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ABSTRACT
A key question in stochastic planning is how to evaluate
policies when a goal cannot be reached with probability one.
Usually, in the Goal-Directed Markov Decision Process (GD-
MDP) formalization, the outcome of a policy is summarized
on two criteria: probability of reaching a goal state and ex-
pected cost to reach a goal state. The dual criterion solution
considers a lexicography preference, by prioritizing proba-
bility of reaching the goal state and then minimizing the
expected cost to goal. Some other solutions, consider only
cost by using some math trick to guaranteed that every pol-
icy has a finite expected cost. In this paper we show that
the lexicography solution does not allow a smooth trade-off
between goal and cost, while the expected cost solution does
not define a goal-semantic. We propose GUBS (Goals with
Utility-Based Semantic), a new model to evaluate policies
based on the expected utility theory; this model defines a
trade-off between cost and goal by proposing an axiomati-
zation for goal semantics in GD-MDPs. We show that our
model can be solved by any continuous state MDP solver and
propose an algorithm to solve a special class of GD-MDPs.

Keywords
Agent theories and models; Single agent planning; Markov
Decision Process; Preferential Semantics; Utility Theory.

1. INTRODUCTION
Some research on probabilistic planning has focused on

finding policies that maximize the probability of reaching a
goal [10, 14, 4] or minimize the average accumulated costs if
there exists a proper policy [1, 3, 2]. Other approaches op-
timize both criteria, maximizing the probability of reaching
a goal and minimizing the average accumulated costs at the
same time [13, 11]; these works consider a dual optimization
criterion, which finds the cheapest policy among the policies
that maximize goal probability. However, these dual crite-
rion does not really establish a compromise between them;
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actually, the dual criterion prioritizes the probability of suc-
cess and the performance is treated as secondary.

A key question is: should we prefer policies that maximize
the probability to get the goal even at the expense of an
increased expected cost, or those that minimize the expected
cost even at the expense of a small increase in risk of failure?
The river problem illustrate such a question.

Illustrative Example: The river problem. In the
river problem, a person is on one side of a river and want
to get to the other side. The person has two options. The
first one is to walk y (0 ≤ y ≤ 9, 999) meters in direction to
the north and then swim across. And the second one is to
walk 10,000 meters in direction to the north, where there is
a bridge and then traverse it with probability 1 to reach the
other side of the river. The action walk y is deterministic
and the river is modeled as a grid n × m, where n is the
number of rows and m, the number of columns. In column
1 there is a dangerous waterfall, where the person has 100%
chance of drowning. In other positions of the river 〈x, y〉, if
the person decides to swim, there is 80% chance of success
to get the position 〈x+ 1, y〉 and 20% chance of the person
ends up in the position 〈x, y − 1〉 because the flow of the
river. The cost of the action walk is 1 unit. Note that, in
this problem the more a person walks, the risk of falling into
a waterfall is lesser.

If we consider the dual criterion, the optimal solution is
to walk 10000 meters with a cost of 10000 units and then
traverse the bridge because this policy guarantees the person
to reach the other side of the river with a 100% of probability
of success. This solution does not consider the cost at all
since it prefers policies that maximize the probability to get
the goal even at the expense of an increased expected cost.

This example motivates the need for a new model. In this
paper, we argue that small increases in risk of failure should
be accepted if a large decrease in expected cost can be ob-
tained. Thus, to answer our previous question we need to
define a trade-off between the expected cost and the prob-
ability to reach the goal. To model this compromise, this
paper provides a preferential semantics for cost and goal
states based on the expected utility theory. Additionally,
we show how to solve GD-MDPs under these semantics.

2. FORMALIZATION
Consider a Goal-Directed MDP [1, 6] (GD-MDP) described

by the tuple M = 〈S,A, T, c,G〉 where:

• S is a set of states;
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• A is a set of actions that can be performed at each
period of decision t ∈ {0, 1, 2, . . .};

• T : S × A × S → [0, 1] is a transition function that
represents the probability of the system transits to a
state s′ ∈ S after the agent executes an action a ∈ A
in a state s ∈ S, i.e., P (st+1 = s′|st = s, at = a) =
T (s, a, s′);

• c : S × A → R+ is a cost function that represents the
cost of taking an action a ∈ A when the process is in
a state s ∈ S, i.e., ct = c(st, at); and

• G is a set of absorbing (states with no outgoing tran-
sitions) called goal states.

The GD-MDP problem defines a discrete dynamic process.
At any time t, the agent observes a state st, executes an
action at, transits to a state st+1 following T and pays a
cost ct. The process ends after reaching any goal state in G.

Every finite history h = s0, a0, c0, s1, a1, c1, . . . , sT can
be resumed to a vector (CT , βT ) ∈ R × {g,¬g}, where g
means a goal state was reached and ¬g means no goal state
was reached (dead-ends1 included). If sT ∈ G then CT =∑T−1
t=0 c(st, at) and βT = g, otherwise CT =

∑T−1
t=0 c(st, at)

and βT = ¬g
A decision-maker that prioritizes goals can be easily for-

malized for histories as follows.

Definition 1. A decision-maker prioritizes goals if the
decision-maker presents the following preference:

(CT , g) � (C′T ,¬g), ∀CT , C′T ∈ R+ ∪∞, (1)

(CT , g) � (C′T , g), if CT < C′T ∀CT , C′T ∈ R+, (2)

where A � B means that the decision-maker prefers A to
B, i.e., the decision-maker prefers a history that reaches the
goal than other states, independently of the total cost; and
if both histories reaches the goal, the decision-maker prefers
the history with lower cost.

The Definition 1 defines preference among histories, but
says nothing about how to define preference among policies.
A non-stationary policy π maps partial histories h into an
action a, i.e., π : H → A, where H is all finite sequences of
pairs (s, a) ∈ S × A and a current state st. Any policy π
induces a probability distribution of complete histories; in
the jargon of expected utility theory, a policy is a lottery.
In this paper, we discuss how to setup preference regarding
lotteries, i.e., distribution over histories.

3. GOAL-SEMANTIC IN THE LITERATU-
RE

Before describing the main paper’s contributions in more
detail, we first review the goal semantic used in prior work.

In the GD-MDP setup, one way to evaluate the perfor-
mance is computing the probability of reaching a goal [10,
14, 4]. GD-MDPs whose objective is to find policies that
maximize the probability of reaching a goal are called MAX-
PROB [10].

Another way to evaluate the performance of GD-MDPs is
the expected accumulated cost to reach the goal. However, if

1A dead-end is a state from which reaching the goal is im-
possible.

a proper policy (a policy that reaches the goal from any state
with probability 1) does not exist, the expected accumulated
cost to reach the goal is not well-defined [11].

Since the existence of a proper policy disallows the ex-
istence of dead ends, [11] introduces three new classes of
GD-MDPs with different assumptions about the existence of
these type of states: SSPADE, fSSPUDE and iSSPUDE. SS-
PADE has dead ends but they are avoidable if the agent acts
optimally from the initial state. fSSPUPE has unavoidable
dead ends but assumes that the agent can put a finite price
(penalty) on running into a dead end. A dual optimization
criterion is used to solve iSSPUDE, problems where dead
ends are unavoidable and the cost of entering one is infinite.
The dual optimization criterion [13, 11] finds the cheapest
policy among the policies that maximize goal probability.

Finally, a common method to conciliate indefinite horizon
and infinite horizon is the use of a discount factor. [15]
proposes the use of discounted cost criterion to deal with
problems with dead ends. However, [13] shows that this
approach may not be appropriate in problems with complex
cost structures.

Next we analyze the goal semantic used by [10, 11, 15].
To improve clarity, the proofs of theorems of this section are
in the appendix.

3.1 MAXPROB Criterion
Let Pπg be the goal probability function of a policy π, i.e.

the probability of reaching the goal under policy π. The
MAXPROB criterion evaluation considers that a policy π
is better than a policy π′ if and only if the probability of
reaching a goal state is greater in the first one, i.e.,

Pπg > Pπ
′

g ⇐⇒ π � π′.

3.2 Dual Optimization Criterion
Let C

π
g be the expected cost to goal, i.e., the expected cost

of histories that reach the goal state when following policy π.
The dual criterion evaluation [13, 11] considers the following
lexicography measure regarding lotteries:

(i) if Pπg > Pπ
′

g , then π � π′; or

(ii) if Pπg = Pπ
′

g and C
π
g < C

π′

g , then π � π′.

Although this lexicography measure makes a GD-MDP
a well-defined problem and guarantees condition in Defini-
tion 1, it may not represent properly the preference of deci-
sion-makers. For instance, the dual criterion measure may
allow a huge increase in expected cost even if there is a small
increase in the probability to reach the goal. This is formal-
ized in the following theorem.

Theorem 1. There exists a GD-MDP M with policies π
and π′ and L arbitrarily large and δ > 0 arbitrarily small
such that:

1. Pπg > Pπ
′

g and Pπg − Pπ
′

g < δ; and

2. C
π
g − C

π′

g > L.

3.3 Penalty to quit
Consider a GD-MDP augmented with an action q such

that:
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1. T (s, q, s′) =

{
1 , if s′ = sg
0 , if s′ 6= sg

where sg ∈ G; and

2. c(s, q) = D for all s ∈ S.

Action q can be seeing as a quit action, i.e., the decision-
maker is willing to pay penalty D of giving up the chance
to get to the goal. Then, an optimal policy is the one that
reaches goal with probability 1, even if the policy makes
use of the quit action q, and minimizes the expected cost
C
π
D = E

[∑∞
t=0 c(st, at)

∣∣π, s0]. Thus, the action q can be
used to avoid dead ends by paying a finite cost.

This parameterized measure was proposed by [11]. A pos-
itive property of the penalty D is that there exists a large
enough D such that the MAXPROB measure can be ob-
tained. Additionally, if there exists proper policies, then the
dual criterion measure can be obtained.

Theorem 2. Consider a GD-MDP with policies π and π′

such that: ( i) Pπg > Pπ
′

g , or ( ii) Pπg = Pπ
′

g = 1 and C
π
g <

C
π′

g ; then, there exists a penalty D0 such that C
π
D < C

π′

D for
any D > D0.

A negative property of the penalty is that given an arbitrary
D, there exist and GD-MDP such that the MAXPROB mea-
sure can not be obtained.

Theorem 3. Consider an arbitrary penalty D, then there
exists a GD-MDP with policies π and π′ such that:

1. Pπg > Pπ
′

g ; and

2. C
π
D > C

π′

D .

3.4 Discounted Cost Criterion
Given a discount factor γ ∈ (0, 1), a policy π can be simply

evaluated by the expected accumulated discounted cost sum
C
π
γ = E

[∑∞
t=0 γ

tc(st, at)|π, s0
]
. The discount factor γ guar-

antees that even if a history is infinite, the discounted cost
sum is finite. As γ → 1 the MAXPROB criterion can be
obtained, additionally, if there exists proper policies, then
the dual criterion measure can be obtained. Just like the
penalty formulation, this criterion has similar positive and
negative properties. This is formalized in the following the-
orems.

Theorem 4. Consider a GD-MDP with policies π and

π′ such that: ( i) Pπg > Pπ
′

g , or ( ii) Pπg = Pπ
′

g = 1 and

C
π
g < C

π′

g ; then, if, when reaching a goal, a reward Rg is

considered, there exists a discount factor γ0 such that C
π
γ <

C
π′

γ for any γ > γ0.

Theorem 5. Consider an arbitrary discount factor γ, then
there exists a GD-MDP with policies π and π′ such that:

1. Pπg > Pπ
′

g ; and

2. C
π
γ > C

π′

γ .

4. GOAL-SEMANTIC BASED ON EXPEC-
TED UTILITY THEORY

Theorem 1 shows that the dual optimization criterion, de-
spite making a GD-MDP a well-defined problem, represents
preference that may not represent a real decision-maker.
Penalty and Discount measures model preference that make
a trade-off between expected cost to goal and probability to
goal and in the limit (D → ∞ or γ → 1) the MAXPROB
measure can be obtained. However, D and γ cannot be set
generically neither to obtain MAXPROB (Theorems 3 and
5), nor to prioritize goals (Definition 1). Next we define a
new measure to evaluate policies based on Definition 1.

Definition 2. Consider the following utility function:

U(CT , βT ) = u(CT ) +Kg1βT=g, (3)

where u(·) is a utility function over cost, Kg is a constant
utility for reaching the goal, and 1cond is the function that
returns 1 when condition cond is true, and 0 otherwise. We
call such a model GUBS: Goal with Utility-Based Semantic,
and a decision-maker follows GUBS model if a policy π is
evaluated by:

V π = E[U(CT , βT )|π, s0].

In the next sections we show theoretical results and how
to solve GUBS model.

4.1 Theoretical Results
If function u(CT ) and constant Kg are chosen appropri-

ately, the conditions in Definition 1 can be guaranteed.

Theorem 6. The model GUBS guarantees the decision-
maker prioritizes goals (Definition 1) if the following condi-
tions are observed:

1. u : R→ [Umin, Umax];

2. u(C) is strictly decreasing in C; and

3. Kg > Umax − Umin.

Proof. The condition (CT , g) � (C′T ,¬g) is the same as
U(CT , g) > U(C′T ,¬g). Then, under the conditions in the
theorem, we have:

U(CT , g) = u(CT ) +Kg

> Umin + Umax − Umin
= Umax

≥ U(C′T ,¬g).

The condition (CT , g) � (C′T , g) when CT < C′T is the same
as U(CT , g) > U(C′T , g). Then, under the conditions in the
theorem, we have u(CT ) > u(C′T ), then:

U(CT , g) = u(CT ) +Kg > u(C′T ) +Kg = U(C′T , g).

Note that Theorem 6 gives a sufficient condition to guar-
antee the preference in Definition 1. Differently from penalty
model and discount model, where the choice of discount fac-
tor γ or penalty D depends on the GD-MDP; Kg, Umax
and Umin do not depend on the GD-MDP problem. Besides
that, the following theorem also presents a result regarding
policies.
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Theorem 7. Consider a GD-MDP and two policies π

and π′ such that Pπg > Pπ
′

g , then, under the GUBS model,
π′ � π only if:

Pπ
′

g

Pπg
>

Kg

Umax − Umin +Kg
.

Proof. We have:

V π = E[u(CT ) +Kg1βT=g|π]

= E[u(CT )|π] +KgP
π
g

≥ Umin +KgP
π
g ,

and

V π
′

= E[u(CT ) +Kg1βT=g|π′]

= E[u(CT )|π′] +KgP
π′
g

≤ Pπ
′

g Umax + (1− Pπ
′

g )Umin +KgP
π′
g .

where the last equation was obtained by considering the best
scenario constrained by Pg: when goal is reached the best
utility (Kg + Umax) is obtained and if goal is not reached,
an infinite cost must be payed, which gives the worst utility
(Umin).

Since the condition π′ � π is the same as V π
′
> V π, we

have:

Pπ
′

g Umax + (1− Pπ
′

g )Umin +KgP
π′
g > Umin +KgP

π
g

Pπ
′

g (Umax − Umin +Kg) > KgP
π
g

Pπ
′

g

Pπg
>

Kg

Umax − Umin +Kg
.

Theorem 7 guarantees that MAXPROB condition can be
obtained by choosing Kg appropriately, but no Kg can ob-
tain MAXPROP for any GD-MDP. However, differently from
discount and penalty model, in the GUBS model it is pos-
sible: (i) to guarantee goal-prioritized preference (Defini-
tion 1), and (ii) to guarantee an arbitrary approximation to
MAXPROB.

For example, consider an GD-MDP with two policies π

and π′ where Pπg = 0.9 and Pπ
′

g = 0.89; C
π
g = 1000 and

C
π′

g = 1. Then, in the dual criterion π � π′. In the GUBS
model it is possible to set Kg that guarantees π � π′ inde-
pendently of the GD-MDP structure, e.g., if Umax−Umin =
1 and Kg > 89. Note that Kg does not depend on the

C
π
g , C

π′

g values.

Corollary 1. Consider a GD-MDP and two policies π
and π′ such that Pπg = 1, then, under the model GUBS and

Kg = Umax − Umin, π′ � π only if Pπ
′

g ≥ 1
2

Proof. This result follows from the direct substitution
in the equation of Theorem 7.

Corollary 1 suggests that if Pπ = 1, then, to π′ be better

than π, the necessary condition is that Pπ
′
≥ 1

2
, but the

cost in π′ must also be lesser than in π to compensate the

difference between Pπ and Pπ
′
.

4.2 Algorithms
Although the model GUBS presents better semantic for

goals, the optimal policy is not anymore stationary. To pro-
pose new algorithms to solve the model GUBS, we present
two reformulations of the original problem: discrete-based
cost and continuous-based cost.

Definition 3 (Discrete Cost). Given a GD-MDP de-
scribed by the tupleM = 〈S,A, T, c,G〉 where c : S×A → N,
we restate the original GD-MDP problem into a new discrete
cost MDP 〈X ,A′, T ′, c′, R′g〉, where:

1. X = S ×N;

2. A′ = A;

3. T ′(x, a, x′) = T (s, a, s′); where x = (s, C) and x′ =
(s′, C + c(s, a));

4. c′(x, a) = u(C+ c(s, a))−u(C), where x = (s, C); and

5. R′g = Kg is the terminal reward for goal states.

In this definition C is the accumulated cost and R′g is the
reward. X is the set of augmented states, that are the states
with the accumulated cost C thus far. The immediate cost
c′ is defined considering the accumulated cost C and Kg is
associated with the terminal reward for the goal states.

Under the Discrete Cost reformulation considering the
cost c′ in Definition 3, a history h = s0, a0, c0, s1, a1, c1, . . . , sT
where sT ∈ G is evaluated by:

u(h) = c′0 + c′1 + . . .+ c′T−1 +R′g

= [u(c0)− u(0)] + [u(c0 + c1)− u(c0)]+

+ [u(c0 + c1 + c2)− u(c0 + c1)]+

. . .+ [u(c0 + . . .+ cT−1)− u(c0 + . . .+ cT−2)]

+Kg

= u(c0 + . . .+ cT−1)− u(0) +Kg

= u(CT )− u(0) +Kg,

since u(0) is a constant, we have that preferences under
the Discrete Cost reformulation is equivalent to the GUBS
model.

The value iteration algorithm (Algorithm 1), solves the
discrete-based cost problem. This algorithm has as inputs:
a GD-MDP M, the maximum cost Cmax, the cost-utility
function u(·) and the goal terminal reward Kg. Algorithm 1
computes for each possible accumulated cost the Q value for
each pair (augmented-state, action) considering the cost c′

in Definition 3 (Lines 4–7) and then computes the V value
(Lines 8–10).

Definition 4 (Continuous Cost). Given a GD-MDP
described by the tuple M = 〈S,A, T, c,G〉, we restate the
original GD-MDP problem into a new continuous cost MDP
〈X ,A′, T ′, c′, R′g〉, where:

1. X = S × [Umin, Umax];

2. A′ = A;

3. T ′(x, a, x′) = T (s, a, s′); where x = (s,B) and x′ =
(s′, u(u−1(B) + c(s, a)));

4. c′(x, a, x′) = B′ − B, where x = (s,B) and x′ =
(s′, B′); and
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Algorithm 1 Value Iteration for discrete-based cost GUBS
model.
1: Input: GD-MDPM, maximum cost Cmax, utility func-

tion u(·), goal terminal reward Kg

2: Initialize: V (s, C) = u(∞) − u(C) ∀ s ∈ S, C ∈
{Cmax, . . . , Cmax + maxs,a c(s, a)}; V (s, C) = Kg ∀
s ∈ G, C ∈ {0, 1, . . . , Cmax + maxs,a c(s, a)}

3: for C = Cmax downto 0 do
4: for s ∈ S, a ∈ A do
5: c′(s, a) = u(C + c(s, a))− u(C)

6: Q(s, C, a) = c′(s, a) +
∑

s′∈S∪G

T (s, a, s′)V (s′, C +

c(s, a))
7: end for
8: for s ∈ S do
9: V (s, C) = maxa∈AQ(s, C, a)

10: end for
11: end for
12: return V (·)

5. R′g = Kg is the terminal reward for goal states.

Continuous Cost reformulation is similar to Discrete Cost
reformulation; whereas C represents the accumulated cost,
B represents the utility of the accumulated cost, i.e B =
u(C) or C = u−1(B). We do not present an algorithm
for Continuous Cost reformulation, but any hybrid discrete-
continuous algorithm can be used to solve it.

5. EXPERIMENTS
We run experiments in the river problem introduced in

Section 1 to show how parameters influence the models:
GUBS, Penalty to quit and Discount cost.

5.1 Environment Setup
The river problem considers a grid world Nx ×Ny, where

extremes in x coordinate (x = 1 and x = Nx) represents
the river bank. The agent must cross the river, that can be
made by: (i) swimming from any point of the river bank,
or (ii) going along the river bank until a bridge at y = Ny.
However, the river flows to a waterfall (in y = 1), where the
agent can get trapped or death.

The initial state is in one side of the river and far from
the bridge, x0 = 1 and y0 = 2, and the goal is in the other
side of the river bank far from the bridge, xg = Nx and yg =
1. Actions can be taken in any of the cardinal directions:
N , S, E and W . If actions are taken on the river bank
or in the bridge then transitions are deterministic to the
cardinal directions; if actions are taken in the river then
transitions are probabilistic and follows the chosen cardinal
directions with probability 1 − P or follows down the river
with probability P . The waterfall is modeled as dead-end
states.

We set Nx = 5 and Ny = 100, whereas varying P ∈
{0.4, 0.6, 0.8}, and constant immediate cost 1. Clearly, the
Dual criterion or MAXPROB criterion would always choose
to cross the river by the bridge, which guarantees getting to
the goal with probability 1 and cost to goal 201, indepen-
dently of the probability P .

In the following experiments, we compare how each com-
pared model trades-off Cost to goal and Probability to goal.

5.2 Models Setup
For the GUBS model we need to use a utility function u :

R→ [Umin, Umax]. In order to guarantee this, we choose the
exponential utility function used by Risk Sensitive Markov
Decision [9, 12], i.e., u(CT ) = e−λCT with the risk factor
λ = 0.1. We choose Cmax = 1, 000 whereas varying 83
values for Kg between 0 and 30.

The Penalty to quit model has only one parameter: penalty
D; we vary 72 values for D between 1 and 10,000. The
Discount cost model has two parameters: discount γ and
goal reward Rg; we vary 16 values for γ between 0.75 and
0.999999999; and set Rg = 0. Note that values D and γ are
difficult to set, since D must be high and γ must be close
to 1 to reach a high probability to goal. Because all dead-
ends have the same immediate cost, as γ → 1, the Discount
criterion gets closer to MAXPROB independently of Rg.

Penalty to quit and Discount cost models are solved ap-
proximately by the value iteration algorithm; the policy for
them is stationary; and Probability to goal and Cost to goal
are evaluated exactly. Since the optimal policy in GUBS
model is non-stationary; Probability to goal and Cost to goal
are evaluated in Cmax, being a lower bound in both cases.

5.3 Results
For each model, we compare the Probability to goal for

different P values, Cost to goal for different P values, and
Probability to goal versus Cost to goal. Regarding the pa-
rameters used by each model, we show the log of them in
order to produce a better visualization of variation in Prob-
ability to goal and Cost to goal.

5.3.1 Probability to goal
Figure 1 shows the Probability to goal under GUBS, Dis-

count cost and Penalty to quit models. In the GUBS model,
since Umax = 1 and Umin = 0, to attend condition in Equa-
tion 1, it is enough to set Kg = 1 (log(Kg) = 0). Because
we know there exists a proper policy rooted at the initial
state in the river problem, Corollary 1 guarantees that if
Kg = Umax − Umin and π∗ is optimal, then Pπ

∗
g ≥ 0.5; in

fact, Figure 1 shows that Pπ
∗

g > 0.96 for all of the consid-
ered scenarios when Kg = 1. Note that the proper policy
rooted at the initial state (crossing river by the bridge) is
optimal only when P = 0.8, but in the other scenarios any
of the models obtain a probability to goal very near to 1.

5.3.2 Cost to goal
Figure 2 shows the Cost to goal under GUBS, Discount

cost and Penalty to quit models. In the GUBS and Discount
cost models, when P = 0.8, it is possible to see the cost of
the proper policy rooted at the initial state (Cπg = 201).
In all of the models, it is possible to see that Cost to goal
increases indeterminately, eventually, obtaining MAXPROB
solution, i.e. the proper policy rooted at the initial state.

5.3.3 Probability to goal vs. Cost to goal
Figure 3 (top) crosses the data in Figures 1 and 2 and

shows the trade-off of each model regarding Probability and
Cost to goal. As expected, the curves of environment with
low valued of P presents higher Probability to goal for a fixed
Cost to goal. With P = 0.4 and P = 0.6, all of the three
models present a similar trade-off of Probability and Cost to
goal, whereas with P = 0.8 the GUBS model presents an
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Figure 1: Probability to Goal considering GUBS,
Discount cost and Penalty to quit models for differ-
ent P values.
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Figure 2: Cost to Goal considering GUBS, Discount
cost and Penalty to quit models for different P val-
ues.

746



inferior trade-off, meaning that for a fixed Cost to goal, an
inferior Probability to goal is obtained.

Because utility function u(·) presents risk-averse attitude,
in GUBS model, expected cost may be higher. Such a
difference appears when P = 0.8, the environment with
the largest risk. In Figure 3 (bottom), we also run ex-
periments with lesser risk attitude for GUBS by setting
λ ∈ 0.01, 0.07, 0.08, 0.09. It can be seen that the smaller
the risk (small λ), better the trade-off between Probability
and Cost to goal.
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Figure 3: Probability and Cost to Goal for different
P values (top) and different λ with P = 0.8 (bottom).

6. RELATED WORK SECTION
The finite penalty used in fSSPUDE is similar with the

limits proposed in this paper. However the finite penalty
proposed in [11] depends on the problem that must be solved
and the limits proposed in this paper are independent of the
problem. The semantics is well defined for the determin-
istic case, however, for the probabilistic case, the weights
must be defined considering the preference of the decision
maker. Different from [11], the motivation of this work is to
deal with the trade-off between the expected cost and the
probability to reach the goal.

Another class of MDPs that are related are Multi-objective
MDPs. In these MDPs there are several competing objec-
tives such as total time, monetary cost, latency, power [5].

A preferential semantics for goals is introduced in [16].
Our proposal is similar because our work is also based on the
utility theory. However, [16] considers (CT , g) � (CT ,¬g)
instead of (CT , g) � (C′T ,¬g) .

In [7] the risk is defined as the probability of entering
in undesirable or dangerous states. The objective is to find
policies whose risk is smaller than some user-specified thresh-
old (the risk we are willing to accept). The problem is for-
malized as a constrained MDP with two criteria that max-
imizes the value while the risk is kept below the threshold.
They also propose a reinforcement learning algorithm based
on weighted the original value and the risk. Different from
our work, [7] is not based on utility theory.

GD-MDPs where the objective is to find a policy that
maximizes the probability that the cumulative cost is less
or equal than some user-defined cost threshold is studied by
[8]. An optimal policy for these problem depends on the
accumulated cost thus far. So, the agent can take riskier
actions when the accumulated cost is small, but should avoid
them when the accumulated cost is close to the threshold. [8]
is similar to our because they also make a trade off between
cost and risk, however this is also not based on utility theory.

7. CONCLUSION
In this paper, we propose a new model to GD-MDP: the

gubs model. First, it defines a semantic for goals based
on utility functions; second, we show that gubs model can
show similar trade-off between probability to goal and coast
to goal when compared to other models in the literature
(Discount and Penalty models). Besides being based on a
normative decision theory, parameters can be rationally set
under gubs model.

We analyze three models on the literature to show that
they do not present the same properties that gubs model
and our experiments contribute to the understanding of our
theoretical results. We also show how to solve gubs model
in the class of discrete cost GD-MDP, by presenting a new
algorithm; and in the class of continuous cost GD-MDP, by
presenting a reformulation of the GD-MDP that allows to
any hybrid discrete-continuous state MDP algorithm to be
used to solve gubs models.

While Discount, Penalty and Dual Criterion models have
stationary policies as optimal policies, the gubs model has
non-stationary ones. Although generic algorithms can be
used to solve gubs model, its structure of transitions be-
tween states may be used to formulate more efficient algo-
rithms. The structure of the augmented MDP (original state
and accumulated cost) presents two properties: 1) transition
among original states does not depend on accumulated cost;
and 2) increment in accumulated cost depends only on the
original states.

APPENDIX
Theorem 1. Consider a GD-MDP and the dual criterion

measure, then there exists a GD-MDPM with policies π and
π′ and L arbitrarily large and δ > 0 arbitrarily small such
that:

1. Pπg > Pπ
′

g and Pπg − Pπ
′

g < δ; and
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2. C
π
g − C

π′

g > L.

Proof. Consider the MDP in Figure 7, where sg ∈ G;
and policies π, where action a is chosen, and π′, where action
b is chosen. Then:

1. Pπg = 1 and Pπ
′

g = P , and

2. C
π
g = c(s0, a) and C

π′

g = c(s0, b).

Choose P > 1 − δ, c(s0, a) > L + 1 and c(s0, b) = 1, then
the condition in the theorem is observed.

s0

sg

sd

P

1–P

a

b
c

Figure 4: A simple example

Theorem 2. Consider a GD-MDP with policies π and π′

such that: ( i) Pπg > Pπ
′

g , or ( ii) Pπg = Pπ
′

g = 1 and C
π
g <

C
π′

g ; then, there exists a penalty D0 such that C
π
D < C

π′

D for
any D > D0.

Proof. First, consider the case Pπg > Pπ
′

g , then we:

C
π
D0
≤ CπgPπg + (D0 + C

π
g )(1− Pπg )

= C
π
g +D0 −D0P

π
g

If we choose

D0 >
C
π
g

Pπg − Pπ′g
we have:

C
π
D0

< C
π
g +D0 −D0P

π′
g − C

π
g

= D0(1− Pπ
′

g )

≤ Cπ
′

D0
.

Now, consider the case Pπg = Pπ
′

g = 1 and C
π
g < C

π′

g , then
we have that:

1. C
π
D ≤ C

π
g ;

2. C
π
D ≤ D; and

3. C
π
D is continuous in D.

Then, since C
π
g < C

π′

g there exists D0 such that C
π′

D > C
π
g

for any D > D0 and we have C
π
D ≤ C

π
g ≤ C

π′

D .

Theorem 3. Consider an arbitrary penalty D, then there
exists a GD-MDP with policies π and π′ such that:

1. Pπg > Pπ
′

g ; and

2. C
π
D > C

π′

D .

Proof. Consider again the MDP in figure 7, then:

1. Pπg = 1 and Pπ
′

g = P ;

2. C
π
D = min{c(s0, a), D}; and

3. C
π′

D = min{c(s0, b) + (1− P )D,D)}.
Choose c(s0, a) > D and c(s0, b) < PD, then we have:

C
π
D = min{c(s0, a), D} = D

> (1− P )D + c(s0, b)

≥ min{c(s0, b) + (1− P )D,D} = C
π′

D .

Theorem 4. Consider a GD-MDP with policies π and

π′ such that: ( i) Pπg > Pπ
′

g , or ( ii) Pπg = Pπ
′

g = 1 and

C
π
g < C

π′

g ; then, if, when reaching a goal, a reward Rg is

considered, there exists a discount factor γ0 such that C
π
γ <

C
π′

γ for any γ > γ0.

Proof. Consider the first scenario where Pπg > Pπ
′

g and
define the probability Pπg,n of reaching the goal state before
n time-steps by following policy π. Choose the following
parameters:

1. n0 so that Pπg,n0
> Pπ

′
g , such n0 there exists because

Pπg > Pπ
′

g and the MDP is finite;

2. γ >

(
Pπ
′

g

Pπg,n0

) 1
n0

to obtain γn0Pπg,n0
− Pπ

′
g > 0; and

3. Rg >

C
π
gP

π
g + max

s∈S,a∈A
(c(s, a))

1

1− γ (1− Pπg )

γn0Pπg,n0
− Pπ′g

to ob-

tain:

−Rgγn0Pπg,n0
+ C

π
gP

π
g +

+ max
s∈S,a∈A

(c(s, a))
1

1− γ (1− Pπg ) < −RgPπ
′

g .

Then we have:

C
π
γ ≤ −Rgγn0Pπg,n0

+ C
π
gP

π
g

+ max
s∈S,a∈A

(c(s, a))
1

1− γ (1− Pπg )

< −RgPπ
′

g ≤ C
π′

γ .

Now, consider the second scenario where Pπg = Pπ
′

g = 1

and C
π
g < C

π′

g . Since limγ→1 C
π
γ = C

π
g and limγ→1 C

π′

γ =

C
π′

g , there exists γ0 such that C
π
γ < C

π′

γ for any γ > γ0.

Theorem 5. Consider an arbitrary discount factor γ, then
there exists a GD-MDP with policies π and π′ such that:

1. Pπg > Pπ
′

g ; and

2. C
π
γ > C

π′

γ .

Proof. Consider again the MDP in figure 7, then:

1. Pπg = 1 and Pπ
′

g = P ;

2. C
π
γ = c(s0, a); and

3. C
π′

γ = c(s0, b) + (1− P )c(s0, b)
γ

1−γ .

It is easy to choose c(s0, a), c(s0, b) and D such that C
π
γ >

C
π′

γ .
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