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ABSTRACT
The paper proposes a bimodal logic that describes an in-
terplay between coalition strategies and distributed knowl-
edge. Unlike the existing literature, the paper assumes that
a strategy must be not only executable but also verifiable.
That is, the strategy of a coalition should be based only on
the information distributively known by the coalition and
the coalition must be able to verify the result after the strat-
egy is executed. The main technical result of the paper is a
sound and complete logical system describing all universal
properties expressible in the proposed bimodal language.

CCS Concepts
•Theory of computation → Modal and temporal log-
ics; •Computing methodologies → Reasoning about
belief and knowledge; Multi-agent systems; Cooper-
ation and coordination; Theory of mind;

Keywords
coalition power, knowledge, formal epistemology, strategy,
game theory, social choice, transition system, multiagent
system, modal logic, axiomatization, completeness

1. INTRODUCTION
In this paper we study an interplay between distributed

knowledge and strategic behavior in epistemic transition
systems. We start, however, with an example of a non-
epistemic transition system T1 depicted in Figure 1. This
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Figure 1: Non-epistemic transition system T1.
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system has three states, denoted in the figure by u, v, and
w. We assume that the system has three agents called a, b,
and c. To make the system to transition from the current
state into another state, each of the agents takes a certain
action (or casts a vote). We will consider different mech-
anisms for aggregation of votes of individual agents into a
group decision. Although in general such mechanisms can
be different from one state to another state, for our intro-
ductory example we assume that each agent has only two
votes: 0 and 1 and the system transitions into a state the
majority vote calls for. In other words, the labels on the
edges in Figure 1 represent the outcome of the vote rather
than the individual votes of the agents. For example, if the
majority of agents vote 1 in state u, then the system transi-
tions into state w; otherwise it transitions into state v. Upon
transitioning into a new state, a new vote is taken to deter-
mine the next transition. Since any two agents in system T1

constitute a majority, their coalition can pre-determine the
outcome of any vote. In other words, any coalition of two
players has a way to control the behavior of the transition
system T1. For example, if the system is currently in state u,
then coalition {a, b} can make the system to cycle between
states u and w without ever visiting state v. As a result,
statement p will remain permanently true, see Figure 1. In
such a situation, we say that in state u coalition {a, b} has a
strategy to permanently enforce condition p. We denote this
by u ⊩ S{a,b}p or simply as u ⊩ Sa,bp.

Note that in system T1 neither of the three agents alone
has a strategy to enforce condition p. Thus, u ⊩ ¬Sap. Also,
in system T1 coalition {a, b} cannot enforce condition p in
state v because condition p is not satisfied in state v, see
Figure 1. Hence, v ⊩ ¬Sa,bp.

1.1 Single Epistemic Agent
In this paper we propose a bimodal logic for reasoning

about an interplay between strategies and knowledge. To
achieve this goal we introduce the notion of an epistemic
transition system. Figure 2 depicts a simple example of an
epistemic transition system T2 with just a single agent a.
In addition to available transitions between the states, the
figure also specifies an epistemic indistinguishability relation
between the states using a dotted line. In the case of system
T2, states u and v are indistinguishable to agent a. Since
system T2 has only one agent, we assume a trivial vote ag-
gregation mechanism: the transition that the system takes is
completely determined by the vote of agent a. For example,
if in state u agent a votes 1, then the system transitions into
state w; otherwise, it transitions into state v, see Figure 2.
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Figure 2: Epistemic transition system T2.

Executability. At first glance, it appears that agent a
has a strategy in states u and v to enforce condition p by
voting 0 in state u and voting 1 in state v so that the system
alternates between states u and v. However, agent a is not
able to distinguish states u and v and, thus, would not be
able to determine the right vote in either of these states.
In other words, the hypothetical strategy described above is
not executable based on the information available to agent a.
In this paper we consider only strategies of an agent that can
be executed based on the information available to the agent.
Since agent a does not have an executable strategy at state
u of system T2 to enforce condition p, we write u ⊩ ¬Sap.
The requirement that a strategy of an agent a at a state u

should be executable implies that the strategy could be used
in all states indistinguishable from state u by agent a. Thus,
if a strategy exists in state u it also exists in all states in
the equivalence class of state u with respect to the indistin-
guishability equivalence relation of agent a. Hence, due to
the standard semantics of knowledge, if such a strategy ex-
ists, its existence must be known to agent a. In other words,
Saφ → KaSaφ is a universally true logical principle, where
Ka is the knowledge modality. We call this principle positive
strategic introspection. Lemma 2 shows that this principle
is provable from our axioms.
Similarly, if there is no strategy in a state u for an agent

a to enforce φ, then this agent cannot have such a strat-
egy in any of the states indistinguishable from state u by
the agent. Thus, negative strategic introspection principle
¬Saφ→ Ka¬Saφ is also universally true and implied by our
assumption of the executability of the strategies. We prove
this principle from our axioms in Lemma 3.

Verifiability. Consider a single-agent epistemic transition
system T3 depicted in Figure 3. It again appears that agent
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Figure 3: Epistemic transition system T3.

a has a strategy in state u to enforce condition p by alter-
nating between two states: u and w. Indeed, if under this
hypothetical strategy agent a always votes 1 in states u and
v and she always votes 0 in state w, then the system will
never transition into state v and the condition p will be en-

forced. Although agent a is not able to distinguish states u
and v, such a hypothetical strategy is executable because the
same vote is cast in these two states. However, she cannot
verify if the strategy is successful. In fact, in this example
the agent does not even know if the condition p is satisfied
at state u because she is not able to distinguish states u
and v. In this paper we only consider verifiable strategies.
In other words, we assume that the agent should be able
to verify that the condition that the strategy is enforcing is
satisfied in each state at which the system might transition
under this strategy. This assumption implies the verifiabil-
ity principle Saφ → SaKaφ. This principle is derived from
the axioms of our logical systems in Lemma 4.

The verifiability assumption implies that in system T3 the
agent a also has no strategy to enforce condition p in the
state w of the transition system. Indeed, even if the agent
can verify condition p in the state w itself, she will not be
able to do this once the system transitions to state u. One
can raise an objection to this argument by claiming that
since the transitions start at state w, the agent should be
able to distinguish state u from v by remembering that she
voted 0 to get to this state. This claim, however, is valid only
under an assumption of a perfect memory by the agent. We
assume that the agents do not have a perfect memory and
that an epistemic state description captures whatever mem-
ories the agent has at this state. In other words, the only
knowledge that an agent possesses is the knowledge captured
by the indistinguishability relation on the epistemic states.

Let us now consider a single-agent epistemic transition
system T4 depicted in Figure 4. Although in this system
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Figure 4: Epistemic Transition system T4.

agent a is not able to distinguish states u and v, she has an
executable and verifiable strategy in both of these states to
enforce condition p. This strategy is defined as always vot-
ing 0, which results in the system alternating between these
two states. This strategy is executable because it requires
the agent to vote the same way in the two indistinguishable
states. Thus, it does not use any information not available to
the agent. The strategy is verifiable because in both states
not only is condition p true, but it is known to be true to
agent a. That is, u ⊩ Sap and v ⊩ Sap.

1.2 Distributed Knowledge
In the previous section we have discussed our two basic

requirements on strategies in epistemic transition systems,
executability and verifiability, for single-agent strategies. In
a more general case of coalition strategies, the same require-
ments are expressed through the notion of distributed knowl-
edge by the coalition. In other words, we assume that mem-
bers of a coalition not only coordinate their actions, but also
share information available to them.

The executability of a coalition strategy requires that the
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coalition should be able to execute the strategy based on the
information distributively known to the members of the coali-
tion. That is, if a coalition cannot distinguish two epistemic
states, then each member of the coalition must cast the same
vote in both states.
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Figure 5: Multiagent epistemic transition system T5.

As an example, consider epistemic transition system T5

depicted in Figure 5. Just like in transition system T1 dis-
cussed earlier, we assume that this system has three agents:
a, b, and c. Each of these agents votes either 0 or 1 and
the system transitions based on the majority vote accord-
ing to the labels shown in Figure 5. Since coalition {a, b}
constitutes a majority in this system, it should be able to
enforce condition p in states u, w, and v by forcing the sys-
tem to remain in one of these states. Hypothetically, they
can achieve this by both voting 0 in states u and v and vot-
ing 1 in state w. Such a strategy, however, is not executable
based on the individual knowledge of the agents a or b. For
instance, agent a cannot vote according to this strategy in
states u and w because she needs to vote differently in these
two states, but she cannot distinguish them herself. At the
same time, both agents can follow this strategy (and verify
that condition p holds) if they share information available to
them. Since we assume that members’ actions are based on
the information distributively known to the whole coalition,
w ⊩ Sa,bp.
Similarly, the verifiability requirement for coalition strate-

gies states that a coalition must be able to verify the enforced
condition, before and after each transition, using the infor-
mation distributively known to the members of the coalition.
Consider the epistemic transition system T6 depicted in Fig-
ure 6. We again assume that this system has three agents:
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Figure 6: Multiagent epistemic transition system T6.

a, b, and c. Each of these agents votes either 0 or 1 and
the system transitions based on the majority vote according
to the labels shown in the figure. Note that in this system
coalition {a, b} can enforce condition p in states u and v by
forcing system to alternate between these two states. This
could be achieved by adopting the strategy for both of them

to vote 0 in all states of the system. Such a strategy does not
require any knowledge about the current state and thus it is
executable. However, this strategy is not verifiable based on
the individual knowledge of the coalition members. For ex-
ample, agent a cannot distinguish state u from state w and
thus she would not be able to verify based on her knowledge
alone that condition p holds at state u. At the same time,
coalition {a, b} can distinguish all states of this system based
on the information distributively known by the members of
the coalition: u ⊩ Sa,bp.

1.3 Related Literature
Logics of coalition power were developed by Marc Pauly [1,

2], who also proved the completeness of the basic logic of
coalition power. The setting of the current paper resem-
bles the “goal maintenance” in Pauly’s “extended coalition
logic” [1, p. 80]. Pauly’s approach has been widely studied
in the literature [3, 4, 5, 6, 7, 8, 9]. An alternative, binary-
modality-based, logical system was proposed by More and
Naumov [10].

Alur, Henzinger, and Kupferman introduced Alternating-
Time Temporal Logic (ATL) that combines temporal and
coalition modalities [11]. Van der Hoek and Wooldridge
proposed to combine ATL with epistemic modality to form
Alternating-Time Temporal Epistemic Logic [12]. They did
not prove the completeness theorem for the proposed logi-
cal system. A completeness result for a logical system that
combines coalition power and epistemic modalities was pre-
sented at AAMAS’12 by Ågotnes and Alechina [13]. Unlike
our approach, their system does not impose any epistemic
requirements on strategies. Our system requires strategies
to be executable and verifiable. As a result, the logical sys-
tem proposed by Ågotnes and Alechina does not contain
the principles of positive strategic introspection, negative
strategic introspection, and verifiability discussed above. In
fact, their system does not contain any axiom describing an
interplay of the two modalities.

Executability of strategies have been studied before under
different names. While Jamroga and Ågotnes talk about
“knowledge to identify and execute a strategy” [14], Jam-
roga and van der Hoek discuss “difference between an agent
knowing that he has a suitable strategy and knowing the
strategy itself” [15]. Van Benthem calls such strategies “uni-
form” [16]. None of these works proposes a complete system
to capture the properties of executable strategies.

2. SYNTAX AND SEMANTICS
Throughout the rest of this paper we fix a set of proposi-

tional variables and a set of agents A.

Definition 1. Φ is the minimal set of formulas such that

1. p ∈ Φ for each propositional variable p,

2. ¬φ,φ→ ψ ∈ Φ for each φ,ψ ∈ Φ,

3. KCφ,SCφ ∈ Φ for each finite C ⊆ A and each φ ∈ Φ.

The definition of an epistemic transition system given be-
low is an extension of a standard Kripke semantics for mul-
tiagent epistemic logic S5 by two additional components: a
domain of votes for each agent and a mechanism. The do-
main of votes is the set of all potential actions (or votes)
that can be taken by an agent in each epistemic state to
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influence the next transition of the system. In all examples
above the domain of votes of each agent is set {0, 1}.
A mechanism is a procedure that determines the next

state of the system based on the current state and the in-
dividual votes of the agents. We do not assume that all
agents are treated equally by the mechanism and we do not
assume that the mechanism is deterministic. An example
of a non-deterministic mechanism is choosing a transition
randomly if there is a tie. Formally we represent mechanism
as a ternary relation between the current state, the set of
votes, and the new state.

Definition 2. An epistemic transition system is a tuple
(W, {∼a}a∈A, {Va}a∈A,M, π), where

1. W is a set of states,

2. ∼a is an “indistinguishability” equivalence relation for
each a ∈ A,

3. Va is a set called “domain of choices” of agent a ∈ A,

4. M ⊆W ×
∏

a∈A Va×W is an aggregation mechanism,

5. π is a function that maps propositional variables into
subsets of W .

Two epistemic states are indistinguishable by a coalition
C ⊆ A if they are indistinguishable by every member of the
coalition.

Definition 3. For any epistemic worlds w1, w2 ∈W and
any set C ⊆ A, let w1 ∼C w2 if w1 ∼c w2 for each c ∈ C.

Corollary 1. Relation ∼C is an equivalence relation on
the set of states W for each set of agents C ⊆ A.

Recall from the introduction that we expect all strategies
to be executable. In other words, agents must use the same
strategy in all states indistinguishable by the coalition. We
achieve this by specifying a strategy as a function on equiv-
alence classes.

Definition 4. A strategy of a coalition C ⊆ A is a tuple
{sc}c∈C such that sc :W/ ∼C→ Vc.

The remaining two definitions in this section formally spec-
ify the meaning of modal formula SCφ as “a coalition C has
a strategy to enforce a condition φ indefinitely”. To under-
stand our formal semantics it would be convenient to first
discuss what it means for a coalition C to have a strategy s to
enforce condition φ in state w after exactly one transition.
In the case of a non-epistemic transition system it means
that “condition φ is satisfied in any state u into which the
system could transition from state w if coalition C is using
strategy s”. The executability requirement for epistemic sys-
tems forces the above quoted statement to be true not only
for state w, but for each state w′ ∈ [w]C , where [w]C is the
equivalence class of the state w with respect to relation ∼C .
Furthermore, the verifiability requirement forces the condi-
tion φ to be satisfied not just in every state u′ reachable
from w′ ∈ [w] but in every state u ∈ [u′]C . This is captured
by a transition-like relation →s between equivalence classes.

Definition 5. For any states w, u ∈W , any strategy s =
{sc}c∈C of a coalition C ⊆ A, let [w]C →s [u]C if there are
w′ ∈ [w]C , u

′ ∈ [u]C , and a set of votes {va}a∈A such that

1. vc = sc([w]C) for each c ∈ C,

2. (w′, {va}a∈A, u
′) ∈M .

Let →∗
s be a relation on set W/ ∼C defined as the transi-

tive reflexive closure of the relation →s. The next definition
is the key definition of this paper. It specifies the meaning
of the two modalities in our logical system.

Definition 6. For any state w ∈ W of a transition sys-
tem (W, {∼a}a∈A, {Va}a∈A,M, π) and any formula φ ∈ Φ,
let relation w ⊩ φ be defined as follows

1. w ⊩ p if w ∈ π(p) for each propositional variable p,

2. w ⊩ ¬φ if w ⊮ φ,

3. w ⊩ φ→ ψ if w ⊮ φ or w ⊩ ψ,

4. w ⊩ KCφ if w′ ⊩ φ for each w′ such that w ∼C w′,

5. w ⊩ SCφ if there is a strategy s of coalition C such that
w′ ⊩ φ for every w′ ∈W such that [w]C →∗

s [w′]C .

3. AXIOMS
In addition to propositional tautologies in language Φ, our

logical system consists of the following axioms:

1. Empty Coalition: K∅φ→ S∅φ,

2. Truth: KCφ→ φ,

3. Negative Introspection: ¬KCφ→ KC¬KCφ,

4. Distributivity: KC(φ→ ψ) → (KCφ→ KCψ),

5. Monotonicity: KCφ→ KDφ, if C ⊆ D,

6. Knowledge: SCφ→ KCφ,

7. Persistence: SCφ→ SCSCφ,

8. Cooperation: SC(φ→ ψ) → (SDφ→ SC∪Dψ),
if C ∩D = ∅.

We say that formula φ is a theorem in our logical system
and write ⊢ φ if formula φ is derivable from the axioms of
our system using Modus Ponens and Strategic Necessitation
inference rules:

φ, φ→ ψ

ψ

φ

SCφ

We write X ⊢ φ if formula φ is derivable from the theorems
of our logical system and an additional set of axiomsX using
only Modus Ponens inference rule.

Lemma 1. Knowledge Necessitation inference rule
φ

KCφ
is admissible in our logical system for each set C ⊆ A.

Proof. Suppose that ⊢ φ. Thus, ⊢ SCφ by Strategic
Necessitation inference rule. At the same time, ⊢ SCφ →
KCφ by Knowledge axiom. Therefore, ⊢ KCφ by Modus
Ponens inference rule.
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4. EXAMPLES OF DERIVATIONS
The soundness of our logical system is shown in Section 5.

In this section we give several examples of formal proofs
in the system. The first three of these examples are posi-
tive strategic introspection, negative strategic introspection,
and verifiability principles mentioned in the introduction.
Lemma 5 is a strategic monotonicity principle.

Lemma 2. ⊢ SCφ→ KCSCφ.

Proof. By Persistence axiom, ⊢ SCφ → SCSCφ. At
the same time, ⊢ SCSCφ → KCSCφ by Knowledge axiom.
Therefore, ⊢ SCφ → KCSCφ by the laws of propositional
reasoning.

Lemma 3. ⊢ ¬SCφ→ KC¬SCφ.

Proof. First, note that ⊢ SCφ→ KCSCφ, by Lemma 2.
Thus, ⊢ ¬KCSCφ → ¬SCφ by the law of contrapositive.
Hence, ⊢ KC(¬KCSCφ → ¬SCφ) by Lemma 1. Then, by
Distributivity axiom and Modus Ponens inference rule,

⊢ KC¬KCSCφ→ KC¬SCφ.

At the same time, ⊢ ¬KCSCφ → KC¬KCSCφ by Nega-
tive Introspection axiom. Thus, by the laws of proposi-
tional reasoning, ⊢ ¬KCSCφ → KC¬SCφ. Hence, by the
law of contrapositive, ⊢ ¬KC¬SCφ → KCSCφ. Note that
⊢ KCSCφ → SCφ by Truth axiom. Thus, by the laws of
propositional reasoning, ⊢ ¬KC¬SCφ → SCφ. Therefore,
⊢ ¬SCφ→ KC¬SCφ again by the law of contrapositive.

Lemma 4. ⊢ SCφ→ SCKCφ.

Proof. By Knowledge axiom, ⊢ SCφ → KCφ. Thus,
⊢ S∅(SCφ→ KCφ) by Strategic Necessitation inference rule.
At the same time, by Cooperation axiom,

⊢ S∅(SCφ→ KCφ) → (SCSCφ→ SCKCφ).

Thus, ⊢ SCSCφ→ SCKCφ by Modus Ponens inference rule.
Therefore, ⊢ SCφ → SCKCφ by Persistence axiom and the
laws of propositional reasoning.

Lemma 5. ⊢ SCφ→ SDφ where C ⊆ D.

Proof. Note that φ → φ is a propositional tautology.
Thus, ⊢ φ → φ. Hence, ⊢ SD\C(φ → φ) by Strategic Ne-
cessitation rule. At the same time, by Distributivity axiom,
⊢ SD\C(φ → φ) → (SCφ → SDφ) due to the assumption
C ⊆ D. Thus, ⊢ SCφ→ SDφ by Modus Ponens rule.

We conclude the section with a well-known argument show-
ing that the positive introspection principle follows from the
rest of the axioms of modal logic S5. Later we use this ob-
servation in the proof of the completeness of our system.

Lemma 6. ⊢ KCφ→ KCKCφ.

Proof. Formula ¬KCφ → KC¬KCφ is an instance of
Negative Introspection axiom. Thus, ⊢ ¬KC¬KCφ → KCφ
by the law of contrapositive in the propositional logic. Hence,
⊢ KC(¬KC¬KCφ → KCφ) by Knowledge Necessitation in-
ference rule, see Lemma 1. Thus, by Distributivity axiom
and Modus Ponens inference rule,

⊢ KC¬KC¬KCφ→ KCKCφ. (1)

At the same time, KC¬KCφ → ¬KCφ is an instance of
Truth axiom. Thus, ⊢ KCφ → ¬KC¬KCφ by contraposi-
tion. Hence, taking into account the following instance of

Negative Introspection axiom ¬KC¬KCφ → KC¬KC¬KCφ,
one can conclude that ⊢ KCφ→ KC¬KC¬KCφ. The latter,
together with statement (1), implies the statement of the
lemma by the laws of propositional reasoning.

5. SOUNDNESS
In this section we prove the soundness of our logical sys-

tem. We start the proof by introducing a notion of a compo-
sition of strategies of two disjoint coalitions and by proving
several properties of this operation. These properties are
used to prove the soundness of Cooperation axiom.

Definition 7. For any two disjoint coalitions C,D ⊆ A
and any two strategies s1 = {s1c}c∈C and s2 = {s2d}d∈D of
these coalitions, let strategy s1 ⊕ s2 of coalition C ∪ D be
{sa}a∈C∪D where

sa([w]C∪D) =

{
s1a([w]C), if a ∈ C,

s2a([w]D), if a ∈ D.

The next lemma shows that the composition of strategies
is a well-defined operation.

Lemma 7. For any disjoint coalitions C and D, if w ∼C∪D

w′, then sa([w]C∪D) = sa([w
′]C∪D) for each a ∈ C ∪D.

Proof. Without loss of generality, assume that a ∈ C.
Note that w ∼C∪D w′ implies that w ∼C w′. Thus, [w]C =
[w′]C . Therefore, sa([w]C∪D) = s1a([w]C) = s1a([w

′]C) =
sa([w

′]C∪D).

Lemma 8. For any two disjoint coalitions C and D, if
[w]C∪D →s1⊕s2 [w′]C∪D, then [w]C →s1 [w′]C and [w]D →s2

[w′]D.

Proof. Let s1 = {s1c}c∈C , s
2 = {s2d}d∈D, and s1 ⊕ s2 =

{sa}a∈C∪D. By Definition 5, assumption [w]C∪D →s1⊕s2

[w′]C∪D implies that there are epistemic states u ∈ [w]C∪D,
u′ ∈ [w′]C∪D, and a set of votes {va}a∈A such that

1. va = sa([w]C∪D) for each a ∈ C ∪D,

2. (u, {va}a∈A, u
′) ∈M .

Hence, by Definition 7,

3. vc = sc([w]C) for each c ∈ C,

4. vd = sd([w]D) for each d ∈ D,

5. (u, {va}a∈A, u
′) ∈M .

Note that assumptions u ∈ [w]C∪D and u′ ∈ [w′]C∪D imply
that u ∼C∪D w and u′ ∼C∪D w′. Hence, u ∼C w, u′ ∼C

w′, u ∼D w, u′ ∼D w′, by Definition 3. Thus, u ∈ [w]C ,
u′ ∈ [w′]C , u ∈ [w]D, and u′ ∈ [w′]D. Therefore, [w]C →s1

[w′]C and [w]D →s2 [w′]D by items 3, 4, and 5 above and
Definition 5.

Corollary 2. If [w]C∪D →∗
s1⊕s2 [w′]C∪D, then

[w]C →∗
s1 [w′]C and [w]D →∗

s2 [w′]D, for any two disjoint
coalitions C and D.

In the rest of this section we prove the soundness of our
system with respect to the semantics introduced in Section 2.

Theorem 1. If ⊢ φ, then w ⊩ φ for each formula φ ∈ Φ
and each state w of each epistemic transition system.

727



The soundness of propositional tautologies, S5 axioms (Dis-
tributivity, Truth, Negative Introspection, and Monotonic-
ity), and Modus Ponens and Strategic Necessitation infer-
ence rules is standard. Below we show the soundness of each
of the remaining axioms as a separate lemma.

Lemma 9. If w ⊩ K∅φ, then w ⊩ S∅φ.

Proof. By Definition 4, empty tuple s = {sa}a∈∅ is a
strategy of the empty coalition. Consider any u ∈ W such
that [w]∅ →s [u]∅. By Definition 6, it suffices to show that
u ⊩ φ. Indeed, w ∼∅ u by Definition 3. Hence, u ⊩ φ by
the assumption w ⊩ K∅φ and Definition 6.

Lemma 10. If w ⊩ SCφ, then w ⊩ KCφ.

Proof. Suppose that w ⊩ SCφ. Thus, by Definition 6,
there is a strategy s of coalition C such that w′ ⊩ φ for each
w′ ∈W such that [w]C →∗

s [w′]C .
Consider any u ∈ W such that w ∼C u. By Definition 6,

it suffices to show that u ⊩ φ. Indeed, [w]C →∗
s [w]C due to

→∗
s being the transitive reflexive closure of the relation →s.

Hence, [w]C →∗
s [u]C by the assumption w ∼C u. Therefore,

u ⊩ φ due to the choice of strategy s.

Lemma 11. If w ⊩ SCφ, then w ⊩ SCSCφ.

Proof. Assumption w ⊩ SCφ by Definition 6 implies
that there is a strategy s of coalition C such that for each
u ∈W if [w]C →∗

s [u]C , then u ⊩ φ.
Consider any w′ ∈ W such that [w]C →∗

s [w′]C . By Def-
inition 6, we need to show that w′ ⊩ SCφ. Let w′′ ∈ W
be any epistemic world such that [w′]C →∗

s [w′′]C . Again
by Definition 6, it suffices to show that w′′ ⊩ φ. Note that
[w]C →∗

s [w′′]C due to →∗
s being the transitive reflexive clo-

sure of the relation →s. Therefore, w
′′ ⊩ φ due to the choice

of strategy s.

Lemma 12. If w ⊩ SC(φ → ψ), w ⊩ SDφ, and C ∩D =
∅, then w ⊩ SC∪Dψ.

Proof. Suppose that w ⊩ SC(φ → ψ). Thus, by Defini-
tion 6, there is a strategy s1 = {s1c}c∈C of coalition C such
that u ⊩ φ → ψ for each u where [w]C →∗

s1 [u]C . Simi-
larly, assumption w ⊩ SDφ implies that there is a strategy
s2 = {s2d}d∈D of coalition D such that u ⊩ φ for each u
where [w]D →∗

s2 [u]D.
Consider any w′ ∈ W such that [w]C∪D →∗

s1⊕s2 [w′]C∪D.

By Definition 6, it suffices to show that w′ ⊩ ψ. Indeed,
assumption [w]C∪D →∗

s1⊕s2 [w′]C∪D, by Corollary 2, im-

plies that [w]C →∗
s1 [w′]C and [w]D →∗

s2 [w′]D. Thus,
w′ ⊩ φ → ψ and w′ ⊩ φ by the choice of strategies s1

and s2. Therefore, w′ ⊩ ψ by Definition 6.

6. COMPLETENESS
The section is dedicated to the proof of the following com-

pleteness theorem.

Theorem 2. Let φ be any formula in set Φ. If w ⊩ φ for
every epistemic state w ∈ W of every epistemic transition
system (W, {∼a}a∈A, {Va}a∈A,M, π), then ⊢ φ.

6.1 Properties of Maximal Consistent Sets
We start the proof of the completeness by establishing two

properties of maximal consistent sets that are used later.
The first property, Lemma 13, is typical for a proof of com-
pleteness of a modal logic. The second property, Lemma 14
below, is specific to our construction.

Lemma 13. For any consistent set of formulae X and any
¬KCφ ∈ X, set {¬φ} ∪ {ψ | KCψ ∈ X} is consistent.

Proof. Assume the opposite. Thus, there must exist
formulae KCψ1, . . . ,KCψn ∈ X such that ψ1, . . . , ψn ⊢ φ.
Thus, by the deduction theorem for propositional logic,

⊢ ψ1 → (ψ2 → . . . (ψn → φ) . . . ).

Hence, by Knowledge Necessitation inference rule (Lemma 1),

⊢ KC(ψ1 → (ψ2 → . . . (ψn → φ) . . . ))).

By Distributivity axiom and Modus Ponens inference rule,

KCψ1 ⊢ KC(ψ2 → . . . (ψn → φ) . . . )).

By repeating the last step (n− 1) times,

KCψ1, . . . ,KCψn ⊢ KCφ.

Hence, X ⊢ KCφ by the choice of formula KCψ1, . . . ,KCψn,
which contradicts to the consistency of set X due to the
assumption ¬KCφ ∈ X.

Lemma 14. For any consistent set of formulae X, and
any subsets D1, . . . , Dn of a finite set C ⊆ A, any for-
mula ¬SCψ ∈ X, any formulae SD1φ1, . . . , SDnφn ∈ X,
and any formulae K∅χ1, . . . ,K∅χm ∈ X, if Di ∩ Dj = ∅
for each i ̸= j where 1 ≤ i, j ≤ n, then the set of formulae
{¬ψ,φ1, . . . , φn, χ1, . . . , χm} is consistent.

Proof. Suppose φ1, . . . , φn, χ1, . . . , χm ⊢ ψ. Hence, by
the deduction theorem for propositional logic applied n+m
times, ⊢ φ1 → (. . . (φn → (χ1 → (. . . (χm → ψ) . . . ))) . . . ).
Then, by Strategic Necessitation inference rule,

⊢ S∅(φ1 → (. . . (φn → (χ1 → (. . . (χm → ψ) . . . ))) . . . )).

Thus, by Cooperation axiom and Modus Ponens rule,

⊢ SD1φ1 → S∅∪D1(φ2 → (. . . (χm → ψ) . . . )).

In other words,

⊢ SD1φ1 → SD1(φ2 → (. . . (χm → ψ) . . . )).

Then, by Modus Ponens inference rule,

SD1φ1 ⊢ SD1(φ2 → (. . . (χm → ψ) . . . )).

By Cooperation axiom and Modus Ponens inference rule,

SD1φ1 ⊢ SD2φ2 → SD1∪D2(. . . (χm → ψ) . . . ).

Again, by Modus Ponens inference rule,

SD1φ1,SD2φ2 ⊢ SD1∪D2(. . . (χm → ψ) . . . ).

By repeating the previous steps n− 2 times,

SD1φ1, . . . , SDnφn ⊢ SD1∪···∪Dn(χ1 → (. . . (χm → ψ) . . . )).

Recall that D1 ∪ · · · ∪ Dn ⊆ C by the assumption of the
lemma. Hence, by Lemma 5,

SD1φ1, . . . , SDnφn ⊢ SC(χ1 → (. . . (χm → ψ) . . . )).

Note that SD1φ1, SD2φ2, . . . , SDnφn ∈ X by the assumption
of the lemma. Thus, X ⊢ SC(χ1 → (. . . (χm → ψ) . . . )). By
Cooperation axiom and Modus Ponens inference rule,

X ⊢ S∅χ1 → SC∪∅(χ2 → (. . . (χm → ψ) . . . )).

In other words,

X ⊢ S∅χ1 → SC(χ2 → (. . . (χm → ψ) . . . )).
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By Modus Ponens inference rule,

X, S∅χ1 ⊢ SC(χ2 → (. . . (χm → ψ) . . . )).

by Empty Coalition axiom and Modus Ponens inference rule,

X,K∅χ1 ⊢ SC(χ2 → (. . . (χm → ψ) . . . )).

By repeating the previous steps m− 1 times,

X,K∅χ1, . . . ,K∅χm ⊢ SCψ.

Recall that K∅χ1, . . . ,K∅χm ∈ X by the assumption of the
lemma. Thus, X ⊢ SCψ. This contradicts the assumption
¬SCψ ∈ X of the lemma due to the consistency of setX.

6.2 Canonical Model
In this section we construct a canonical model based on a

fixed maximal consistent set of formulae X0. This construc-
tion is based on the “unravelling” technique [17]. Informally,
states in this model are nodes in a tree. Nodes of the tree are
labeled with maximal consistent sets of formulae and edges
of the trees are labeled with coalitions. The root node of the
tree is labeled with set X0. Formally, epistemic states are
defined as sequences representing paths in such a tree.

Definition 8. The set of epistemic states W consists of
all finite sequences X0, C1, X1, C2, . . . , Cn, Xn, such that

1. n ≥ 0,

2. Xi is a maximal consistent subset of Φ for each i ≥ 1,

3. Ci is a finite subset of A for each i ≥ 1,

4. {φ | KCiφ ∈ Xi−1} ⊆ Xi for each i ≥ 1.

Definition 9. The domain of choices Va is Φ×P(A) for
each a ∈ A.

Definition 10. For any w = X0, C1,X1, C2, . . . , Cn,Xn

and any w′ = X0, C
′
1, X

′
1, C

′
2, . . . , C

′
m, X

′
m, let w ∼a w′ if

there is an integer number k such that

1. 0 ≤ k ≤ min{n,m},

2. Xi = X ′
i for each i such that 0 < i ≤ k,

3. Ci = C′
i for each i such that 0 < i ≤ k,

4. a ∈ Ci for each i such that k < i ≤ n,

5. a ∈ C′
i for each i such that k < i ≤ m.

For any state w = X0, C1, X1, C2, . . . , Cn,Xn, by hd(w)
we mean set Xn.

Lemma 15. For any X0, C1,X1, C2, . . . , Cn,Xn ∈W and
any k ≤ n, if KCφ ∈ Xn and C ⊆ Ci for all i such that
k < i ≤ n, then KCφ ∈ Xk.

Proof. Suppose that there is k ≤ n such that KCφ /∈ Xk.
Let m be the maximal such k. Note that m < n due to the
assumption KCφ ∈ Xn of the lemma. Thus, m < m+1 ≤ n.
Assumption KCφ /∈ Xm implies ¬KCφ ∈ Xm due to the

maximality of set Xm. Hence, Xm ⊢ KC¬KCφ by Negative
Introspection axiom. Thus, Xm ⊢ KCm+1¬KCφ by Mono-
tonicity axiom and the assumption C ⊆ Cm+1 of the lemma
(recall that m + 1 ≤ n). Then, KCm+1¬KCφ ∈ Xm due to
the maximality of the set Xm. Hence, ¬KCφ ∈ Xm+1 by
Definition 8. Thus, KCφ /∈ Xm+1 due to the consistency of
set Xm+1, which is a contradiction with the choice of m.

Lemma 16. For any X0, C1, X1, C2, . . . , Cn, Xn ∈W and
any k ≤ n, if KCφ ∈ Xk and C ⊆ Ci for all i such that
k < i ≤ n, then φ ∈ Xn.

Proof. We prove the lemma by induction on the dis-
tance between n and k. In the base case, n = k. Then
the assumption KCφ ∈ Xn implies Xn ⊢ φ by Truth axiom.
Therefore, φ ∈ Xn due to the maximality of set Xn.

Suppose that k < n. Assumption KCφ ∈ Xk implies
Xk ⊢ KCKCφ by Lemma 6. Thus, Xk ⊢ KCk+1KCφ by
Monotonicity axiom, the condition k < n of the inductive
step, and the assumption C ⊆ Ck+1 of the lemma. Then,
KCk+1KCφ ∈ Xk by the maximality of set Xk. Hence,
KCφ ∈ Xk+1 by Definition 8. Then, φ ∈ Xn by the in-
duction hypothesis.

Lemma 17. If KCφ ∈ hd(w) and w ∼C w′, then φ ∈
hd(w′) for any states w,w′ ∈W and any finite C ⊆ A.

Proof. The statement follows from Lemma 15, Lemma 16,
and Definition 10.

Lemma 18. If KCφ /∈ hd(w), then there is an epistemic
state w′ ∈W such that w ∼C w′ and φ /∈ hd(w′).

Proof. Due to the maximality of the set hd(w), assump-
tion KCφ /∈ hd(w) implies that ¬KCφ ∈ hd(w). Thus, by
Lemma 13, set Y0 = {¬φ} ∪ {ψ | KCψ ∈ hd(w)} is con-
sistent. Let Y be a maximal consistent extension of set Y0

and w′ be sequence w,C, Y . In other words, sequence w′

is an extension of sequence w by two additional elements:
C and Y . Note that w′ ∈ W due to Definition 8 and the
choice of set Y0. Furthermore, w ∼C w′ by Definition 10.
To finish the proof, we need to show that φ /∈ hd(w′). In-
deed, ¬φ ∈ Y0 ⊆ Y = hd(w′) by the choice of Y0. Therefore,
φ /∈ hd(w′) due to the consistency of the set hd(w′).

Definition 11. M is the set of all tuples (w, {va}a∈A, w
′)

such that

{φ | ∃C ⊆ A(SCφ ∈ hd(w)∧∀c ∈ C(vc = (φ,C)))} ⊆ hd(w′).

Lemma 19. Let w,w′ ∈ W be epistemic state, SCφ ∈ Φ
be a formula, and s = {sc}c∈C be the strategy of coalition C
such that sc([u]C) = (φ,C) for each c ∈ C and each u ∈W .
If SCφ ∈ hd(w) and [w]C →s [w

′]C , then SCφ ∈ hd(w′).

Proof. Suppose that [w]C →s [w′]C . Thus, by Defini-
tion 5, there are epistemic states u ∈ [w]C and u′ ∈ [w′]C
and a set of votes {va}a∈A such that

1. vc = sc([u]C) = (φ,C) for each c ∈ C,

2. (u, {va}a∈A, u
′) ∈M .

Recall that SCφ ∈ hd(w) by the assumption of the lemma.
Thus, hd(w) ⊢ SCSCφ by Persistence axiom. Hence, hd(w) ⊢
KCSCSCφ by Lemma 2. Then, KCSCSCφ ∈ hd(w) due to
the maximality of the set hd(w). Thus, SCSCφ ∈ hd(u) by
Lemma 17 and the assumption u ∈ [w]C . Hence, hd(u) ⊢
SCKCSCφ by Lemma 4. Thus, SCKCSCφ ∈ hd(u) due to
the maximality of the set hd(u). Hence, KCSCφ ∈ hd(u′)
by Definition 11 and due to item 1. and item 2. above.
Therefore, SCφ ∈ hd(w′) by Lemma 17 and the assumption
u′ ∈ [w′]C .

Lemma 20. Let w,w′ ∈ W be epistemic states, SCφ ∈ Φ
be a formula, and s = {sc}c∈C be the strategy of coalition C
such that sc([u]C) = (φ,C) for each c ∈ C and each u ∈W .
If SCφ ∈ hd(w) and [w]C →∗

s [w′]C , then φ ∈ hd(w′).
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Proof. Suppose that SCφ ∈ hd(w). Then it follows from
Lemma 19 and the fact relation →∗

s being a transitive reflex-
ive closure of the relation →s that SCφ ∈ hd(w′). Hence,
hd(w′) ⊢ KCφ by Knowledge axiom. Thus, hd(w′) ⊢ φ by
Truth axiom. Therefore, φ ∈ hd(w′) due to the maximality
of the set hd(w′).

Lemma 21. For any epistemic state w ∈W , any formula
¬SCψ ∈ hd(w), and any strategy s = {sc}c∈C of coalition
C, there is a state w′ ∈ W such that [w]C →s [w′]C and
ψ /∈ hd(w′).

Proof. Let Y0 be the following set of formulas

{φ | ∃D ⊆ C[SDφ ∈ hd(w) ∧ ∀d ∈ D(sd([w]C) = (φ,D))]}
∪ {¬ψ} ∪ {χ | K∅χ ∈ hd(w)}.

We first show that set Y0 is consistent. Suppose the opposite.
Thus, there must exist formulae φ1, . . . , φn, χ1, . . . , χm ∈ Y0

and subsets D1, . . . , Dn ⊆ C such that (i) SDiφi ∈ hd(w)
for each integer i ≤ n, (ii) sd([w]C) = (φ,Di) for each
i ≤ n and each d ∈ Di, (iii) K∅χi ∈ hd(w) for each in-
teger i ≤ m, and (iv) set {¬ψ,φ1, . . . , φn, , χ1, . . . , χm} is
inconsistent. Without loss of generality we can assume that
formulae φ1, . . . , φn are pairwise distinct.

Claim 1. Sets Di and Dj are disjoint for each i ̸= j.

Proof of Claim. Assume that d ∈ Di∩Dj , then sd([w]C) =
(φi, Di) and sd([w]C) = (φj , Dj). Hence, (φi, Di) = (φj , Dj).
Thus, φi = φj , which contradicts to the assumption that
formulae φ1, . . . , φn are pairwise distinct.
By Lemma 14, it follows from Claim 1 that set Y0 is con-

sistent. Let Y be a maximal consistent extension of Y0 and
w′ be the sequence w,∅, Y . In other words, sequence w′ is
an extension of sequence w by two additional elements: ∅
and Y . Note that w′ ∈W by Definition 8.
Let ⊤ be any propositional tautology. For example, ⊤

could be formula ψ → ψ. Finally, let votes {va}a∈A be
defined as follows

va =

{
sa([w]C), if a ∈ C,

(⊤,A), otherwise.
(2)

Claim 2. The following set is a subset of hd(w′):

{φ | ∃D ⊆ A(SDφ ∈ hd(w) ∧ ∀d ∈ D(vd = (φ,D)))}.

Note. The claim might appear to be true simply by the
choice of set Y0. However, the claim allows D to be an
arbitrary set of agents, not just a subset of coalition C as in
the case of Y0.
Proof of Claim. Consider any φ and any D ⊆ A such
that SDφ ∈ hd(w) and vd = (φ,D) for each d ∈ D. We
need to show that φ ∈ hd(w′).
Case 1: D ⊆ C. Thus, sd([w]C) = (φ,D) for each d ∈ D
by definition (2). Thus, φ ∈ Y0 by the choice of set Y0.
Therefore, φ ∈ hd(w′) because Y0 ⊆ Y = hd(w′).
Case 2: There is d ∈ D such that d /∈ C. Thus, vd = (⊤,A)
by definition (2). Note that vd = (φ,D) by the choice of
the set D. Thus, (⊤,A) = (φ,D). Hence, formula φ is the
tautology ⊤. Therefore, φ ∈ hd(w′) because set hd(w′) is
maximal.
By Definition 11, Claim 2 implies that (w, {va}a∈A, w

′) ∈
M . Hence, [w]C →s [w′]C by Definition 5. Thus, [w]C →∗

s

[w′]C because relation →∗
s is a transitive reflexive closure

of →s. To finish the proof of the lemma note that ψ /∈
hd(w′) because set hd(w′) is consistent and ¬ψ ∈ Y0 ⊆ Y =
hd(w′).

Definition 12. π(p) = {w ∈W | p ∈ hd(w)}.

Lemma 22. w ⊩ φ iff φ ∈ hd(w) for each formula φ ∈ Φ.

Proof. We prove by induction on the structural com-
plexity of formula φ. If formula φ is a propositional vari-
able, then the required follows from Definition 6 and Def-
inition 12. The cases of formula φ being a negation or an
implication follow by Definition 6 from the maximality and
the consistency of the set hd(w) in the standard way.

Let formula φ have the form KCψ.
(⇒) Suppose that KCψ /∈ hd(w). Thus, by Lemma 18, there
is w′ ∈ W such that w ∼C w′ and ψ /∈ hd(w′). Hence,
w′ ⊮ ψ by the induction hypothesis. Therefore, w ⊮ KCψ
by Definition 6.
(⇐) Assume that KCψ ∈ hd(w). Consider any w′ ∈ W
such that w ∼C w′. By Definition 6, it suffices to show that
w′ ⊩ ψ. Indeed, ψ ∈ hd(w′) by Lemma 17. Therefore, by
the induction hypothesis, w′ ⊩ ψ.

Let formula φ have the form SCψ.
(⇒) Suppose that SCψ /∈ hd(w). Thus, ¬SCψ ∈ hd(w) due
to the maximality of the set hd(w). Hence, by Lemma 21,
for any strategy s of coalition C there is a world w′ ∈ W
such that [w]C →s [w′]C and ψ /∈ hd(w′). Thus, by the
induction hypothesis, for any strategy s of coalition C there
is a world w′ ∈ W such that [w]C →s [w′]C and w′ ⊮ ψ.
Then, w ⊮ SCψ by Definition 6.
(⇐) Assume that SCψ ∈ hd(w). Let s = {(ψ,C)}c∈C .
Then, by Lemma 20, for any epistemic world w′ ∈ W ,
if [w]C →s [w′]C , then ψ ∈ hd(w′). Hence, by the in-
duction hypothesis, for any epistemic world w′ ∈ W , if
[w]C →s [w′]C , then w

′ ⊩ ψ. Therefore, w ⊩ SCψ by Defi-
nition 6.

We are now ready to finish the proof of Theorem 2. Sup-
pose that ⊬ φ. Let X0 be any maximal consistent subset
of Φ such that ¬φ ∈ X0. Consider single-element sequence
w = X0. Note that w ∈ W by Definition 8. Thus, w ⊩ ¬φ
by Lemma 22. Therefore, w ⊮ φ by Definition 6.

7. CONCLUSION
In this paper we have introduced a bimodal logical system

for reasoning about coalition power in epistemic transition
systems. Unlike the existing axiomatic logical system [13],
the proposed approach requires strategies to be executable
and verifiable. These requirements manifest themselves in
new logical principles: positive and negative strategic intro-
spections and verifiability. The main technical result of our
work is the soundness and the completeness of our system.
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