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ABSTRACT
Due to Cremer and McLean (1985), it is well known that
in a setting where bidders’ values are correlated, an auc-
tion designer can extract the full social surplus as revenue.
However, this result strongly relies on the assumption of a
common prior distribution between the mechanism designer
and the bidders. A natural question to ask is, can a mech-
anism designer distinguish between a set of possible distri-
butions, or failing that, use a finite number of samples from
the true distribution to learn enough about the distribution
to recover the Cremer and Mclean result? We show that if a
bidder’s distribution is one of a countably infinite sequence
of potential distributions that converges to an independent
private values distribution, then there is no mechanism that
can guarantee revenue more than ε greater than the optimal
mechanism over the independent private value mechanism,
even with sampling from the true distribution. We also show
that any mechanism over this infinite sequence can guaran-
tee at most a (|Θ|+ 1)/(2 + ε) approximation, where |Θ| is
the number of bidder types, to the revenue achievable by a
mechanism where the designer knows the bidder’s distribu-
tion. Finally, as a positive result, we show that for any dis-
tribution where full surplus extraction as revenue is possible,
a mechanism exists that guarantees revenue arbitrarily close
to full surplus for sufficiently close distributions. Intuitively,
our results suggest that a high degree of correlation will be
essential in the effective application of correlated mechanism
design techniques to settings with uncertain distributions.
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1. INTRODUCTION
Auctions are widely employed at every level of the modern

economy, from an individual purchasing a used CD on eBay
to a multi-national corporation acquiring offshore oil drilling
rights. Most often, though not exclusively, the purpose of
these auctions is to generate money for the seller. Therefore,
much of the work in mechanism design has been on designing
mechanisms to achieve this goal of optimal revenue.
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Revenue optimal auctions are prior dependent mechanisms,
i.e., they depend on the seller knowing the distribution of
bidders that may participate. The most famous example
of this is the Myerson auction [17] which in many common
applications is equivalent to a second price auction with a
reserve. However, to effectively implement even this com-
mon, relatively simple auction, the seller must know, with
a high degree of accuracy, the distribution of bidder valua-
tions that she1 is likely to see. If the seller overestimates the
likelihood of high valuation bidders, she may set the reserve
price too high and end up not selling the item at all. There-
fore, a sophisticated and excellent literature [4, 7, 9, 14, 15,
16, 18] has developed techniques to optimally learn the prior
distribution and construct mechanisms given samples from
the true distribution.

However, the literature has, primarily, focused on the re-
strictive case of independent private value (IPV) distribu-
tions, where each bidder’s valuation is independent of all
other bidders. In the more general setting of correlated val-
uation distributions, i.e. settings where one bidder’s valua-
tion is correlated with other bidders’ valuations, much less is
known. Moreover, the correlated valuation setting is unique
in that it allows for the strongest possible result in revenue
maximizing mechanism design, that of full surplus extrac-
tion as revenue for the seller [2, 5, 6]. Essentially, with a
small degree of correlation (a condition that we will refer to
as the Albert-Conitzer-Lopomo (ACL) condition), the seller
can, in expectation, generate as much revenue as if she knew
the bidders’ true valuations. Further, correlated valuation is
likely to be the norm, not the exception, in mechanism de-
sign settings because any valuation model with a common
value component will be correlated.

However, the optimal mechanisms over correlated valua-
tions are rarely, if ever, seen in practice due to the require-
ment that the mechanism designer knows precisely the prior
distribution over bidders’ values [1, 3, 11]. If the mechanism
designer tries to näıvely use an estimate of the distribution,
the mechanism is unlikely to be incentive compatible or in-
dividually rational, leading to mechanisms that are hard to
reason about and may perform very poorly. Therefore, if a
mechanism designer intends to maximally exploit a corre-
lated valuations setting, she must learn the distribution.

Settings with unknown, correlated valuation distributions
have received relatively little attention in the literature, and
therefore there is much that is unknown about the opti-
mal mechanism design procedures. A recent paper [3] uses

1In this paper, we will use “he” to denote bidders and “she”
to denote mechanism designers/sellers.
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automated mechanism design techniques to construct mech-
anisms for correlated valuation settings that are robust to
uncertainty in the distribution, and they demonstrate good
performance in simulation. However, they provide no theo-
retical guarantees about the performance of the mechanism.

A seminal paper by Fu et. al. (2014) [7] explores the
sample complexity of optimal mechanism design with corre-
lated valuations and are able to show that if there is a finite
set of distributions from which the true distribution will be
drawn, then the sample complexity is of the same order as
the number of possible distributions. However, the results
are in a sense too strong. Specifically, their findings sug-
gest that maximizing revenue from settings with correlated
distributions with finite types is trivial from a sample com-
plexity standpoint, at least if the set of possible distributions
is known. Moreover, outside of a very small condition (ef-
fectively stating that there is correlation), the degree of cor-
relation does not play a role in the ability to implement the
mechanism, an intuitively strange result. The key to recon-
ciling this intuition with their results is realizing that there
is something fundamentally distinct between infinite sets of
distributions and finite sets, and that their results do not ex-
tend to the case of infinite sets of distributions. Moreover,
in any setting of practical interest, the mechanism designer
will face an infinite number of potential distributions.

In this paper, we map the boundaries of learning in cor-
related valuation settings with infinite sets of distributions.
Specifically, we first consider the case of a countably infinite
sequence of distributions, each satisfying the ACL condition,
that converges to an IPV distribution. We derive this nega-
tive result: no mechanism can guarantee revenue any higher
than the optimal revenue for the IPV distribution over the
entire sequence. Moreover, this remains true for any mech-
anism that has access to a finite number of samples from the
underlying distribution. This implies that any mechanism
that has access to a finite number of samples from the true
distribution guarantees at most an approximation ratio of
(|Θ|+ 1)/(2 + ε), where |Θ| is the number of possible bidder
types. Finally, in contrast to our negative results, we show
that if the true distribution satisfies the ACL condition, then
there is a mechanism such that for any distribution “close
enough” to the true distribution, the mechanism achieves
nearly optimal revenue. Intuitively, our results suggest that
the degree of correlation will be essential in the effective ap-
plication of mechanism design techniques to correlated valu-
ation settings when the distribution is uncertain.

2. PRELIMINARIES
We consider a single monopolistic seller auctioning one

object, which the seller values at zero, to a single bidder
whose valuation is correlated with an external signal. The
special case of a single bidder and an externally verifiable
signal captures many of the important aspects of the more
general multi-agent problem of multiple bidders with corre-
lated valuations while increasing ease of exposition, and this
setting has been used in the literature on correlated mecha-
nism design [1, 2, 3, 13] for this purpose. The external signal
can, but does not necessarily, represent other bidders’ bids.

The bidder has a type θ drawn from a finite set of discrete
types Θ = {1, ..., |Θ|}. Further, the bidder has a valuation
function v : Θ → R+ that maps types to valuations for
the object. Assume without loss of generality that for all
θ, θ′ ∈ Θ, if θ > θ′ then v(θ) ≥ v(θ′). The discrete external

signal is denoted by ω ∈ Ω = {1, 2, . . . , |Ω|}. Throughout
the paper, we will denote vectors, matrices, and tensors as
bold symbols, but elements of these as standard type.

There is a probability distribution, π, over the types of
the bidder and external signal where the probability of type
and signal (θ, ω) is π(θ, ω). The probability distribution can
be represented in many possible ways, but we will represent
it as a matrix. Specifically, the distribution is a matrix of
dimension |Θ|× |Ω| whose elements are all positive and sum
to one. Note that in contrast to much of the literature on
mechanism design, we do not require that the bidder type
be distributed independently of the external signal.

The distribution over the external signal ω given θ will
be denoted by the |Ω| dimensional vector π(·|θ). We are,
throughout this paper, primarily interested in the condi-
tional distribution over the external signal given the bidder’s
type, π(·|θ), so we will represent the full distribution as a
marginal distribution over Θ, πθ, and a set of conditional
distributions over Ω, π(·|·) = {π(·|1),π(·|2), ...,π(·||Θ|)}.

We explore the case where the bidder knows the prior dis-
tribution, but the seller does not. Specifically, throughout
the paper we will assume that there is a set of distributions
{πi}i∈Q where Q is some set, and only the bidder knows
which distribution is the true distribution. We will assume
that the seller does know the marginal distribution over θ,
πθ, and that the marginal distribution is fixed, i.e. all po-
tential distributions have the same marginal distribution.
We can assume, without loss of generality, that the smallest
value for the marginal distribution minθ′∈Θ πθ(θ

′) > 0, and
we will denote it as πmin We are interested in understand-
ing the limitations to learning specifically in the correlated
valuation setting, so assuming that the marginal distribu-
tion is known and fixed allows us to explore the additional
challenges of learning the conditional distribution without
unnecessary complicating factors. All of our results hold if
the marginal distribution is uncertain as well. Given that
we are primarily interested in the conditional distributions,
we will denote the full set of conditional distributions, i.e.
∪θ∈Θ{πi(·|θ)}i∈Q, as {πi(·|θ)}i∈Q,θ. We allow the bidder
to report both his type θ and his distribution πi, and the
mechanism may be conditional on these reports.

A (direct) revelation mechanism is defined by, given the
bidder type, bidder distribution and external signal (θ,π, ω),
1) the probability that the seller allocates the item to the
bidder and 2) a monetary transfer from the bidder to the
seller. We will denote the probability of allocating the item
to the bidder as an element of the |Θ|×|{πi}i∈Q|×|Ω| tensor
p. An element of the tensor p will be denoted by p(θ,π, ω), a
value between zero and one. Similarly, the transfer from the
bidder to the seller is denoted x and an element as x(θ,π, ω),
where a positive value denotes a payment to the seller and a
negative value a payment from the seller to the bidder. We
will denote a mechanism as (p,x).

Definition 1 (Bidder’s Utility). Given a realization
of the external signal ω, reported type θ′ ∈ Θ, reported distri-
bution π′ ∈ {πi}i∈Q, true type θ ∈ Θ, and true distribution
π ∈ {πi}i∈Q, the bidder’s utility under mechanism (p,x) is:

U(θ,π, θ′,π′, ω) = v(θ)p(θ′,π′, ω)− x(θ′,π′, ω)

Due to the well-known revelation principle (e.g. [8]), the
seller can restrict her attention to incentive compatible mech-
anisms, i.e., mechanisms where it is always optimal for the
bidder to truthfully report his valuation.

70



.1 .2 .3 .4 .5 .6 .7 .8 .9

−2

−1
0

1

2

3

4

5

6

−2

−1
0

1

2

3

4

5

6

π(ωH |v)

v

(a) Distribution where the valuation is un-
correlated with the external signal, π1
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(b) Distribution that satisfies the Cremer-
McLean Condition, π2
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(c) Distribution that satisfies the ACL con-
dition but fails Cremer-Mclean, π3

Figure 1: The points represent the bidder type, where the position along the x-axis is the probability that the external signal
is high. The relative size of the point represents the marginal probability of that bidder type. The lines represent lotteries
offered in the mechanism, with the payment for the lottery if ωH is observed being the intersection with the right vertical
axis, and the payment if ωL is observed is the intersection with the left axis. The height of the line at each point is the
expected payment for that lottery. The bidder accepts a lottery if and only if the expected payment is less than or equal to
his valuation (IR) and chooses the lottery with the lowest expected payment (IC). For these mechanisms, if a bidder accepts
a lottery, the item is allocated with probability 1. Figure 1a shows a take it or leave it offer of 3, and only the high valuation
v = 3 is allocated the item.

Definition 2 (Bayesian Incentive Compatibility).
A mechanism (p,x) is Bayesian incentive compatible (IC)
if for all θ, θ′ ∈ Θ and π,π′ ∈ {πi}i∈Q:∑
ω∈Ω

π(ω|θ)U(θ,π, θ,π, ω) ≥
∑
ω∈Ω

π(ω|θ)U(θ,π, θ′,π′, ω)

Bayesian incentive compatibility is a statement about the
beliefs of the bidder over the external signal, π(ω|θ). Specif-
ically, it allows the seller to determine payments by lottery.
The lottery that bidder i faces can be dependent on his val-
uation, but the lottery itself is over the external signal. In
order for the mechanism to be incentive compatible the bid-
der must believe that his expected utility is higher from the
lottery he gets by reporting his valuation truthfully than by
reporting any other valuation (see [2] for an in depth explo-
ration of this point).

In addition to incentive compatibility, we are interested in
mechanisms that are individually rational, i.e. it is rational
for a bidder to participate in the mechanism.

Definition 3 (Ex-Interim Individual Rationality).
A mechanism (p,x) is ex-interim individually rational (IR)
if for all θ ∈ Θ and π ∈ {πi}i∈Q:∑

ω∈Ω

π(ω|θ)U(θ,π, θ,π, ω) ≥ 0

To illustrate the importance of prior-dependent mecha-
nisms, it is necessary to review two important results in the
literature on revenue maximization with correlated valua-
tion distributions when the distribution is perfectly known.

Definition 4 (Cremer-McLean Condition). The
distribution over bidder types π, is said to satisfy the Cremer-
McLean condition if the set of beliefs associated with the bid-
der, {π(·|θ) : θ ∈ Θ}, are linearly independent.

Theorem 1 (Cremer and McLean 1985). If the
Cremer-McLean condition is satisfied by the distribution π,
then there exists an ex-interim IR and ex-post IC mechanism
that extracts the full social surplus as revenue.

This result states that under the apparently reasonable
Cremer-McLean condition, i.e. a condition that holds with
probability one for a random distribution [10], the mecha-
nism designer can generate as much revenue in expectation
as if she knew the bidder’s valuation. This is a remarkable
result and it can be relaxed further by the results in [2].

Theorem 2 (Albert, Conitzer, and Lopomo 2016).
A Bayesian IC and ex-interim IR mechanism can extract
full social surplus as revenue if and only if there exists a
concave function G : R|Ω| → R such that for all θ ∈ Θ,
G(π(·|θ)) = v(θ).

We will refer to any distribution π that satisfies the condi-
tions for full surplus extraction as in Theorem 2 as satisfying
the Albert-Conitzer-Lopomo (ACL) condition. Example 1
and Figure 1 demonstrates the Cremer-McLean and ACL
conditions, and gives example mechanisms that extract full
surplus as revenue.

Example 1. Suppose that there is a single bidder and an
external signal that is correlated with the bidder’s valuation.
Both the bidder valuations and the external signal are binary,
and we will denote the bidder valuations by v ∈ {1, 3} and
the possible values of the external signal by ω ∈ {ωL, ωH}.
Denote the distribution of the bidder’s valuations and the
external signal by

π1(v, ω) =

[
1/3 1/3
1/6 1/6

]
π2(v, ω) =

[
1/2 1/6
1/12 1/4

]
where the indices are ordered such that π2(v = 3, ω = ωL) =
1/12. Note that the marginal distributions over v are iden-
tical for π1 and π2. It is clear that in π1 the bidder’s valu-
ation and the external signal are uncorrelated, implying that
the optimal mechanism is a reserve price mechanism [17],
shown in Figure 1a, with an expected revenue of 1. How-
ever, π2 satisfies the Cremer-McLean condition, and there-
fore, the seller can extract full surplus as revenue (the full
5/3), as in Figure 1b.

Now suppose that the set of valuations is instead v ∈
{1, 2.5, 3}, and the distribution over types and external sig-
nals is given by

71



π3(v, ω) =

 1/4 1/12
1/6 1/6
1/12 1/4


It is trivial to verify that π3 does not satisfy the Cremer-
McLean Condition. However, it does satisfy the ACL con-
dition, and Figure 1c shows a mechanism that extracts full
surplus.

3. CONVERGING SEQUENCES OF
DISTRIBUTIONS

This section formalizes the infinite set of distributions that
we will examine for our impossibility result, and then proves
the main results. It is likely that any reasonable distribution
estimation procedure will return a continuous and closed set
of distributions that are consistent with the observed sam-
ples. Recent literature on designing correlated mechanisms
when there is uncertainty in the distribution has estimated
the discrete distribution using a Bayesian approach with an
uninformative prior [3], specifically estimating a categorical
distribution using Dirichlet posterior. This procedure will
never rule out any distributions, so the possible sets of distri-
butions (i.e. the distributions that have positive probability
mass in the posterior of the estimation) are all distributions,
an uncountably infinite, continuous, closed set.

In this section, we will consider a more restrictive set, that
of countably infinite sequences of distributions that converge
to a distribution. This set is more restrictive in the sense
that any continuous closed set of distributions will contain
an infinite number of these sequences. Since we will show
that this more restrictive set is sufficient, the results will
naturally extend to the more permissive set.

Definition 5. A countably infinite sequence of distribu-
tions {πi}∞i=1 is said to be converging to the distribution π∗,
the convergence point, if for all θ ∈ Θ and ε > 0, there exists
a T ∈ N such that for all i ≥ T , ||πi(·|θ)−π∗(·|θ)|| < ε. I.e.,
for each θ ∈ Θ, the conditional distributions in the sequence,
{πi(·|θ)}∞i=1, converge to the conditional distribution π∗(·|θ)
in the l2 norm.

Note that in Definition 5, we do not explicitly assume that
the elements of the sequence satisfy the ACL condition, nor
do we assume that the distribution to which the sequence is
converging is an IPV distribution. However, it is straight-
forward to construct examples of converging sequences such
that every element of the sequence satisfies ACL but the
limit is IPV. Figure 2a demonstrates one such set. We will
make use of the following standard definition.

Definition 6 (Affine Independence). A set of vec-
tors {vi}mi=1 over Rn are affinely independent if for {αi}mi=1,∑
i αivi = 0 and

∑
i αi = 0 implies αi = 0 for all i ∈

{1, ...,m}.

The set of distributions over Ω are the points on a |Ω|-
simplex where the vertices of the simplex are denoted by
the set of distributions such that π(ω) = 1 for all ω ∈ Ω (see
Figure 2b). Further, any set of distributions over Ω of size
|Ω| that are affinely independent must span the |Ω|-simplex

with affine combinations. I.e., if the set {πi}|Ω|i=1 is affinely

independent, then for any distribution π′ over Ω, there must

exist {αi}|Ω|i=1 where
∑
i αi = 1 and π′ =

∑
i αiπi.

We can assume, without loss of generality, that for any se-
quence of distributions we consider, {πi}∞i=1, there must ex-
ist a subset of {πi(·|θ)}i,θ of size |Ω| that is affinely indepen-
dent. If not, the affine combination of vectors {πi(·|θ)}i,θ
spans a lower dimensional simplex, and we can reduce the
dimensionality of Ω until an affinely independent subset ex-
ists. Note that this relies on the assumption that the bidder
is risk neutral. Specifically, a risk neutral bidder is indif-
ferent between a payment for an outcome of the external
signal, p(θ′,πi′ , ω), and a lottery over multiple values of the
external signal with the same expected payoff. Therefore, if
there is not a subset of {πi(·|θ)}i,θ of size |Ω| that is affinely
independent we can always replace the true signal with a
lower dimensional set of lotteries over the external signal
without affecting the expected utility of the bidder.

In addition to Definition 5, we will require the following
assumption.

Assumption 1. For the sequence of distributions {πi}∞i=1

converging to π∗ and for any θ′ ∈ Θ, there exists a subset
of distributions of size |Ω| from the set {πi(·|θ)}i,θ that is
affinely independent and the distribution π∗(·|θ′) is a strictly
convex combination of the elements of the subset. I.e., there

exists {αk}|Ω|k=1, αk ∈ (0, 1), and {πk(·|θk)}|Ω|k=1 such that

π∗(·|θ′) =
∑|Ω|
k=1 αkπk(·|θk).

Assumption 1 states that the sequence of distributions is
converging to a distribution that is in the interior of the se-
quence. This is not without loss of generality, but it greatly
simplifies the analysis. Moreover, we believe that it is very
likely to hold in realistic settings. Specifically, Assumption 1
is a statement about the conditional distributions, and par-
ticularly that all conditional distributions of the convergence
point, π∗(·|θ) for all θ, is in some sense in the interior of
some other estimate (see Figures 2b for a graphical depic-
tion of this statement). However, the distributions that “en-
close” the convergence point do not have to have the same
θ, i.e. any conditional distributions for any θ in the set
{πi(·|θ}i,θ can be the distributions that “enclose” the con-
vergence point.

Further, if the full set of all potential distributions is a
continuous closed set and has an independent distribution in
the interior of the set, then there will be an infinite number
of sequences that satisfy this assumption. This is the case
for the estimation procedure used in [3].

With these definitions, we are able to introduce our main
results, Theorem 3 and Corollary 4.

Theorem 3. Let {πi}∞i=1 be a sequence of distributions
converging to π∗ that satisfies Assumption 1. Denote the
revenue of the optimal mechanism for the distribution π∗ by
R. For any k > 0, and for any mechanism that is incentive
compatible and individually rational, there exists a T ∈ N
such that for all πi′ ∈ {πi}∞i=T , the expected revenue is less
than R+ k.

Theorem 3, whose proof we shall defer to the end of this
section, states that no mechanism can guarantee revenue
better than the optimal revenue achievable at the conver-
gence point for all distributions in the sequence. Namely, if
the sequence of distributions {πi}∞i=1 satisfy the ACL condi-
tion, but the convergence point is IPV, then no mechanism
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(a) Sequence of converging distributions with a binary signal.
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(b) Sequence elements that satisfy Assumption 1.

Figure 2: Figure 2a demonstrates a converging sequence as in Definition 5. Each point represents a conditional distribution,
and conditional distributions linked by a dashed line both belong to the same full distribution. Specifically, the conditional
distributions are all converging to π(ωH |v) = 1/2, i.e. a distribution where the bidder’s value and the external signal are
uncorrelated. However, all of the distributions in the sequence satisfy the Cremer-McLean condition. Figure 2b demonstrates
distributions that satisfy Assumption 1 in a set of distributions over three possible external signals {ωL, ωM , ωH} as points in
a 2-simplex. Specifically, π∗ is a strictly convex combination of π1, π2, and π3. The sequence of distributions in Figure 2a
also satisfies Assumption 1 due to π1, but if π1 was excluded from the sequence, it would not.

can do always do better than the optimal mechanism for the
IPV point (in our setting, a reserve price mechanism [17]).

It may not seem surprising that we cannot construct mech-
anisms that do well on large sets of distributions. How-
ever, the following corollary indicates that we cannot learn
a mechanism that always does well either.

Corollary 4. Let {πi}∞i=1 be a sequence of distributions
converging to π∗ that satisfies Assumption 1. Denote the
revenue of the optimal mechanism for the distribution π∗ by
R. For any k > 0 and for any mechanism that is incentive
compatible and individually rational and uses a finite num-
ber of independent samples from the underlying distribution,
there exists a T ∈ N such that for all πi′ ∈ {πi}∞i=T , the
expected revenue is less than R+ k.

It is important to be very careful in interpreting The-
orem 3 and Corollary 4; they are both statements about
distributions close to the convergence point. They do not
provide a bound for distributions that are far from the con-
vergence point. Therefore, even if the convergence point is
an IPV distribution, it is still potentially possible to gener-
ate near optimal revenue for some distributions in the se-
quence, in fact we will formally show this in Theorem 10.
However, even with sampling, mechanisms cannot generate
significantly higher revenue than the optimal IPV mecha-
nism for distributions sufficiently close to IPV, though sam-
pling may still substantially increase the expected revenue
for some subset of the sequence of distributions.

These results indicate that the setting where the bidder
may have a distribution from an infinite set is fundamentally
different from the setting where the bidder’s distribution is
one of a finite set (as in Fu. et. al. 2014 [7]). Note that the
set of all mechanisms includes mechanisms that first applies
some procedure to reduce the infinite set to a finite set.

In the remainder of this section, we prove Theorem 3 and
Corollary 4. The strategy that we will use to prove the above
results relies on bounding the maximum possible payments
for any mechanism. Specifically, the revelation principle [8]
ensures that the revenue achievable by any mechanism can
be achieved by a mechanism that not only truthfully elicits

the bidder’s valuation, but also truthfully elicits the distribu-
tion of the bidder. We will show that Assumption 1 implies
that any mechanism with payments too large (either from or
to the bidder), will create an incentive for some bidder type
to lie either about his valuation or his distribution, violat-
ing the revelation principle. Once we show that payments
are bounded, we can use a standard continuity result in lin-
ear programming to show that the expected revenue of the
mechanism must converge to something less than or equal
to the optimal revenue achievable at the convergence point.

To bound payments, we will require that for distributions
“sufficiently close” to the convergence point, we can always
find another distribution that is a finite step in any direc-
tion. This is what Assumption 1 provides (see Figure 2b for
intuition), as the following lemma formally demonstrates.

Lemma 5. Let {πi}∞i=1 be a sequence of distributions con-
verging to π∗ that satisfies Assumption 1. There exists an
εmin > 0, such that for all distributions π(·) over Ω where
||π(·) − π∗(·|θ)|| < εmin for some θ ∈ Θ, and all unit vec-

tors z ∈ R|Ω| where
∑
ω z(ω) = 0, there exists a πj(·|θj) ∈

{πi(·|θ)}i,θ such that (π(·)− πj(·|θj)) • z ≥ εmin.

Proof. First, note that by Assumption 1, for all θ ∈
Θ, there exists {αk}|Ω|k=1 and an affinely independent set

of vectors {πk(·|θk)}|Ω|k=1, where αk ∈ (0, 1) and π∗(·|θ) =∑|Ω|
k=1 αkπk(·|θk). The set of affinely independent points

{πk(·|θk)}k define a simplex in R|Ω|, and the lth face of the
simplex, where l ∈ {1, ..., |Ω|}, is the set of points denoted
by
∑
k 6=l α

′
kπk(·|θk) such that

∑
k 6=l α

′
k = 1 and α′k ∈ [0, 1].

The distance from the distribution π∗(·|θ) to any point on
the lth face is:

min
α′
k

||π∗(·|θ)−
∑
k 6=l

α′kπk(·|θk)||

= min
α′
k

||
|Ω|∑
k=1

αkπk(·|θk)−
∑
k 6=l

α′kπk(·|θk)||

= min
α′
k

||αlπl(·|θl)−
∑
k 6=l

(αk − α′k)πk(·|θk)|| > 0.
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The last inequality is due to αl 6= 0 (Assumption 1) and
affine independence. Let ε′ > 0 be the minimum such dis-
tance for all θ ∈ Θ and all faces of the simplex.

Define εmin = ε′

2
. Let π(·) be a distribution over Ω where

||π(·) − π∗(·|θ)|| < εmin, for some θ ∈ Θ. Let {πk(·|θk)}k
define the simplex that contains π∗(·|θ). Therefore, the dis-
tance from π(·) to any face of the simplex is at least εmin

by an application of the triangle inequality. Let z ∈ R|Ω|
be a unit vector such that

∑
ω z(ω) = 0. Since a simplex

is a closed and bounded set, there exists some face of the
simplex which we will denote as the lth face, such that for
some {α′k}k 6=j and some ε ≥ εmin > 0:

π(·)− εz =
∑
k 6=l

α′kπk(·|θk).

Let πj(·|θj) be a vertex of that face such that

(πj(·|θj)−
∑
k 6=l

α′kπk(·|θk)) • z ≤ 0.

This must exist by virtue of the face being a segment of a
hyper-plane. Then:

εmin ≤ ε = εz • z = (π(·)−
∑
k 6=l

α′kπk(·|θk)) • z

= (πj(·|θj)−
∑
k 6=l

α′kπk(·|θk)) • z + (π(·)− πj(·|θj)) • z

≤ (π(·)− πj(·|θj)) • z

As discussed in Section 2, the payments in a Bayesian
mechanism are a lottery over the external signal (see Fig-
ure 1c). A lottery over the external signal can be viewed
as a linear function (or a hyper-plane) whose domain is the
Ω-simplex of distributions and whose value is the expected
payment for the lottery. Lemma 5 ensures that for points
close enough to the convergence point, there exists a distri-
bution in the sequence that is in the “opposite direction” of
the gradient of the hyperplane that defines the lottery. I.e.,
for any possible lottery with a gradient of magnitude K,
there exists a distribution for which the expected payment
for the lottery is at least εminK less than for any distribu-
tions“sufficiently close”to the convergence point. Therefore,
if payments are too large (either from or to the bidder) for
some distribution π′ and θ′, there is another distribution
and type π′′ and θ′′ that will find reporting π′ and θ′ irre-
sistable. The following lemma formalizes this argument.

Lemma 6. Let {πi}∞i=1 be a sequence of distributions con-
verging to π∗ that satisfies Assumption 1. For any mecha-
nism (p,x) that is incentive compatible and individually ra-
tional and guarantees non-negative revenue in expectation
for all distributions in {πi}∞i=1, there exists some M > 0
such that for all πi′ ∈ {πi}∞i=1, θ ∈ Θ, and ω ∈ Ω:

|x(θ,πi′ , ω)| ≤M
Proof. Let εmin > 0 be defined as in Lemma 3. By

Definition 5, there exists a T ∈ N such that for all θ ∈ Θ
and πi∗(·|θ) ∈ {πi(·|θ)}∞i=T , ||πi∗(·|θ) − π∗(·|θ)|| ≤ εmin.
Since there are a finite number of distributions such that
i∗ < T , choose Mi∗<T = maxi∗<T,θ,ω |x(θ,πi∗ , ω)|.

Therefore if payments are not bounded, for any M ′ > 0,
there must exist some πi′ ∈ {πi}∞i=T , θ′ ∈ Θ, and ω′ ∈ Ω
such that x(θ′,πi′ , ω

′) > M ′ or x(θ′,πi′ , ω
′) < −M ′.

First, we will consider the case where x(πi′ , θ
′, ω′) < −M ′.

Note that the expected revenue generated for any type θ
must be bounded from below by −v(|Θ|)/πmin if the mech-
anism guarantees non-zero expected revenue. This is be-
cause the maximum amount of expected revenue for any
type can be at most v(|Θ|) or individual rationality will
not be satisfied, and if expected revenue for any type is
less than −v(|Θ|)/πmin, it is not possible to make up the
revenue from other types. Further, this implies that in or-
der for the mechanism to generate non-negative revenue,
the bidder’s expected utility for any type must be less than
v(|Θ|) + v(|Θ|)/πmin. Therefore, set

M ′ =
v(|Θ|)
πmin

+
(1− εmin)(2v(|Θ|) + v(|Θ|)

πmin
+ 1)

εmin

Then, the magnitude of the gradient of the hyper-plane de-
fined by the affine combination of x(θ′,πi′ , ω) for all ω ∈ Ω
must be at least:

||∇x(θ′,πi′ , ·)|| ≥
(− v(|Θ|)

πmin
+M ′)

(1− εmin)
=

2v(|Θ|) + v(|Θ|)
πmin

+ 1

εmin

Let z ∈ R|Ω| with
∑
ω z(ω) = 0 be the direction of the

gradient of the hyper-plane defined by the lottery in the
plane of the |Ω|-simplex. Then by Lemma 5, there exists a
πj(·|θj) such that (πi′(·|θ′)− πj(·|θj)) • z > εmin. Then:∑

ω

πj(ω|θj)U(πj , θj ,πj , θj , ω)

≥
∑
ω

πj(ω|θj)U(πj , θj ,πi′ , θ
′, ω) (by IC)

≥
∑
ω

πj(ω|θj)U(πj , θj ,πi′ , θ
′, ω)

−
∑
ω

πi′(ω|θ′)U(πi′ , θ
′,πi′ , θ

′, ω) (by IR)

≥
∑
ω

(πi′(ω|θ′)− πj(ω|θj))x(θ′,πi′ , ω)− v(|Θ|)

= (πi′(·|θ′)− πj(·|θj)) · z||∇x(θ′,πi′ , ·)|| − v(|Θ|)
≥ εmin||∇x(θ′,πi′ , ·)|| − v(|Θ|)
≥ v(|Θ|) + v(|Θ|)/πmin + εmin

Therefore, the seller cannot earn non-negative expected rev-
enue for type (πj , θj), a contradiction.

It is straightforward to show that the combination of indi-
vidual rationality and payments being bounded from below
by −max{Mi∗<T ,M

′} implies that all payments must be
bounded from above. We omit the details due to space con-
siderations. Denote this upper bound by M ′′.

Therefore, let M = max{Mi∗<T ,M
′,M ′′}, and all pay-

ments are bounded by M .

With payments bounded, the final necessary result is the
following stating that for any linear program where the vari-
ables for the set of optimal solutions is bounded, the corre-
spending sequence of linear programs is upper semi-continuous.

Lemma 7 (Martin 1975 [12]). Let a(t), b(t), c(t), and
d(t) be vectors parameterized by the parameter vector t ∈ Q.
Assume that a(t), b(t), c(t), and d(t) converge continuously
to a(0), b(0), c(0), and d(0) as t → 0. Similarly, A(t),
B(t), C(t), and D(t) are matrices that converge continu-
ously to A(0), B(0), C(0), and D(0).
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Define the parameterized linear program LP (t) as:

max
x,q

c′(t)x+ d′(t)q

subject to

A(t)x+B(t)q = a(t)

C(t)x+D(t)q ≤ b(t)
q ≥ 0

If the set of optimal solutions of LP (0), {(x, q) : (x, q) ∈
arg max(LP (0))}, is bounded, then the objective value of
LP (t) is upper semi-continuous at t = 0.

All of the pieces are now in place to prove our main re-
sult, that no IC and IR mechanism over the sequence can
significantly outperform the optimal mechanism for the con-
vergence point everywhere on the sequence.

Proof of Theorem 3. Note that the maximum revenue
achievable for any given πi′ can be bounded from above by
the following linear program:

max
p,x

∑
θ

∑
ω

πi′(θ, ω)x(θ,πi′ , ω)

subject to∑
ω

πi′(ω|θ)U(θ,πi′ , θ,πi′ , ω) ≥ 0 ∀ θ ∈ Θ∑
ω

πi′(ω|θ)U(θ,πi′ , θ,πi′ , ω)

≥
∑
ω

πi′(ω|θ)U(θ,πi′ , θ
′,πi′ , ω) ∀ θ, θ′ ∈ Θ

0 ≤ p(θ,πi′ , ω) ≤ 1 ∀ θ ∈ Θ, ω ∈ Ω

−M ≤ x(θ,πi′ , ω) ≤M ∀ θ ∈ Θ, ω ∈ Ω

where the last constraint is a consequence of Lemma 6.
Therefore, by Lemma 7, the objective of this program is
upper semi-continuous at π∗, and the result follows imme-
diately.

Corollary 4 directly follows. The key insight is that any
finite number of samples from the underlying distribution
can be viewed as one signal from a more complicated distri-
bution, and that this distribution still converges to a con-
vergence point that will be IPV if the original convergence
point is IPV.

Proof of Corollary 4. Let {(θj , ωj)}Nj=1 be a
finite number of independent samples from the true distri-
bution πi. Note the true distribution can be written as
πi = π∗ + εθ,i for some εθ,i ∈ R|Ω|. Therefore, the proba-
bility of seeing samples {(θj , ωj)}Nj=1 and external signal ω
is:

πi({(θj , ωj)}Nj=1, ω|θ) = πi(ω|θ)
N∏
j=1

πi(ωj |θj)π(θj)

= (π∗(ω|θ) + εθ,i(ω))

N∏
j=1

(π∗(ωj |θj) + εθj ,i(ωj))π(θj)

which converges to π∗({(θj , ωj)}Nj=1, ω|θ) as πi converges to

π∗. Moreover, the samples {(θj , ωj)}Nj=1 are independent of
the final round’s bidder type, so the optimal mechanism over
the distribution π∗({(θj , ωj)}Nj=1, ω|θ) is revenue equivalent

to the optimal mechanism over π∗. Therefore, a finite num-
ber of samples is equivalent to a higher dimensional signal,
and Theorem 3 applies directly.

4. UNBOUNDING THE APPROXIMATION
RATIO ON A CONVERGING
SEQUENCE OF DISTRIBUTIONS

While Corollary 4 states that we can’t learn a mechanism
that guarantees optimal revenue, it leaves open the possi-
bility that we can learn nearly optimal revenue. However,
the following example demonstrates that the approximation
ratio is unbounded in the number of bidder types.

Example 2. Let the marginal distribution over the type
of the bidder be given by π(θ) = 1/2θ for θ ∈ {1, ..., |Θ| − 1}
and π(|Θ|) = 1/2|Θ|−1. Further let the value of the bidder
for the item be v(θ) = 2θ. Therefore, the expected value of
the bidder’s valuation is

|Θ|−1∑
θ=1

(
1

2θ

)
2θ +

(
1

2

)|Θ|−1

2|Θ| = |Θ|+ 1

Assume that the external signal is binary, i.e. Ω = {ωL, ωH}.
Note that for a reserve price mechanism with a reserve price
of 2|Θ|, the expected revenue is 2. Further, if the distribution
is IPV, this is the optimal mechanism [17].

As the following lemma shows, Example 2 gives a sequence
of distributions that all satisfy the ACL condition and whose
full surplus revenue grows without bound in the number of
bidder types. However, the sequence converges to an IPV
distribution that has constant revenue in the number of bid-
der types.

Lemma 8. In the setting of Example 2, there exists a se-
quence of distributions {πi}∞i=1 that converges to an IPV
distribution and satisfies Assumption 1 such that for each
distribution πi, their exists a mechanism (pi,xi) whose ex-
pected revenue is |Θ|+ 1.

Proof. Let πi(ωL|θ) = 1/2 + (1/i)(1/2 − (1/2)|Θ|−θ).
Then, define the linear function

Gi(π(·|θ)) = −π(ωL|θ)i2|Θ| + i2|Θ|−1 + 2|Θ|−1

Therefore, Gi(πi(·|θ)) = 2θ, the ACL condition, and by
Theorem 2, for each πi, there exists a mechanism such that
the expected revenue is |Θ| + 1. Furthermore, πi(·|θ) con-
verges to π∗(ωL|Θ) = 1/2, an IPV distribution. Finally,
πi(ωL|1) > 1/2 while πi(ωL||Θ|) < 1/2, so the sequence
satisfies Assumption 1.

Corollary 9. The expected revenue generated by an IR
and IC mechanism over an infinite sequence of distributions
guarantees at best a (|Θ|+1)/(2+ε) approximation to the rev-
enue achievable by the optimal Bayesian IC and ex-interim
IR mechanism if the distribution over types is exactly known.
This is still true if the mechanism designer has access to a
finite number of samples from the true distribution.

5. APPROXIMATING THE OPTIMAL
MECHANISM

Theorem 3 and Corollary 4 shows that we are unlikely
to do well for distributions near IPV, but what if we can
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bound the true distribution away from IPV? Can we take
advantage of correlation if there is enough correlation?

We now show that if the true distribution satisfies the
ACL condition, then there is a single mechanism such that
for all distributions sufficiently close to the true distribution,
the mechanism designer can do nearly as well as if she knew
the true distribution.

Theorem 10. For any distribution π∗ that satisfies the
ACL condition with optimal revenue R and given any pos-
itive constant k > 0, there exists ε > 0 and a mechanism
such that for all distributions, π′, for which for all θ ∈ Θ,
||π∗(·|θ)− π′(·|θ)|| < ε, the revenue generated by the mech-
anism is greater than or equal to R− k.

Proof. By the assumption that there exists a mechanism
that extracts full surplus for the distribution π∗, there must
be a mechanism that always allocates the item and leaves
the bidder with an expected utility of 0. Let this mechanism
be denoted by (p∗,x∗). Note that this mechanism does not
depend on a reported distribution, due to it being a mech-
anism over a single distribution. Let C be the value for the
largest slope of the gradient of any lottery in the mecha-
nism. Choose ε = k/(2C). Then the expected utility for
any distribution π′(·|θ) with ||π∗(·|θ) − π′(·|θ)|| < ε when
optimally reporting θ′ ∈ Θ is bounded by:

−Cε ≤
∑
ω

π′(ω|θ)U(θ, θ′, ω) ≤ Cε

Construct a new mechanism (not necessarily truthful) where
all payments x′(θ, ω) = x∗(θ, ω) − Cε and set p′(θ, ω) =
p∗(θ, ω) = 1. Then, the utility of the bidder for optimally
misreporting is:

0 ≤
∑
ω

π′(ω|θ)U(θ, θ′, ω) ≤ 2Cε

which implies that the bidder always participates. Since the
item is always allocated, the loss in revenue is equivalent to
the gain in utility for the bidder. Therefore, the mechanism
(p′,x′) always guarantees revenue within 2Cε = k of the
optimal mechanism for any θ, so the expected revenue of
the mechanism is greater than or equal to R− k.

Note that the proof of Theorem 10 is constructive. The-
orem 10 is intuitively very reasonable, and likely what one
would expect a-priori. For a class of distributions that are
sufficiently close, there should be a mechanism that does
about as well on all of them. However, we believe this re-
sult is a fundamental insight into the problem of correlated
mechanism design; the closeness necessary to achieve nearly
full revenue is dependent on the magnitude of the largest
gradient over all of the lotteries.

Examining Figure 1c, it is intuitive that the greater the
correlation, the smaller the gradient needs to be, i.e. if two
points in Figure 1c are nearly on top of each other, the
gradients of the lotteries necessary to distinguish between
the two types is very large. Furthermore, if two valuations
are far apart in magnitude (i.e. v(θ1) � v(θ2)), then the
gradient of the lottery will be large. This intuition is proven
formally in [2]. While formal conditions characterizing the
relationship between correlation and the maximal revenue
achievable for a given estimate is outside of the scope of this
work, we believe that these results are suggestive of a path
towards these conditions.

6. CONCLUSION
In this paper, we have presented the extremes of learning

mechanisms for settings with correlated bidder distributions.
On one hand, Theorem 3 and Corollary 4 suggest that learn-
ing is doomed in the worst case. On the other, Theorem 10
suggests that if we can get close to the true distribution
we can do practically as well as if we knew the distribu-
tion. We interpret Theorem 3 and Corollary 4 as suggesting
that getting close to the optimal revenue will be, effectively,
impossible for distributions that are nearly IPV, while The-
orem 10 implies that for a sufficiently correlated distribution
we can likely do significantly better than IPV. The oppor-
tunity for mechanisms over distributions in between these
two extremes is unknown and, we believe, a very interesting
direction for future research.

Recent work [3] has employed automated mechanism de-
sign techniques in conjunction with methodologies from ro-
bust optimization to examine the practical performance of a
particular technique for incorporating uncertainty into prior-
dependent mechanism design. While this work does not fo-
cus on theoretical performance guarantees and the results
are limited to a specific simulation setting, it is interesting to
note that the degree of correlation is strongly related to the
mechanisms ability to extract nearly optimal revenue, con-
sistent with the intuition suggested by Theorem 10. Their
work is able to achieve nearly optimal revenue by only focus-
ing on portions of the set of possible distributions that are
“reasonably likely” based on observed samples from the dis-
tribution and, effectively, ignoring the rest of the set of dis-
tributions. This again is consistent with the intuition that
the mechanism designer must accept that the mechanism
may not perform well on some subset of the distributions,
Theorem 3, and that the mechanism designer must, there-
fore, optimize the mechanism for the likely distributions.

It seems likely that the way towards practical, imple-
mentable, provably efficient mechanisms with correlated bid-
der distributions will rely critically on the degree of corre-
lation. However, the literature has traditionally ignored the
degree of correlation, since full surplus extraction is possible
with very little correlation [5, 7]. Our work suggests that
the path forward will likely require three steps: First, the
gradient of the lotteries implemented by the optimal mech-
anism must be bounded in order to determine how close the
estimate must be to the true distribution. Second, the sam-
ple complexity of estimation procedures needed to ensure
that the true distribution is close to the estimate must be
analyzed. Third, mechanisms must be designed that do well
on all distributions close to the estimate.
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