of solving the problem where the horizon
of the smuggler’s policies is 2m, a restricted problem where
the smuggler’s MDP has much smaller horizon h is solved
(i.e., Sh = {s|s = 〈t, θ,m〉 ∈ S, t ≤ h} ). In order to solve
the optimal solution 〈X(h), V (h)〉 of the restricted problem,
the algorithm first calls Algorithm 1 to compute the optimal
solution 〈X ′(h), V ′(h)〉 for the restricted problem where the
in the MDP, only a subset of actions A′s ⊂ As are avail-
able at state s ∈ Sh (i.e., Line 6). Then, the algorithm
calls Program (6) to compute the smuggler’s optimal poli-
cy π̂′h against X ′(h) in the restricted problem assuming all
actions As are available for s ∈ Sh (i.e., Line 7). If there
are actions which are selected by π̂′h but not in A′s, we add
them into A′s and resolve the restricted problem with ac-
tion set A′s. Otherwise, the optimal solution 〈X ′(h), V ′(h)〉
for the restricted problem with action set A′s is optimal to
the restricted problem with all actions As available, i.e.,
〈X ′(h), V ′(h)〉 = 〈X(h), V (h)〉. Given the inspector’s strat-
egy X(h), the algorithm calls Program (6) to compute the s-

muggler’s optimal value V̂h in the original MDP with horizon
2m and action set A (i.e., Line 14). If the value of V (h) at

initial state Vh(s0) equals V̂h(s0), the algorithm terminates
and the optimal solution is obtained; Otherwise, increase
the horizon h of restricted MDP by fixed time steps (e.g., 1)
and resolve the restricted problem. Theorem 4 ensures that
the computed solution is the optimal solution.

Theorem 4. Algorithm 2 returns the optimal solution for
Program (14).

Proof sketch. We divide the proof into two parts ac-
cording to the two loops in Algorithm 2.

Inner loop: when all actions selected by π̂′h belong to A′s,
all the constraints of Program 6 corresponding to actions
in As are satisfied, so that 〈X ′(h), V ′(h)〉 is the optimal
solution for Program 6 for the restricted MDP.

Outer loop: As the inner loop can obtain the optimal
solution of the restricted problem where we restrict the s-
muggler’s policies with in h time step. Line 14 of Algorith-
m 2 computes the real smuggler’s optimal value V̂h to the
inspector X(h) in the original MDP. If the value of V (h) at

initial state equals V̂h(s0), Vh is the optimal utility against
X, which implies that 〈X(h), V (h)〉 is optimal to the original
MDP. Thus, Algorithm 2 obtains the optimal solution.

6. EXPERIMENTAL EVALUATION
We evaluate the performance of our approaches through

extensive experiments. We use CPLEX (version 12.6) to
solve linear programs and KNITRO (version 9.0.0) to solve
nonlinear programs. All computations were performed on

Algorithm 2: State and Action Generation for BBC

1 Initialize h;
2 repeat
3 Sh = {s|s = 〈t, θ,m〉 ∈ S, t ≤ h};
4 Arbitrarily select as ∈ As to form A′s ⊂ As, ∀s ∈ Sh;
5 while true do
6 〈X′(h), V ′(h)〉 ← solution of Algorithm 1 by

substituting S and As, ∀s ∈ S with Sh and
A′s,∀s ∈ Sh, respectively;

7 V̂ ′h ← solution of Program (6) by substituting S with

Sh, given X′(h);

8 Find the smuggler’s optimal policies π̂′h, given V̂ ′h;

9 if ∃s ∈ Ss : π′(s) /∈ A′s then
10 A′s = A′s ∪ {π′(s)};
11 else
12 〈X(h), V (h)〉 ← 〈X′(h), V ′(h)〉
13 break;

14 V̂h ← solution of Program (6), given X(h);
15 h = h+ 1;

16 until the value of V (h) at initial state equals V̂ (s0);
17 return 〈X(h), V (h)〉;

a 64-bit PC with 16.0 GB RAM and a 12-core 3.50 GHz
processor. All values are averaged over 30 instances unless
otherwise specified. All shipping networks are generated u-
niformly: for each shipping line, each port has a fixed prob-
ability of being visited. The payoff ual and the flow fl for
each shipping line are generated from uniform distributions
between [4, 5] and [0, 5], respectively. We use ζ ·

∑
l∈L fl

to denote the total number of inspection resources, among
which the number of the emergency inspection resources is
fixed as 0.01 ·

∑
l∈L fl and other resources are randomly as-

signed to the ports. Thus, ζ is the proportion of contain-
ers inspected through all shipping lines at the emergency
mode, which ranges in [0.05, 0.25]. The optimality toler-
ance ε is 0.001. The default setting of the experiments is
〈|L|, |P|,m, γ, ζ〉 = 〈10, 10, 3, 0.9, 0.15〉.

We compare the scalability of four versions of our algo-
rithms: i) BBC depicted in Algorithm 1; ii) AG-BBC: Al-
gorithm 2 with T = 2m; iii) SG-BBC: Algorithm 2 with
A′s = As, ∀s ∈ Sh; iv) SAG-BBC: Algorithm 2. All versions
return the same global optimal solution, which is denoted
by OPT. The benchmarks are: i) KNITRO which is widely
used in solving nonlinear program and ii) Normalized MDT
(NMDT) proposed in [8] to solve the bilinear problems.

We compare the solution quality of our solution with three
heuristic allocation strategies: i) UNI where the inspection
resources at a port are uniformly assigned to shipping lines
which pass this port and the emergency resources are as-
signed to all shipping lines uniformly; ii) FPRO where the
number of inspection resources assigned to shipping line l is
proportional to its container flow fl; iii) VPRO where the
number of inspection resources assigned to shipping line l is
proportional to the payoff value ual .

Scalability analysis. We compare the scalability of six
methods on the generated shipping network. The experi-
ment results are displayed in Figures 3a-3c. We range the
number of containers m under γ ∈ {0.6, 0.9}. The result-
s show that our approaches significantly outperform KNI-
TRO and NMDT and SG-BBC has a better performance
when γ is small, while SAG-BBC performs better when γ
becomes larger. This is because when γ increases, the smug-
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Figure 3: Scalability and Solution quality.

gler prefers a policy with longer time horizon, i.e., the algo-
rithm needs to consider more time steps to reach the global
optimal solution. SG-BBC adds all states and actions with-
in the time steps, while SAG-BBC selectively adds actions
of each state into consideration, which limits the number
of constraints in the program and makes the program scal-
able. We also range the number of shipping lines and the
result is displayed in Figure 3c. Compared with the number
of shipping lines, the number of containers has much more
influence on the scalability because it influences both the
number of actions in each state and the time horizon.

Solution quality. We compare the quality of our solu-
tion with three baseline strategies with varying the number
of containers, shipping lines and the value of ζ. The results
are showed in Figure 3d-3f. As the inspector is minimizing
the smuggler’s utility, our solution, denoted by OPT, outper-
forms the heuristic strategies in all settings. Besides, when
the number of shipping lines, containers and the inspection
proportion increases, our solution has a greater advantage
over the heuristic strategies, which implies the effectiveness
of strategically allocation of inspection resources.

Robustness. In reality, it is difficult for the inspector
to know the smuggler’s discount factor γ and the payoff ual
of each shipping line. In this section of experiments, we
assume that the real value of the discount factor γ̂ may
range in [γ−δ, γ+δ] where γ is the value from the inspector’s
perspective and δ < min{γ, 1−γ}. We assume the user uses
γ to compute her optimal strategy while the smuggler uses γ̂
to compute his optimal policy and find the smuggler’s utility.
Figure 4a shows the smuggler’s utility where our solution
still outperforms the heuristic strategies with γ = 0.9 and
δ = 0.1. Analogously, we assume the real payoff of shipping
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Figure 4: Robustness.

(a) Real shipping network.
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Figure 5: Application on a real shipping network.

line ûal may range in ual · [1− ρ, 1 + ρ] where ual is the payoff
from the inspector’s perspective and 0 < ρ < 1. Figure 4b
shows that our solution is robust enough to outperform the
baselines with a ρ = 10% error under the default setting
with three containers.

Application on a real shipping network. We also
conduct experiments on a real shipping network displayed
in Figure 1a, which includes 32 ports and 23 shipping lines
operated by the three largest shipping companies8 from A-
sia to North America. The smuggler’s utility depicted in
Figure 5b shows that our solution outperforms the heuristic
strategies for the real shipping network, especially when the
number of containers becomes larger.

7. CONCLUSION
This paper studies the problem of optimal inspection to

prevent nuclear smuggling by containers. We introduce a
novel container inspection model (CIM) and propose sever-
al efficient algorithms to compute the near-optimal solution,
including a linear relaxation approximation which solves the
near-optimal solution with a bilinear program, a novel ap-
proach inspired by MDT to obtain the optimal solution of
the bilinear program and an iterative method of state and
action generation to further improve the scalability. Ex-
tensive experiments show that our algorithms significantly
outperform the existing methods and can obtain a robust e-
nough solution better than heuristic strategies and can scale
up to realistic-sized problems.
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