
Coordinating Multiple Defensive Resources in Patrolling
Games with Alarm Systems

Nicola Basilico
University of Milan

Via Comelico, 39/41
Milano, Italy

nicola.basilico@unimi.it

Andrea Celli
Politecnico di Milano

Piazza Leonardo da Vinci, 32
Milano, Italy

andrea.celli@polimi.it

Giuseppe De Nittis
Politecnico di Milano

Piazza Leonardo da Vinci, 32
Milano, Italy

giuseppe.denittis@polimi.it

Nicola Gatti
Politecnico di Milano

Piazza Leonardo da Vinci, 32
Milano, Italy

nicola.gatti@polimi.it

ABSTRACT

Alarm systems represent a novel issue in Security Games, requir-

ing new models that explicitly describe the dynamic interaction be-

tween the players. Recent works studied their employment, even

considering various forms of uncertainty, and showed that disre-

garding them can lead to arbitrarily poor strategies. One of the key

problems is computing the best strategy to respond to alarm sig-

nals for each mobile defensive resource. The current literature only

solves the basic single–resource version of such problem. In this

paper, we provide a solution for the multi–resource case address-

ing the challenge of designing algorithms to coordinate a scaling–

up number of resources. First, we focus on finding the minimum

number of resources assuring non–null protection to every target.

Then, we deal with the computation of multi–resource strategies

with different degrees of coordination among resources resorting to

adversarial team game models. For each considered problem, we

provide algorithms and their theoretical and empirical analysis.

Keywords

Security Games, Alarm System, Multiple Defensive Resources

1. INTRODUCTION
Security Games are a successful application of non–cooperative

game theory in the real world [14]. In the mainstream approach,

a security scenario is modeled with a 2–player game, between a

Defender and an Attacker and the best strategy of the Defender

is derived according to the Stackelberg paradigm [19]. Upon such

basic formulation, literature studied issues like resource scheduling

constraints [15], bounded rationality [20], Attacker’s observation

models [2], and protection of infrastructures [8].

Real security systems typically exploit sensors triggering alarms

when attacks are detected but suffering from various forms of un-

certainty. Mobile defensive resources (a.k.a. patrollers) can re-

spond to alarm signals covering the targets potentially under at-

tack. Disregarding alarm signals can lead to strategies arbitrarily

Appears in: Proc. of the 16th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2017),

S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),

May 8–12, 2017, São Paulo, Brazil.

Copyright c© 2017, International Foundation for Autonomous Agents and Multiagent

Systems (www.ifaamas.org). All rights reserved.

worse than those obtained when alarm signals are exploited [3].

Nevertheless, the study of how to include alarm systems in Se-

curity Games is largely unexplored and represents a challenging

open problem. In particular, the central question is: given an alarm

signal, how should the Defender respond to it at best? To tackle

this problem, we need to adopt models that explicitly describe a

dynamic interaction between the players. Notice that such mod-

els are richer than the ones without alarms, commonly studied in

literature, which only consider the static placement of mobile re-

sources. In [3], the authors study the scenario with only one re-

source available to the Defender and with sensors affected by spa-

tial uncertainty, i.e., an alarm signal is raised with any attack, but

the Defender is uncertain on the actual attacked location, as, e.g.,

in border patrolling [1]. In such situations, the best strategy is to

stay in a location, wait for an alarm signal and then respond to it at

best. This last task is proved FNP–hard even in tree graphs. The

work proposed in [5] studies the scenario with sensors suffering

both from spatial uncertainty and false negatives when only one

resource is available to the Defender, showing that it is PSPACE–

hard. This work exposes an interesting relation between missed

detection rates and optimal strategies. For small missed detection

rates, placement–based strategies (which are optimal in absence of

missed detections and prescribe to place in a location, wait for an

alarm signal and then respond to it [4]) keep being optimal for the

Defender. As the missed detection rate increases, placement–based

strategies are outperformed by cyclically patrolling a number of

targets while waiting for a signal to respond to. This shows that,

in situations where the missed detection rate is small, assuming no

false negatives is not a limiting assumption.

Original contributions. We focus on settings with a spatially

uncertain alarm system and multiple defensive resources. The chal-

lenge is designing algorithms able to scale up with the number of

resources. The problem of finding the best Defender’s strategy

when a number of resources are given is trivially FNP–hard from

the case with a single resource. We show that even the problem of

finding the minimum number of resources assuring non–null pro-

tection to every target, which is of high relevance in practice due to

resource costs and to the need for assuring a minimum level of pro-

tection to each target, is log–APX–complete on arbitrary graphs,

while it is in FP in tree and cycle graphs, usually representing

docks and borders respectively. Then, we study the problem of

finding the best strategy to respond to any alarm signal once an al-

location of resources in the environment is given, according to dif-

678

ferent degrees of coordination among the resources, each described

by an adversarial team game with different forms of strategies (cor-

related or mixed). To the best of our knowledge, finding equilibria

in adversarial team games is a largely unexplored problem and it

may be crucial when the goal is to coordinate different (e.g., de-

fensive) resources in a strategic situation. We provide exact and

approximation algorithms and show they perform very well empir-

ically, scaling up to more than 100 targets and 15 resources both in

correlated and mixed strategies with a negligible optimality gap.

2. SECURITY GAME MODEL AND

PREVIOUS RESULTS
Our security game is a generalization of [4], obtained allowing

the Defender to control an arbitrary number of resources, denoted

by m, instead of just a single one. We summarize its main fea-

tures. A patrolling setting is a graph G “ pV,Eq representing

an environment where areas that can be attacked are given by n

target vertices, denoted as T Ď V . A target t P T has a value

πptq P p0, 1s and requires dptq P N
` time units (penetration time)

to be compromised. Edges in E have unitary cost, while ω˚
i,j is the

smallest traveling cost between vertices i and j. An alarm system

pS, pq generates a signal s P S if target t is attacked with probabil-

ity pps | tq. S, p and any generated signal s is common knowledge.

We call T psq “ tt P T | pps | tq ą 0u the support of a signal

s and Sptq “ ts P S | pps | tq ą 0u the support of a target t.

Given the novelty of the setting, we start from the basic case where

ppH | tq “ pps | Hq “ 0 for any t P T and s P S, i.e., we assume

no false positives or missed detections. The results we derive under

such assumption are functional for addressing the general case (that

we shall address in future works) and can be effectively applied in

situations where a small false negatives rate is present (see [5]). We

also assume that |Sptq| ě 1 for any t P T .

A 2–player security game takes place between an Attacker A and

a Defender D. In this game, A seeks to gain value by compromis-

ing some target while D can control m mobile resources by spec-

ifying a movement strategy for them. At any turn of the game,

A and D play simultaneously: A observes the position of the m

resources and decides whether to attack a target—we assume that

A can instantly reach the attacked target, this can be relaxed as

shown in [6]—or to wait. On the opposite side, D has no infor-

mation about A but, if an attack is present, it observes the alarm

signal and decides where to move the m resources along the graph.

If A attacks target t and a resource traverses t in any of the next

dptq turns, then D and A receive payoffs of 1 and 0, respectively.

Otherwise, they receive 1 ´ πptq and πptq.

Given a resource j and a signal s, an arbitrary finite length l

sequence rs,i “ prp0q, rp1q, . . . , rplqq where rp0q is any vertex

and rpiq is any target in T psq is a route for resource j under signal

s. A route can be instantiated to a graph walk for resource j starting

from rp0q and traveling any shortest path between rpiq and rpi `
1q. For any i P t1, . . . , lu, call Aprpiqq “

ři´1

h“0
ω˚
rphq,rph`1q

(the traveling cost required by such walk for reaching rpiq). We

say that rs,j is a covering route if @i P t1, . . . , lu, we have that

Aprpiqq ď dprpiqq. Any other target t not appearing in the route is

not visited or visited after dptq time units from the start of the route.

Covering routes are abstract representations for D’s pure strategies

when a signal s is raised. When a resource j follows a covering

route, all and only the targets appearing in such route are protected

(notice that this representation is without loss of information). A

joint covering route is an m–tuple rs “ xrs,1, rs,2, . . . , rs,my. To

simplify the notation, we will omit signal s when clear from the

context.

The resolution approach for m “ 1 is given in [4] where it is

shown how with no false positives and missed detections, the best

strategy is to place the resource on a vertex v and, when a signal

s is received execute a signal response strategy which, in general,

is defined as a mixed strategy over all the covering routes starting

from v. Denoted with gv D’s expected utility when responding

to signals from v, then the best strategy is to place the resource

on the vertex maximizing such value. This best placement keeps

being the optimal strategy even when small missed detection rates

are present [5]. For the case of multiple resources, we can derive

an analogous result.

Theorem 1 Without false positives and missed detections, if @t P
T it holds that |Sptq| ě 1, then the optimal strategy prescribes to

place each resource on some vertex and execute a signal response

from there.

Proof Sketch. Call P˚ the set of m vertices specifying the optimal

placement of each resource. Denote with g˚
P the value, in terms of

expected utility for A, of the resulting signal response game, that

is the strategic game where A has to choose a target to attack and

D must choose a joint covering route where each resource starts

from the associated vertex in P˚. Consider any patrolling strategy

that, in absence of signals, prescribes to visit at least one vertex

v1 R P˚. Since the alarm system is not affected by missed detec-

tions, an attack will always raise a signal which, in turn, will raise a

response yielding a utility of gX , where X is the set of vertices cor-

responding to the current positions of the resources at the moment

of the attack. Since A can observe the position of the resources

before attacking, X “ argmaxPPΠtgP u, where Π is the space of

possible joint locations of the resources given the patrolling strat-

egy. Since we assumed that P˚ is optimal, for any X P Π we

would have that gX ě g˚
P . Thus, in absence of signals, D has no

strict incentive to move the resources away from P˚. l

This result allows us to work under the same problem decom-

position operated in the single–resource case which rewrites the

game as two independent sub–games. The first is the Signal Re-

sponse Game where D has to determine how to respond when re-

ceiving any signal from any given joint location resource. As we

will show, solving such game amounts to finding a strategy that,

upon reception of a signal, draws and executes a covering route

for any resource deployed in the environment. The second sub–

game is the Patrolling Game where the joint placement for the m

resources must be determined. Such placement must encode, for

each resource, its starting position and must be selected taking into

account the expected utility D gets when playing the associated

Signal Response Games (where the starting positions for the re-

sources are specified by such joint placement). The literature re-

sults for the single–resource case show how, despite the game be-

ing constant–sum, its resolution is FNP–hard even in tree graphs,

its difficulty mainly being in generating the covering routes under

signal s and starting from v. An approximation algorithm for such

difficult subproblem is given in [3].

The multi–resource setting clearly inherits this hardness profile,

posing the major need for algorithms capable of providing accept-

able solutions in affordable time and showing scalability w.r.t. the

number of resources in the game. The presence of multiple re-

sources also poses the problem of determining their minimum num-

ber in order to guarantee non-null protection to every target. Last

but not least, coordination becomes an issue that, as we will show,

has a critical role during signal response. We start from the mini-

mum number of resources problem and then we deal with the game

resolution under different coordination schemes.

679

3. MINIMIZING THE NUMBER OF

RESOURCES
Ideally, the best number of defensive resources depends on both

the level of protection that can be achieved and on the costs of the

resources. Realistic scenarios often pose the requirement that, for

each target t P T , there is at least a resource in a vertex v such that

ω˚
v,t ď dptq, i.e., it can cover t by dptq, thus stopping a potential

ongoing attack. Indeed, the authority in charge of the security sys-

tem’s deployment usually requires some protection guarantees over

all the targets, even if it forces a non–optimal placement. In other

words, leaving a target completely uncovered is generally excluded

a priori. This entails the existence of, and the need of computing, a

minimum number of resources necessary for the protection of any

environment. An upper bound can be defined too as the number

of resources such that, for any signal s, there is a response strat-

egy to s covering all the targets in T psq thus assuring the Defender

a utility of 1. We deal with this problem by introducing the con-

cept of covering placement and subsequently finding the minimum

covering placement.

Definition 1 (Covering Placement) A covering placement is a set

P “ tp1, . . . , pmu where pi P V , pi ‰ pj if i ‰ j and for any

t P T it holds that ω˚
pi,t

ď dptq for some pi P P .

3.1 Arbitrary instances
With arbitrary graphs, we state the following results.

Theorem 2 Computing the minimum covering placement is log–
APX–hard even in the basic case where all the vertices are targets

with penetration times equal to 1.

Proof. Log–APX–hardness of our problem directly follows from

the optimization version of DOMINATING–SET [11] that is known

to be log–APX–complete. DOMINATING–SET is defined as fol-

lows.

Definition 2 The optimization version of the DOMINATING–SET
problem is defined as:

‚ INPUT: a graph G “ pV ,Eq;

‚ OUTPUT: V
1

Ď V such that |V
1
| is minimized under the

constraint that for all v P V zV
1

there is at least a v1 P V
1

such that pv, v1q P E.

The mapping between the two problems is:

‚ V “ V ;

‚ E “ E;

‚ T “ V ;

‚ dptq “ 1 for every t P T ;

‚ πptq “ 1 any for every t P T ;

‚ S “ ts1u with pps1 | tq “ 1 for every t P T .

The objective function m of the problem of minimizing the cover-

ing placement equals the objective function |V | of DOMINATING–
SET. Therefore any α–approximation of the minimum covering

placement is an α–approximation of DOMINATING–SET. l

Theorem 3 Computing the minimum covering placement is in log–
APX.

Proof. The membership to log–APX follows from the fact that

every instance of our problem can be directly formulated as an

optimization version of a SET–COVER instance and that SET–
COVER is in log–APX [10]. Let us notice that our problem is

more general than DOMINATING–SET, justifying the need for

considering SET–COVER, which is defined as follows.

Definition 3 The optimization version of the SET–COVER prob-

lem is defined as:

‚ INPUT: universe set U , family L “ tL Ď Uu;

‚ OUTPUT: a cover C “ tL P Lu of universe set U such that

|C| is minimum.

The mapping between the two problems is:

‚ U “ T ;

‚ L “ tLv : v P V u where Lv “ tt : t P T and ω˚
v,t ď

dptqu.

Notice that ω˚
v,t ď dptq can be computed in polynomial time and

therefore the mapping can be performed in polynomial time. The

objective function |C| of SET–COVER equals the objective func-

tion m of the problem of minimizing the covering placement. There-

fore any α–approximation of SET–COVER is an α–approximation

of the minimum covering placement. l

The proof of Theorem 3 shows that we can find a solution to our

problem by formulating it as a SET–COVER and then by using al-

gorithms for this latter problem: Integer Linear Programming (ILP)

for finding the exact solution and greedy or local–search algorithms

to find an approximate solution, see [10] or [16], respectively.

3.2 Special instances: tree and cycle graphs
Interestingly, with particular instances that are rather common in

real–world applications the problem is optimally solvable in poly-

nomial time. Let us start from the following lemma.

Algorithm 1 TreePlacements(v)

1: resv Ð 0 for every v P V

2: if v is a leaf then

3: return p8, dpvq ´ 1q
4: else

5: for all v1 P Succpvq do

6:
`

Covpv1q, UnCovpv1q
˘

Ð TreePlacements
`

v1
˘

7: if min
v1

tUnCovpv1q, dpvqu ´ min
v1

Covpv1q ě 0 then

8: return pmin
v1

Covpv1q ` 1,8q

9: else if min
v1

tUnCovpv1q, dpvqu ´ 1 ě 0 then

10: return p8,min
v1

tUnCovpv1q, dpvqu ´ 1q

11: else

12: resv Ð 1
13: return p1,8q

Lemma 4 A minimum covering placement in a tree rooted in v̂ can

be computed in polynomial time with Algorithm 1.

TreePlacements (Algorithm 1) works recursively taking as in-

put a vertex v P V . To ease its description, let us assume that

T “ V . The case including non–target vertices only amounts to

minor modifications. Binary variables resv are initially set to 0

680

and their assertion corresponds to place a resource on v P V . With

Succpvq Ď V we denote all the immediate successors of v on the

path leaving the root. The idea is to recursively allocate resources

by processing the graph in a bottom–up fashion, from its leaves to

the root. Let us consider a function call for a generic vertex v. By

recursively invoking TreePlacementspv1q for each v1 P Succpvq
we get, for each successor, a coverage profile defined with a pair of

values
`

Covpv1q, UnCovpv1q
˘

. They encode the following condi-

tions under the currently built resource placement. If variables resv
of the subtree rooted in v1 constitute a covering placement for the

whole subtree, the coverage profile is such that Covpv1q “ k ă 8
where k is the distance between v1 and the closest resource on such

subtree and UnCovpv1q “ 8. Otherwise, the coverage profile is

such that Covpv1q “ 8 and UnCovpv1q “ k ă 8 where k is the

distance from v1 by which we need to place a resource to have a

covering placement for the subtree rooted in v1.

We start from an empty placement and derive coverage profiles

recursively from the base case in which v is a leaf (Line 2). Since

dpvq ě 1 and costs are unitary, a resource on a leaf is never nec-

essary: we can always cover it from any ancestor whose distance

from v is ď dpvq ´ 1. Hence the coverage profile for the base case

is p8, dpvq ´ 1q (Line 3).

Let us consider the recursive step in which v is a non–leaf vertex.

From Line 7 we have all the coverage profiles of each one of the

immediate successors of v. We must return the coverage profile

of v and decide if a resource must be placed on it. We have three

cases.

Case 1 (Lines 7–8): the subtree rooted at v is covered by the

resources we placed in such subtree. Hence we do not need any

resource in v. Moreover, the ancestor of v will be at distance

minv1 Covpv1q ` 1, where v1 P Succpvq, from the closest of such

resources.

Case 2 (Lines 9–10): the subtree rooted at v is not covered by

the resources we placed in such subtree. We can achieve coverage

by placing a resource in v or in any ancestor whose distance from

v should not exceed minv1 tUnCovpv1q, dpvqu ´ 1, where v1 P
Succpvq. Since we are trying to minimize the number of resources,

there is always interest in postponing a resource allocation in our

bottom–up processing of the tree. Therefore, we do not allocate a

resource in v and we return the coverage profile naturally resulting

from the above considerations (Line 10).

Case 3 (Lines 12–13): no resource in any ancestor of v can com-

plete the coverage for the subtree rooted at v. We are forced to

place a resource in v which makes the associated coverage profile

equal to p1,8q (Line 13).

Algorithm 1 can be adopted also to solve cycle graphs by extract-

ing the n linear subgraphs spanning all the n targets, solving each

of them with Algorithm 1, and then selecting the solution with the

least number of resources. We summarize the above positive results

in the following theorem.

Theorem 5 The problem of finding the minimum covering place-

ment in trees and cycle graphs is in FP.

4. SIGNAL RESPONSE
We focus on computing a signal–response strategy for m re-

sources given a joint placement P Ď V m. Notice that we do not

assume it to be exactly the minimum one but only to satisfy the

lower bound discussed in the previous section. W.l.o.g., we assume

that only one signal s is present and that T psq “ T , omitting s in

our formulas. (The general case comes by refining notation.)

Any resource i will always move along a covering route. We de-

note by Ri the set of covering routes for resource i starting from pi

(we will omit the dependency on pi since P is always fixed in the

scope of a signal response game). Covering routes can be computed

exactly or approximately by means of the methods proposed in [3].

The presence of multiple resources poses the problem of their co-

ordination [7]. We consider three different coordination schemes

for which we define three Signal Response Oracles (SROs). Each

oracle works on a different adversarial team game and returns the

signal response strategy from a given joint placement P under the

corresponding scheme. Strategies for D and A are denoted as σD

and σA, respectively. If not defined differently, σA : T Ñ r0, 1s
gives the probability σAptq of attacking t.

4.1 Full coordination SRO (FC–SRO)
We assume that D acts as central planner and executor of the

signal–response strategy defined on the joint moves of the resources.

Equivalently, the defensive resources are players of a constant–

sum adversarial team game in which they play correlated strate-

gies. This scheme captures scenarios where resources are con-

nected to a central control unit from which orders are issued (e.g.,

police patrols equipped with radio transceivers). Formally, we have

σD : R Ñ r0, 1s, R “
Śm

i“1
Ri and σDprq is the probability of

playing joint covering route r. We define Ipr, tq as a function re-

turning 1 if and only if target t is protected by r (with notation over-

load, we allow r to be both a joint and a single–resource covering

route) and 0 otherwise. For any r P R and t P T , pr, tq is a game

outcome where A and D receive UApr, tq “ p1 ´ Ipr, tqqπptq and

UDpr, tq “ 1 ´ UApr, tq, respectively. The game can be solved

computing the maxmin strategy by linear programming. However,

each Ri can have exponential cardinality and its computation en-

tails the resolution of an NP–hard problem. Even adopting ap-

proximation methods and working with incomplete sets of covering

routes, the set of joint covering routes is exponential in the number

of resources. Nevertheless, we observe that in our case there is al-

ways a maxmin equilibrium where D plays at most |T | routes with

strictly positive probability as proved in [17], showing that working

with the complete set of all the joint covering routes is unnecessary.

For this reason, we devise a row–generation approach that iter-

atively generates rows in the game matrix (corresponding to joint

covering routes). The row generation routine first generates, for

each resource i, a set of covering routes Ri. Then, it considers a

joint covering route r1, sets R “ tr1u and finds the A’s minmax

strategy in the corresponding constant–sum game using R as the

action space for D. Subsequently, given the A’s strategy, the fol-

lowing ILP is solved to find the D’s best response among all the

joint covering routes without their explicit enumeration:

max 1 ´
ÿ

tPT

σ
Aptqπptqp1 ´ ytq s.t.

m
ÿ

i“1

ÿ

rPRi

Ipr, tqxir ´ yt ě 0 @t P T

ÿ

rPRi

xir “ 1 @i P t1 . . .mu

yt P t0, 1u @t P T

xir P t0, 1u @i P t1 . . .mu, r P Ri

where xir is a binary variable taking value of 1 when route r P Ri

is selected for resource i, yt is a binary variable taking value of

1 when target t is protected by the set of selected covering routes

(yt can be safely relaxed on r0, 1s, turning the ILP into a MILP),

and σA is A’s minmax strategy in the previously solved game.

From the solution of this problem we obtain a joint covering route

681

r̂ where resource i plays route r if xir “ 1. Clearly, r̂ is a best

response for D in the incumbent game equilibrium. If r̂ R R, then

it is included and the game is solved again, otherwise the set of ac-

tions played by D at the equilibrium is found. However, finding the

best response cannot be done in polynomial time unless P “ NP,

as a consequence of the following theorem.

Theorem 6 Given m resources, a set of single–resource covering

routes Ri for each resource i, and a subset of targets T 1, deciding

if there is at least a joint route covering all the targets in T 1 is

NP–hard.

Proof. NP–hardness of our problem follows from a direct reduction

from the decision version of SET–COVER (see Definition 3). The

mapping between the two problems is:

‚ m “ k;

‚ V “ U Y tvu where v is the starting vertex;

‚ graph G is fully connected;

‚ T 1 “ U ;

‚ for any L P L, we have a route r covering all the targets t P
L;

‚ Ri “ L for every resource i;

‚ dptq “ |T 1| for every t P T ;

‚ πptq “ 1 for every t P T ;

‚ S “ ts1u with pps1 | tq “ 1 for every t P T .

There is at least a joint route covering all the targets T 1 if and only

if there is at least a cover C with |C| ď k. l

Nevertheless, the problem admits a polynomial–time algorithm

with constant approximation, returning a joint covering route pro-

viding an expected utility of al least 0.63 OPTBR where OPTBR

is the expected utility of the best response.

Theorem 7 Given the attacker’s strategy, m resources and a set of

single–resource covering routes Ri for each resource i, the prob-

lem of maximizing the defender’s utility admits a polynomial–time

algorithm with approximation guarantee of 1 ´ 1

e
» 0.63 where e

is the Euler’s constant.

Proof. We show this by exploiting a well-known result from sub-

modular optimization of set functions. We start from some basic

definitions.

Definition 4 A set function f : 2U Ñ R is submodular if, for every

A,B Ď U , it holds that fpA X Bq ` fpA Y Bq ď fpAq ` fpBq.

Definition 5 A set function f : 2U Ñ R is monotone if, for every

A Ď B Ď U , it holds that fpAq ď fpBq.

Definition 6 A matroid is a pair pU, Iq such that U is a finite set

and I Ď 2U is a collection of subsets of U satisfying the following

two properties:

1. @B P I,@A Ă B ñ A P I;

2. @A,B P I, |A| ă |B| ñ De P BzA such that A Y teu P I .

Definition 7 A partition matroid pU, Iq is a matroid where U is

partitioned into disjoint sets U1, U2, . . . , Ul with associated inte-

gers k1, k2, . . . , kl, and sets I are defined as I “ tX Ď U :
|X X Ui| ď ki,@i “ 1, . . . , lu.

Definition 8 Given a monotone submodular set function f : 2U Ñ
R` and a partition matroid pU, Iq, call MON–SUBMODULAR–
PART–MAT the problem defined as defined as maxHPI fpHq.

The objective function (to be maximized) is: 1´
ř

tPT σAptqπptq

p1 ´ ytq where σA is the strategy of A, πptq is the value of target

t and yt is a binary variable which has value 1 if and only if target

t is covered. This is equivalent to maximizing the value of covered

targets, defined as
ř

tPT σAptqπptqyt.
Let U “

Ťm

i“1
Ri be the ground set of the union of all possible

covering routes. We consider the function f : 2U Ñ R` defined

as fprq “
ř

tPT σAptqπptqyt, where r is a joint covering route

r “ xr1, . . . , rmy and yt is a binary variable taking value 1 if and

only if target t is covered by at least one (single–resource) covering

route ri.

We show that function f is monotone submodular.

‚ f is monotone since all its discrete derivatives are nonnega-

tive, i.e., for every X Ď U and e P U it holds that ∆pe|Xq ě
0.

‚ The submodularity property is satisfied since X Ď Y Ď U

implies that Y covers at least all the targets covered by X

and thus the marginal utility of adding an element e P UzY
is surely bigger when e is added to X .

We define the partition matroid pU, Iq as follows:

‚ the ground set U is defined as U “
Ťm

i“1

Ť

rPRi
xi, ry, de-

scribing the set of couples composed of player and covering

route.

‚ the ground set U is partitioned as U1, . . . , Um where @i P
t1, . . . ,mu, Ui “

Ť

rPRi
xi, ry.

‚ the sets I are defined as I “ tX Ď U : |X X Ui| ď 1,@i “
1, . . . ,mu.

With this formulation, our optimization problem can be seen as

a MON–SUBMODULAR–PART–MAT with function f over the

partition matroid pU, Iq. There is a polynomial–time approxima-

tion algorithm based on non–oblivious local search [12] with an

approximation guarantee of 1 ´ 1

e
» 0.63. l

4.2 Partial coordination SRO (PC–SRO)
Partial coordination models those situations where D can act

as central planner but cannot communicate with each resource to

prescribe a joint action. Equivalently, the defensive resources are

players of a constant–sum adversarial team game in which they

play mixed strategies [18]. Real scenarios falling in this scope

can be characterized by resources for which a communication with

the control unit is not available (e.g., patrolling units operating in

stealth mode). Formally, we define a pm ` 1q–player game where

resource players D1, . . . ,Dm compete together against A. Each

resource strategy is defined as σD
i : Ri Ñ r0, 1s, where σD

i priq de-

notes the probability of having resource i following covering route

ri P Ri. A game outcome is again defined with pr, tq—r is a

joint covering route—where each Di receives the same utility UD

as previously defined.

682

The proper solution concept of this game is the team maxmin

equilibrium [18] whose equilibrium constraints are non–linear non–

convex. The minmax/maxmin value with 3 or more players may be

irrational and not exactly computable even when the payoffs can

assume only three different integer values [13]. Approximating the

minmax value of 2 players against 1 player within an additive error

of 1

3z2
where z is the number of actions of each player is NP–hard

even with payoffs t0, 1u [9]. The work proposed in [13] provides a

quasi–polynomial algorithm with complexity Opz
l
logpzq

ǫ2 q approxi-

mating with additive error ǫ the minmax value with l players with

payoffs in r0, 1s. The algorithm is not applicable in our case even

for toy instances and non–negligible ǫ (e.g., with 10 actions, 2 re-

sources, and ǫ “ 0.5, the number of needed iterations is of the

order of 1018). Another crucial issue is that the size of D’s payoff

matrix increases exponentially in the number of resources. How-

ever, by exploiting the structure of the problem, we can provide a

Non–Linear mathematical Program (NLP) whose size is linear in

the number of resources compressing exponentially the size of the

game (notice that such a compression is not possible for FC–SRO):

min
σD

1
...σD

m

v s.t.

v ´ πptq
m

ź

i“1

`

1 ´
ÿ

rPRi

Ipr, tqσD

i prq
˘

ě 0 @t P T

ÿ

rPRi

σ
D

i prq “ 1 @i P t1 . . .mu

σ
D

i prq ě 0 @i P t1 . . .mu, r P Ri

Our objective is the minimization of v, i.e., the expected util-

ity of A, w.r.t. the strategies played by the resources of D. We

observe that such strategies are implemented independently by the

resources.

Constraints (2) are the core of the formulation. Let I : RˆT Ñ
t0, 1u be the following indicator function:

Ipr, tq “

#

1 if t P r

0 otherwise
.

For each target t, we require that v is greater or equal than the

protection probability the Defender can ensure to t. We compute

such protection probability multiplying the value πptq of target t

by the product of the non–covering probabilities of each resource i

of the Defender. Specifically, given a resource i and a target t, such

non–covering probability is expressed as 1 ´
ř

rPRi
Ipr, tqσD

i prq,

where
ř

rPRi
Ipr, tqσD

i prq is the covering probability of t given by

i when executing routes r with probability σD
i prq. We observe that

these constraints provide an exponential compression of the size of

the game such that the resulting game is linear in the number of

resources.

Constraints (3), (4) require that the pure strategies of each re-

source are feasible. In other words, for each resource i, we re-

quire that each action r is played with non–negative probability

σD
i prq and the sum of such probabilities is equal to 1. We solve

the program by means of global–optimization techniques, which

are largely unexplored in the equilibrium computation field, able

to find the global maximum within a given accuracy and, in the

case the posed time limit is expired, able to return the quality of

the best solution found w.r.t. the tightest upper bound found. Al-

though global optimization may require exponential time, we will

show that in our problem it provides satisfactory performances.

4.3 No coordination SRO (NC–SRO)
When no coordination is allowed among resources, we are ruling

out not only strategy correlation but also joint planning. In this sce-

nario, resources are unaware of each other and act as single players

against A. Defensive resources are completely non–coordinated

and A can observe the strategy of each resource and play at best by

taking into account all of them. This case is modeled with m inde-

pendent single resource signal response games—as defined in [4]—

where the game associated with resource i has pi as starting vertex

and is played on the restricted set of targets Ti “ tt P T | ωpi,t ď
dptqu. For each game i, the maxmin strategy is computed taking

Ri as the action space of Di. Thus, given the m resource alloca-

tion strategies obtained in this way, we can compute the game value

as 1 ´ maxtPT

śm

i“1

`

1 ´
ř

riPRi
σD
i priqIpr, tq

˘

πptq.

5. OVERALL RESOLUTION APPROACH
The resolution approach we use is sketched in Fig. 1. We remark

that such approach can be adopted when the Defender controls any

number of resources, which are at least the ones required for the

minimum covering placement. For the sake of simplicity, here we

consider the case with the minimum number of resources as defined

in Sec. 3 (we will keep this assumption also for the experimental re-

sults shown in Sec. 6). We start by tackling the problem of finding

the minimum–size resource placement by solving the associated

SET–COVER formulation (or our polynomial algorithm with trees

and cycles). If the problem cannot be solved exactly in a short time,

we adopt the greedy approximation algorithm of [10] and then ap-

ply a simple local search [16] to improve the greedy solution. This

gives us a number of resources m assuring a (sub)minimal covering

placement. As previously stated, in absence of false negatives and

false positives, the best strategy when no signal is raised is to stati-

cally place the m resources in the best covering placement in terms

of expected utility maximization. To deal with this, we resort again

to a simple variation of the local search procedure to enumerate

covering placements of exactly m resources in an anytime fashion.

For each considered covering placement, we compute sets Ri for

each resource i as mentioned in the previous section and then we

run the signal response oracles we introduced.

Greedy algorithm / Local search

Defensive resources minimization

Covering placement enumeration

Local search

Routes generation

Dynamic programming (exact/approximated)

No-coordination

SRO

Full-coordination

SRO

Partial-coordination

SRO

Figure 1: Overview of the proposed resolution approach.

6. EXPERIMENTAL EVALUATIONS
To evaluate our algorithms, we implemented a random instance

generator that leverages some domain knowledge we gathered by

discussing with domain experts from the Italian National Police.

683

The patrolling instances randomly generated could represent realis-

tic urban environments, such as streets, squares or districts, captur-

ing scenarios with police patrolling units placed in police stations.

In the graphs, all the vertices are targets, |T | P t20, 40, 60, 80, 100,
120u, edges have unitary costs, the average indegree of each ver-

tex is 3, and dptq is: dptq “ 3 for |T | P t20, 40u, dptq “ 4 for

|T | P t60, 80u and dptq “ 5 for |T | P t100, 120u; πptq is drawn

uniformly from p0, 1s. There is one single signal covering all the

targets, corresponding to the worst case for the computation of the

routes (the problem of scaling up with exponential signals is still

open). In our experiments, oracles were run with a deadline of 60

minutes. All the numerical results are averaged on 50 instances

for each |T |. For the instances employed here, we used the exact

method of [3] to generate the covering routes, requiring a compute

time comparable to the approximation algorithm. We use GUROBI

to solve exactly LPs and (M)ILPs, BARON to solve exactly NLPs,

and Python for the algorithms. We run experiments on a UNIX

computer with 2.3GHz CPU and 128GB RAM.

Resources and allocations We initially evaluate the performance

of the algorithms to find the best covering placement. The ILP–

based method finding the optimal solution scales up to instances

with 500 vertices when a time limit of 1 hour is used. The greedy

algorithm returning an approximate solution achieves an average

optimality gap ă 5% with up to 500 targets requiring a negligible

compute time, suggesting that it can provide good suboptimal re-

sults even for settings with more than 500 targets. In the following

analysis, we use the ILP–based method.

First, we focus on the characteristics exhibited by our experimen-

tal settings in terms of number of resources needed for the covering

placement and the degree of overlap over the targets covered by the

resources, see Fig. 2. We observe that the average number of used

resources is linear in the number of targets (see Fig. 2(a)), which is

reasonable in real–world scenarios. To quantify the overlap degree

induced by a given covering placement P “ tp1, p2, . . . , pmu,

we define two complementary indicators. We recall that Ti is the

subset of targets that can be covered (reached by their dptq) from

vertex pi. Then the following quantity counts the number of ex-

tra coverings induced by P : η “
řm

i“1
|Ti| ´ |T |. Notice that

0 ď η ď p|T | ´mqpm´1q reaches its maximum value when each

resource covers a different subset of |T |´m`1 targets. We denote

with τ “ η

|T |
the average overlap per target and τ̂ “ η

p|T |´mqpm´1q

the normalized overlap. Fig. 2(b) shows how these two indicators

vary with the number of targets. The index τ grows linearly in the

number of targets due to the linear growth of the number of re-

sources while τ̂ has a slower growth since for any resource i the

number of covered targets |Ti| is usually not as big as |T |.
Now we focus on the covering placement enumeration phase and

we evaluate the number of covering placements that our algorithm

is able to consider within a 60 minutes deadline. Referring again

to Fig. 1, notice that each additionally considered placement re-

quires to compute the covering routes sets and to run one of the

three SROs. To find an upper bound over the number of cover-

ing placements we use the NC–SRO since it is the oracle requiring

the minimum compute time. The number of generated covering

placements is reported in Fig. 2(a). The curve grows reaching its

maximum for |T | “ 60 and then decreases. Indeed, when the size

of the problem is small, the algorithm terminates before the dead-

line, returning few placements. On the other side, when the size of

the problem is large, due to the time limit and the large amount of

time required by the computation of the covering routes, the time

to compute new placements lowers significantly and thus the curve

decreases. We remark that we are able to solve large instances up

to 120 targets.

Number of targets

20 40 60 80 100 120
0

10

20

30

40

50 N. resources

Dispositions

(a) Resources and dispositions

Number of targets

20 40 60 80 100 120
0

1

2

3

4

5

=

=̂

(b) Overlap degree

Figure 2: Analysis of the instances before an attack.

SROs quality and performance We compare the performance

of the three SROs, both in terms of utility and compute time. We

call FC–SRO–opt the FC oracle using MILP for the row genera-

tion, FC–SRO–apx–MILP the same with a time limit of 1 hour,

FC–SRO–apx–greedy the FC oracle using the approximation al-

gorithm for the row generation with a time limit of 1 hour. Fur-

thermore, we call PC–SRO–opt the PC oracle, PC–SRO–apx–LB

the lower bound returned by the PC oracle with a time limit of 1

hour and PC–SRO–apx–UB the upper bound returned by the PC

oracle with a time limit of 1 hour. In Fig. 3(a), we report, as the

number of targets varies, the average ratio between the utilities

returned by FC–SRO–apx–greedy and FC–SRO–opt and the av-

erage ratio between the utilities returned by FC–SRO–apx–MILP

and FC–SRO–opt. FC–SRO–apx–MILP returns the optimal so-

lution when |T | ď 60. Interestingly, FC–SRO–apx–greedy pro-

vides solutions very close to the optimal ones (with an efficiency

always larger than 99%) and dramatically outperforms FC–SRO–

apx–MILP with 80 targets or more. In Fig. 3(b), we report, as

the number of targets varies, the average ratio between the utili-

ties returned by PC–SRO–apx–LB and PC–SRO–opt and the aver-

age ratio between the utilities returned by PC–SRO–apx–LB and

PC–SRO–apx–UB. PC–SRO–apx–LB returns the optimal solution

when |T | ď 40. Also in this case, the approximation algorithm

(i.e., PC–SRO–apx–LB) provides performance very close to the

optimal solution (with an efficiency always larger than 99%).

Fig. 4(a) shows the comparison between the different oracles.

Partial coordination introduces negligible inefficiency in patrolling

games (this does not hold in generic games). Surprisingly, PC–

SRO–apx–LB is better than FC–SRO–apx–greedy for 100 targets

and therefore it should be considered as approximation oracle for

full coordination. This results is due to the fact that FC–SRO–

684

20 40 60 80 100 120

Number of targets

0

0.2

0.4

0.6

0.8

1

U
ti
lit

y
 R

a
ti
o
s

FC!SRO!apx!greedy
FC!SRO!opt

FC!SRO!apx!MILP
FC!SRO!opt

(a) FC–SRO

Number of targets

20 40 60 80 100 120

U
ti
lit

y
 R

a
ti
o
s

0

0.2

0.4

0.6

0.8

1

PC!SRO!apx!LB
PC!SRO!apx!UB
PC!SRO!apx!LB

PC!SRO!opt

(b) PC–SRO

Figure 3: FC–SRO and PC–SRO evaluation.

apx–greedy cannot finish its execution within the timeout we set.

No coordination is extremely inefficient w.r.t. full and partial co-

ordination. Fig. 4(b) shows the time ratio between the different

oracles. Interestingly, the full coordination oracles are much faster

than the partial coordination oracles when |T | ď 60. Beyond 60

targets, FC–SRO–apx–greedy/MILP and PC–SRO–apx–LB stop at

the time limit of 1 hour and so their compute time is the same.

Utility trend in time Finally, we focus on the evolution of the

utility in time, after different placements have been enumerated and

evaluated. Fig. 5 shows two instances with |T | “ 60 where we

compare the performances when using the three different oracles

with a 20 minutes time limit: we use FC–SRO–apx–greedy for full

coordination and PC–SRO–apx–LB for partial coordination. While

NC–SRO is quite constant even though several placements are eval-

uated, FC–SRO and PC–SRO utilities increase, with the former al-

ways preceding the latter, being faster in finding good solutions.

7. CONCLUSIONS AND FUTURE WORKS
In this work, we study a security game with the presence of a

spatially uncertain alarm system and we address the novel general-

ization towards settings in which the Defender can control multiple

mobile resources. Solving this problem requires new models that

explicitly describe the interaction between the players. We propose

a scalable resolution approach for dealing with the new algorithmic

problems that such generalization introduces.

Future research will involve adapting our algorithms to cases in

which the number of resources available to the Defender is greater

than the one required for the minimum covering placement. In ad-

dition, we plan to work on the model by allowing the presence of

false positives and missed detection in the alarm systems as well as

the presence of multiple resources on the attacker side.

Number of targets

20 40 60 80 100 120

U
ti
lit

y
 R

a
ti
o
s

0

0.2

0.4

0.6

0.8

1

PC!SRO!apx!LB
max(FC!SRO!apx!MILP;FC!SRO!apx!greedy)
PC!SRO!opt
FC!SRO!opt

NC!SRO
max(FC!SRO!apx!MILP;FC!SRO!apx!greedy)

NC!SRO
FC!SRO!opt

(a) Utility ratios

Number of targets

20 40 60 80 100 120

T
im

e
 R

a
ti
o

s

20

40

60

80

100

120

140

PC!SRO!apx!LB
max(FC!SRO!apx!MILP;FC!SRO!apx!greedy)
PC!SRO!opt
FC!SRO!opt

NC!SRO
max(FC!SRO!apx!MILP;FC!SRO!apx!greedy)

NC!SRO
FC!SRO!opt

(b) Time ratios

Figure 4: Utility and time ratios of the three SROs.

0 200 400 600 800 1000 1200

Time (s)

0

0.2

0.4

0.6

0.8

1

U
ti
lit

y

FC ! SRO ! apx! greedy
PC ! SRO ! apx! LB
NC ! SRO

0 200 400 600 800 1000 1200

Time (s)

0

0.2

0.4

0.6

0.8

1

U
ti
lit

y

FC ! SRO ! apx! greedy
PC ! SRO ! apx! LB
NC ! SRO

Figure 5: Utility trend in time.

685

REFERENCES

[1] N. Agmon, S. Kraus, and G. A. Kaminka. Multi-robot

perimeter patrol in adversarial settings. In ICRA, pages

2339–2345, 2008.

[2] B. An, M. Brown, Y. Vorobeychik, and M. Tambe. Security

games with surveillance cost and optimal timing of attack

execution. In AAMAS, pages 223–230, 2013.

[3] N. Basilico, G. De Nittis, and N. Gatti. Adversarial patrolling

with spatially uncertain alarm signals. arXiv:1506.02850,

2015.

[4] N. Basilico, G. De Nittis, and N. Gatti. A security game

model for environment protection in the presence of an alarm

system. In GameSec, pages 192–207. 2015.

[5] N. Basilico, G. De Nittis, and N. Gatti. A security game

combining patrolling and alarm-triggered responses under

spatial and detection uncertainties. In AAAI, pages 397–403,

2016.

[6] N. Basilico, N. Gatti, and T. Rossi. Capturing augmented

sensing capabilities and intrusion delay in

patrolling-intrusion games. In CIG, pages 186–193, 2009.

[7] N. Basilico, N. Gatti, and F. Villa. Asynchronous multi-robot

patrolling against intrusion in arbitrary topologies. In AAAI,

pages 1224–1229, 2010.

[8] A. Blum, N. Haghtalab, and A. D. Procaccia. Lazy defenders

are almost optimal against diligent attackers. In AAAI, pages

573–579, 2014.

[9] C. Borgs, J. T. Chayes, N. Immorlica, A. T. Kalai, V. S.

Mirrokni, and C. H. Papadimitriou. The myth of the Folk

Theorem. GAME ECON BEHAV, 70(1):34–43, 2010.

[10] V. Chvatal. A greedy heuristic for the set-covering problem.

MATH OPER RES, 4(3):233–235, 1979.

[11] B. Escoffier and V. T. Paschos. Completeness in

approximation classes beyond apx. THEOR COMPUT SCI,

359(1):369–377, 2006.

[12] Y. Filmus and J. Ward. The power of local search: Maximum

coverage over a matroid. In STACS, volume 14, pages

601–612, 2012.

[13] K. A. Hansen, T. D. Hansen, P. B. Miltersen, and T. B.

Sørensen. Approximability and parameterized complexity of

minmax values. In WINE, pages 684–695, 2008.

[14] M. Jain, B. An, and M. Tambe. An overview of recent

application trends at the AAMAS conference: Security,

sustainability, and safety. AI MAG, 33(3):14–28, 2012.

[15] C. Kiekintveld, M. Jain, J. Tsai, J. Pita, F. Ordóñez, and

M. Tambe. Computing optimal randomized resource

allocations for massive security games. In AAMAS, pages

689–696, 2009.

[16] N. Musliu. Local search algorithm for unicost set covering

problem. In IEA/AIE, 2006.

[17] L. S. Shapley and R. N. Snow. Basic solutions of discrete

games. ANN MATH STUD, 24:27–35, 1950.

[18] B. von Stengel and D. Koller. Team-maxmin equilibria.

GAME ECON BEHAV, 21(1):309–321, 1997.

[19] B. Von Stengel and S. Zamir. Leadership with commitment

to mixed strategies. Technical report, 2004.

[20] R. Yang, C. Kiekintveld, F. Ordóñez, M. Tambe, and

R. John. Improving resource allocation strategy against

human adversaries in security games. In AAAI, pages

458–464, 2011.

686

