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ABSTRACT
Recent developments in plan recognition have established a method
of identifying an agent’s most probable plan or goal by use of a
classical planner and an appeal to the principle of rational action.
We examine this technique in the strict context of path-planning.
We show that a simpler formula provides an identical result in less
than half the time under all but one set of conditions, which we
identify. Further, we show that the probability distribution based
on this technique is observation-independent and present a revised
formula that achieves goal-recognition by reference to the agent’s
current location only.

1. INTRODUCTION
In this work, we investigate goal recognition in navigation. That

is, we seek to determine where an agent may be travelling, given a
set of potential destinations and some (partial) observed locations
that she has already visited. Our work draws from (and further
refines) Ramirez and Geffner’s [16, 17] novel and principled work
on goal recognition using automated planning.

Plan recognition (PR)1 is the problem of identifying an agent’s
intent by observing her behaviour. Its growing number of applica-
tions include language understanding and response generation [1],
adversarial reasoning for games and the military [12], smart homes
for the cognitively impaired [18] and human-machine interaction
[13]. Traditionally, PR has involved matching a sequence of ob-
servations to some plan in a given plan library, the “winning” plan
being the one that best matches the observations [10, 4]. Given that
each plan presumably sets out to achieve a goal, having identified
the agent’s plan, the observer has implicitly identified her goal [5].

Recent developments in PR dispense with the overhead of a plan
library by treating the problem as one of “planning in reverse” [16,
p.1778]. This innovation has enabled plan recognition to leverage
advances made by the planning community and relies on a key in-
sight (independently arrived at by multiple authors [16, 2]) that the
probability of a plan can be linked directly to its cost. Appealing
to the principle of rational action, an agent is assumed to be tak-
ing the optimal (for which read minimum cost/maximum utility) or
least sub-optimal [17] path to goal.

1Goal recognition is properly a subproblem of plan recognition,
although both terms are used in the literature. We will use the terms
interchangeably within this text.
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Given that perfectly rational agents pursue their goals via per-
fectly optimal paths, Ramirez and Geffner first devised a solution
that used classical planners to identify a crisp subset of “most-likely
goals”, consisting solely of those goals for which observations con-
formed to the optimal path [16]. The inability of the system to ac-
commodate even marginally suboptimal plans represented a signif-
icant limitation and, in [17], they presented a more flexible model
which, again using classical planners, this time generated a proba-
bility distribution across the set of possible goals based on the cost
difference between the cheapest available path that conforms to ob-
servations and the cheapest path that does not.

In this paper, we examine the probabilistic framework developed
in [17] in the context of path-planning. The work is significant be-
cause of the many applications where it is useful to reason about
an agent’s most likely destination: a real-world security detail at an
airport observes an agent who may or may not be heading for a par-
ticular boarding gate [11]; an intelligent NPC in a real-time strategy
game—or the game engine itself, unfolding the game narrative—
continually assesses other players’ movements as they navigate the
game space [9]. In both scenarios, the observer must assess the
agent’s movements not once but multiple times; in both scenarios,
the underlying terrain, or groundplan, is known in advance.

Having imported Ramirez and Geffner’s account into the realm
of path-planning, we prove formally that a simpler account yields
an almost identical result with less computational effort. This is
beneficial to the RTS gaming community, for example, where any
speed gain is welcome. We set out the case in which the two ac-
counts do differ, which happens to be a case of little relevance.

More surprisingly, we also show that a probability distribution
that ranks candidate goals in the same order can be obtained without
referencing any observations (other than the agent’s current loca-
tion). Being observation-independent—and provided possible en-
try points (e.g., entries to the terminal) and destinations of interest
(e.g., locations to monitor and protect) are known in advance—
the rankings can be pre-computed offline and retrieved in constant
time. So for example, this finding implies that an airport security
system, instead of tracking agents throughout the terminal, can fo-
cus resources on those locations where, should an agent appear,
there is the greatest probability that she is making for the boarding
gate of interest.

The rest of this paper is structured as follows. First, we describe
the PR problem in terms of planning, as developed in [17]. We then
ground the problem and its solution in the context of path-planning.
After that, we present our main technical contributions: a simpler,
equivalent formula; and an observation-independent formula. Fi-
nally, we provide a brief empirical evaluation using the well-known
Moving-AI benchmarks [19] and present our conclusion.
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2. GOAL RECOGNITION AS PLANNING
In this section, we review the “domain theory" approach to PR

pioneered by Ramirez and Geffner.
Goal recognition is a well-established problem and approaches

to its solution have ranged from Bayesian networks [4] through hid-
den Markov models [3] to tree grammars [6]. In most cases, obser-
vations are matched against potential sequences of actions stored
as a plan library. Despite the obvious relationship between plan
recognition and planning, Ramirez and Geffner were among the
first to make an explicit link [16]. Instead of matching observations
to pre-existing plans, they propose the use of a planner to generate
new plans that incorporate the observations: by creating and cost-
ing two plans for each in a set of potential goals, it is possible—
assuming the agent is rational—to assess which of the goals she
has set out to achieve.

We now take a more detailed look at their approach. Using
STRIPS notation, a planning domain is a tupleD = 〈F,A〉, where
F is a set of fluents and A is a set of actions a, each of which has
a precondition, add and delete list Pre(a), Add(a) and Del(a), all
subsets of F . An action a can occur in a state s if Pre(a) ⊆ s.
The initial state is assumed to be fully observable and the domain
is deterministic. If action a occurs in state s, a new state s′ results
such that s′ = (s ∪ Add(a)) \ Del(a).

A planning problem 〈F, I,A,G〉 is a planning domain with a
specified initial state I ⊆ F and goal state G ⊆ F , and its solution
is a plan π = a1, . . . , ak that maps I to G. Typically, each action
has a cost c(a). The cost of a plan is defined as cost(π) =

∑
c(ai)

and an optimal plan is a solution with the lowest cost.
Building on this framework, Ramirez and Geffner [16] articulate

the PR problem in planning terms as a tuple T = 〈D,G, I, O〉,
where:

• D = 〈F,A〉 is a planning domain;

• G 6= ∅ is a set of possible goal states;

• I is the initial state; and

• O = o1, . . . , ok, where k ≥ 0 and oi ∈ A, is a sequence of
observations.

The solution to T is a set of goals, the optimal plans for which
satisfy the observation sequence. A plan π = a1, . . . , an, they say,
satisfies the observations o1, . . . , om if it embeds them in such a
way that the order of actions is preserved; that is, there must be
a monotonic function f that maps the observation indices into the
action indices such that af(j) = oj . Any goal for which there is an
optimal plan that meets this criterion is part of the solution set.

A major drawback of the PR framework proposed in [16] is that
it can only identify a goal if the observations conform to an optimal
path. Realistically though, agents behave suboptimaly, so rational
behavior should only be assumed as a guiding principle and, in
[17], Ramirez and Geffner present a modified framework that ac-
commodates suboptimality. This is a probabilistic approach to the
PR problem and the one upon which we will focus.

A probabilistic PR problem (PPR) 〈P,G, I, O,Prob〉 is a PR
problem, as above, plus a prior probability distribution Prob. The
solution amounts now to a posterior probability distribution which
prefers those goals whose plans “best satisfy” the observations [17],
as determined by the principle of rationality.

To capture this idea, one of the main insights of Ramirez and
Geffner is to base the probability of a goal on the cost difference be-
tween the cheapest plan that can reach the goal, given the observed
actions already taken, and the cheapest plan that could have reached
the goal, had the agent behaved differently (i.e., had the agent not

displayed the observations already seen). The costs of these opti-
mal plans are given as optc(G,O) and optc¬(G,O), respectively.2

Formally, cost difference is a function costdifRGT : 2F × A∗ 7→ R
defined as follows:3

costdifRGT(G,O) = optc(G,O)− optc¬(G,O). (RG1)

Next, by comparing cost differences for allG ∈ G, the authors pro-
pose generation of a probability distribution across G—a solution
to the PPR task—with the following important property: the lower
the cost difference for a particular goal, the higher its probability.
Concretely, they propose the assumption of a Boltzmann distribu-
tion and take P (O|G) = sigmoid(β(optc¬(G,O)− optc(G,O)))
[15], thus arriving at the following distribution:

PX(G|O) = α
e−βX

1 + e−βX
, (RG2)

where X = costdifRGT(G,O), α is a normalising constant across
all goals, and β a positive constant.4 The resulting distribution is an
“order of magnitude approximation" that conforms to the authors’
intuition, stated above, that goals with the lowest cost difference
have the highest probability. The β parameter ‘modulates’ the as-
sumption that the observed agent is pursuing plans sensitive to the
same cost function used by the observer: if β > 1, slight deviations
from optimality are penalized; for β between 0 and 1, the observer
is more skeptical w.r.t. the rationality assumption.5 Additional jus-
tifications for this choice can be found in [17].

As one can observe, this framework moves the focus from plan
libraries to declarative goals (and a model of the environment). The
key is that Equation (RG1) above can actually be computed us-
ing classical planning technology, despite the fact that planners do
not natively handle requirements about observations. Ramirez and
Geffner proved that such requirements can be encoded back into
the planning task. Roughly speaking, if ai is the i-th observation, a
new fluent pai is added which becomes true only when action a is
executed in a state where pai−1 holds true (i.e., ai is observed after
ai−1 has been observed). Then, taking ak as the last observation,
one can plan (optimally) for G∪{pak} and G∪{¬pak} to extract
optc(G,O) and optc¬(G,O), respectively.

Using this approach, an agent reasoning about another agent’s
intention must perform two planning tasks for each potential goal
in order to compute the probability distribution described in Equa-
tion (RG2). These planning tasks are arguably more complex than
merely planning for each goal G, as they embed the behaviour ob-
served so far. In addition, because observations change over time as
the observed agent acts, all such planning tasks need to be re-done,
every time a new observation is obtained.

In what follows, we investigate this principled account for PPR
in the context of path-planning; and we show that simpler and less
demanding formulas yield the same outcome, at least in the path-
planning context.

2We have modified the notation from [17] to improve legibility.
In [17], cost(G,O) or c(G,O) was used to denote the optimal
cost compatible with observations O (we use optc(G,O)), and
cost(G,O) or c(G,O) was used to denote the optimal cost pro-
vided without observing O. Technically, the latter concepts do not
amount to applying the same function to different arguments, but
rather a different function to the same arguments, which we denote
as optc¬(G,O).
3RGT denotes Ramirez and Geffner account for Task planning.
4This formulation appeared in the code referenced from [17] and is
provably equivalent to the account given in the paper and in [15].
5Personal communication and [15, p.63].
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3. THE PATH-PLANNING CASE
In this section, we import Ramirez and Geffner’s approach to

goal recognition, as described above, to the particular context of
the path-planning (or path-finding) problem, that is, the problem
of navigating from an initial location to a final destination in some
map or “model” of the world, often expressed as a graph [8].

In a path-planning domain, fluents are tied to locations in a func-
tional manner (e.g., at(x) denotes the agent being in location x)
and actions relate to (legal) movements. Typically, the domain is
deterministic. Whereas in task-planning, as we have seen, a solu-
tion plan is described as a sequence of actions, in path-planning,
the solution can be specified as a path: a sequence of connected
nodes in a graph.

Definition 1. A path-planning domain is a tripleD = 〈N,E, c〉
where:

• N is a non-empty set of nodes (or locations);

• E ⊆ N ×N is a set of edges between nodes; and

• c : E 7→ R+
0 is a function that returns the non-negative cost

of traversing each edge.

A path π in a domain D is a sequence of node locations π =
n0, n1, . . . , nk such that (ni, ni+1) ∈ E, for each i ∈ {0, 1, . . . ,
k−1}. We use πi to denote the i-th node ni in π, and |π| to denote
the length of π, being the total number of edges k in π. So, the last
location in a path can be referred to as π|π|. Furthermore, we use
π(i, j) = πi, πi+1, . . . πj to denote the subpath of π from πi to
πj (inclusive). The cost of a path is the cost of traversing all edges
in π, that is, cost(π) =

∑k−1
i=0 c(π

i, πi+1). The set of all paths in
the domain is denoted by Π, and the set of all paths π starting at
π0 = n1 and ending at π|π| = n2 is denoted by Π(n1, n2).

As in task-planning, an instance of a path-planning problem op-
erates in a domain and includes initial and goal states.

Definition 2. A path-planning problem is a tuple 〈D, s, g〉,
where:

• D = 〈N,E, c〉 is the path-planning domain;

• s ∈ N is the start location; and

• g ∈ N is the goal location.

As expected, a solution to a path-planning problem is a path in
the corresponding domain D from the start location s to the goal
location g. Technically, a solution path π is a path π such that
π0 = s and π|π| = g; the set of all of them being Π(s, g). An
optimal path is a solution path with the lowest cost among all solu-
tion paths. We use Π∗(s, g) to represent the set of all such optimal
paths. The optimal cost between two location nodes is the cost of
an optimal path between them.

In our work, it will be convenient to specify waypoints: nodes
that must be visited. A solution path via waypoints embeds those
waypoints in such a way as to preserve their order, just as we have
described the embedding of observations in the action sequence of
a PR problem. That is, given a path π and a sequence of waypoints
W = w0, w1, . . . , wk, where wi ∈ N , we say that π embeds way-
pointsW, if there exists a monotonic function f mapping waypoint
indices into path indices such that πf(i) = wi. The optimal cost of
a path from ni to nj via waypoints W—that is, the cheapest path
possible, given that the waypoints must be embedded—is denoted
by optc(ni,W, nj). If W = ∅, we just write optc(ni, nj), and
if π0 = w0 and π|π| = wk, we write optc(W ), that is, the opti-
mal cost through the waypoints themselves. We generalize the set

of all solution paths Π(s, g) to those embedding waypoints W as
Π(s,W, g). Similarly, Π∗(s,W, g) will denote those paths that are,
moreover, optimal w.r.t. cost among paths in Π(s,W, g).

3.1 Cost-based goal recognition
With the path-planning framework in place, let us now reframe

Ramirez and Geffner’s probabilistic PR problem in a path-planning
context. Whereas in task-planning, we seek to determine from ob-
servations of the agent “what is she doing?” in path-planning, we
are trying to discover “where is she going?”

Definition 3. A path-planning goal recognition (PPGR) prob-
lem is a tuple P = 〈D,G, s, O,Prob〉, where:

• D = 〈N,E, c〉 is a path-planning domain;

• G ⊆ N is the set of possible goal locations;

• s ∈ N is the start location;

• O = o1, . . . , ok, where k ≥ 0 and oi ∈ N , is the sequence
of observations, with o1 6= s; and

• Prob represents the prior probabilities of the goals (though,
in common with [17], we assume in this discussion that pri-
ors for all goals are equal).

The solution to a PPGR problem P is a probability distribution
across G which we obtain by comparing, for each goal, a re-working
of the cost difference formula (RG1), grounded in path-planning as
the function costdifRGP : N ×N ×N∗ 7→ R, defined as:67

costdifRGP(n1, n2, O) = optc(n1, O, n2)− optc¬(n1, O, n2),
(RG3)

where:

• n1 and n2 are the start and goal locations of interest;

• O = o1, . . . , ok is the sequence of waypoint locations, not
actions, representing where the agent has been observed (note
that O is not a path; nodes need not be adjacent);

• optc(n1, O, n2) is, as defined above, the optimal cost of nav-
igating from location n1 to location n2 via waypointsO; and

• optc¬(n1, O, n2) denotes the optimal cost of navigating from
location n1 to location n2 without embedding the observed
waypoints, which is defined as follows:

optc¬(n1, O, n2) = min
π∈Π(n1,n2)\Π(n1,W,n2)

cost(π).

Finally, given a PPGR problem P = 〈D,G, s, O,Prob〉, a prob-
ability distribution can be derived exactly as for task-planning, by
taking X = costdifRGP(s, g,O) into Equation (RG2). For legibil-
ity, we shall call this resulting function PRGP, namely:

PRGP(g|O, s) = α
e−β costdifRGP(s,g,O)

(1 + e−β costdifRGP(s,g,O))
. (RG4)

In words, PRGP(g|O, s) stands for the probability that the observed
agent is travelling to goal g ∈ G, relative to PPGR problem P ,
when the observed waypoint sequence is O. Note that the initial
node s comes from the problem P itself. In common with Equa-
tion RG2, this formula has the property that the lower the cost dif-
ference, the higher the probability.

This concludes the reformulation of Ramirez and Geffner’s ac-
count for goal recognition into a strict path-planning context.
6Observe that we now make explicit the initial starting point n1,
which was taken as implicit in Equation (RG1).
7RGP denotes Ramirez and Geffner account for Path-planning.
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4. A SIMPLER COST DIFFERENCE
In this section we take a closer look at the cost difference formula

(RG3) with the aim of making it simpler and faster to calculate. To
that end, consider an agent using PRGP(·), as above, to reason about
another agent’s travel. Given Equation (RG3), the first agent must
perform two planning tasks for each goal g in G: one to extract
optc(s,O, g) and one to extract optc¬(s,O, g). Furthermore, in a
typical application, such as during an RTS game or while conduct-
ing surveillance, the cost is not incurred once only: the calculation
must be repeated, and the accompanying time-hit sustained, for ev-
ery goal, every time the observed waypoint sequenceO is extended
by the addition of a new observation.

As with task-planners, path-planning systems have no off-the-
shelf means of handling observation requirements. Furthermore,
having a less general representation, it is not possible to encode
such (positive or negative) requirements back into the input of the
problem as occurs in [17] for goal recognition in task-planning.
We can only achieve the desired result by calling a path-planner
multiple times or by modifying the path-planner; but either method
makes the minimum-cost calculation cumbersome and computa-
tionally expensive.

To address this, we therefore propose an alternative formulation
whereby, instead of calculating and deducting optimal cost “given
not the observations”, we simply deduct the more readily available
“optimal path cost”. Formally:

costdif1(s, g,O) = optc(s,O, g)− optc(s, g). (1)

This alternative formulation is conceptually simpler and computa-
tionally less demanding, in that there is no requirement to reason
negatively about the observations. What is more, since the optimal
path cost to each potential goal in G is not dependent on the ob-
servations, it can be pre-computed once at the outset. Note that if
the potential start node and all candidate goal locations are known
for the path-planning domain itself, as they are in the case of an
airport terminal, which has a fixed, finite number of entrances and
boarding gates, then all optc(s, g) can be pre-computed and stored
for retrieval as needed in constant time.

We point out that Ramirez and Geffner explicitly reject this sim-
pler formulation [17, p.1123] for general goal recognition. It turns
out though that the differences between Equations (RG3) and (1)
(and their actual impact) were not well understood. In what fol-
lows then, we demonstrate not only that (1) is simpler and easier
to compute, but that it provides an identical result in all cases bar
one in the context of navigation; and that, even then, the difference
has minimal impact on the overall probability distribution across
potential goals G. In addition, we show that in one corner-case, (1)
actually enables calculation of the posterior probability distribution
when the original, more involved, formula (RG3) fails.

From now on, we assume a PPGR problem of the form P =
〈D,G, s, O,Prob〉, as per Definition 3.

Suboptimal paths. We first consider the situation where observa-
tions conform to a suboptimal path, and hence to the observation of
an agent whose behaviour is not completely rational. That is, given
the steps already observed, the cheapest available path from s to a
potential goal g ∈ G will inevitably be suboptimal. We remind the
reader that the need to accommodate suboptimality in observations
was the primary motivation behind the development of the proba-
bilistic PR framework [17] (as compared to the previous framework
in [16]). We argue, in fact, that this case represents the most com-
mon case: it is usual to expect some noise and, in the presence of
any noise at all, there is at once some cheaper way that the agent
might have proceeded so the observed path is usually suboptimal.
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Figure 1: O’ is on an optimal path to all three goals but, by the
more complex formula, M is the most probable.

THEOREM 1. Let O be an observation sequence such that
optc(s,O, g) > optc(s, g) (i.e., the observed behaviour is not op-
timal). Then, costdifRGP(s, g,O) = costdif1(s, g,O).

PROOF. Let π∗ be an optimal solution path from s to g, that is,
π∗ ∈ Π∗(s, g). Then, cost(π∗) = optc(s, g). We can then con-
clude that path π∗ does not embed O, otherwise, we would have
optc(s,O, g) = optc(s, g). Hence, since π∗ does not embed O
and is optimal among all solution paths, we get optc¬(s,O, g) =
cost(π∗) = optc(s, g), and since optc¬(s,O, g) = optc(s, g),
costdifRGP(s, g,O) = costdif1(s, g,O) follows.

In words, if the observed path is suboptimal—as, arguably, it
would be most of the time—the simpler formula (1) yields exactly
the same value as the original formula (RG3).

Optimal paths (non-exclusive). We now consider the case in which
observations conform to an optimal path but they are not the only
way to behave optimally. In path-planning, it is unusual to en-
counter a solution path, optimal or suboptimal, whose cost is unique.
This is particularly true in a gridworld environment, where there
may be thousands of optimal paths to a goal due to symmetries [7]
(see Example 2). When there are multiple optimal paths, not all of
which pass through the observations, we have the following result.

THEOREM 2. Let O be an observation sequence such that
optc(s,O, g) = optc(s, g) (i.e., the observed behaviour is opti-
mal). If Π∗(s, g) \ Π∗(s,O, g) 6= ∅, then costdifRGP(s, g,O) =
costdif1(s, g,O).

PROOF. Take π′ ∈ Π∗(s, g) \ Π∗(s,O, g): path π′ is an opti-
mal path from s to g, but it does not embed O. Because π′ is opti-
mal, cost(π′) = optc(s, g), and since it does not embed O we can
conclude that optc¬(s,O, g) = cost(π′). Thus, optc¬(s,O, g) =
optc(s, g), and costdifRGP(s, g,O) = costdif1(s, g,O) follows.

In words, even if the observed behavior is fully rational, if there
are other ways of behaving rationally, again the simpler formula (1)
is exactly equivalent to the original formula (RG3).

Optimal paths (exclusive). We now consider the only situation
in which cost difference Equations (RG3) and (1) return different
results. Ramirez and Geffner provided the following example to
illustrate the case.
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EXAMPLE 1. Consider the situation depicted in Figure 1. An
agent operates in a gridworld environment where the only legal
moves are horizontal or vertical and all steps cost 1. There are
three possible goals, L,M andR, all north of the start location, S.
ObservationsO track directly north throughO′ and satisfy an opti-
mal path to all three goals. In the case of L and R, there are multi-
ple paths to goal so the optimal path that embeds the observations
has the same cost (15) as one that does not: there is no cost differ-
ence; therefore, costdifRGT(L,O) = 0 and costdifRGT(R,O) = 0
(see Equation RG1). In the case of M , however, which lies di-
rectly north of S and O′, there is only one optimal path to goal:
the one that embeds the observations. In order to take a path that
does not embed them, it is necessary to take a longer route. In the
example, optc(M,O) = 10, whereas optc¬(M,O) = 12. Thus,
costdifRGT(M,O) = −2. The lower the cost difference, the higher
the probability, making M the most probable goal.

Although cited as an “example” of the distinction between the
two cost difference formulas, this scenario, in fact, represents the
only distinction. We therefore now strengthen Theorem 2 by prov-
ing that the two cost difference formulations yield identical results
in all cases bar one: when observations are not only sufficient for
optimal behavior, but also necessary. In this case we say that the
observations are exclusively optimal: there is no other way of act-
ing fully rationally.

THEOREM 3. Let O be an observation sequence and g ∈ G.
Then, costdifRGP(s, g,O) 6= costdif1(s, g,O) iff Π∗(s,O, g) =
Π∗(s, g) (i.e., all optimal paths embed the observations).

PROOF. The (ONLY-IF) follows directly from Theorem 2. For
the (IF) direction, suppose that Π∗(s,O, g) = Π∗(s, g), that is, the
optimal paths and the optimal paths embedding the observations
coincide. Take any path π from s to g (i.e., π ∈ Π(s, g)) that does
not embed O, that is, π 6∈ Π(s,O, g). Then, π 6∈ Π∗(s,O, g)
and since Π∗(s,O, g) = Π∗(s, g), it follows that π 6∈ Π∗(s, g).
Given that π ∈ Π(s, g), we get that cost(π) > optc(s, g). Since
path π was arbitrarily chosen, optc¬(s,O, g) > optc(s, g), and
costdifRGP(s, g,O) 6= costdif1(s, g,O) follows.

As already noted, this is a corner case. Furthermore, it is ar-
guably irrelevant to the expected suboptimal behavior that the prob-
abilistic PR framework [17] was designed to handle.

Regardless of how relevant or interesting this corner case may
be, let us further investigate its implications. We remind the reader
that, following [17], we are not interested in the result of the cost
difference calculation for its own sake, but in order to generate a
probability distribution across the set of possible goals. Often, we
do not need to know exactly how probable each goal is, only their
relative order or, more particularly, which goal is most probable.

With this in mind, we prove (in Theorem 4) that, in practice,
even if an agent is observed taking an exclusively optimal path to a
goal (i.e., all optimal paths embed the observations), unless obser-
vations conform to an optimal path for some other goal, the relative
order—or ranking of goals by probability—is unaffected by use of
the simpler cost difference formula, which still results in successful
identification of the most probable goal. First, we make the follow-
ing auxiliary observation.

OBSERVATION 1. Let f(g,O) be some (cost difference) func-
tion and let PX be a template of the probability distribution defined
in (RG2). If f(g1, O) < f(g2, O) then Pf (g1|O) > Pf (g2|O).

This just restates the intuition that the lower the cost difference,
the more probable the goal, and it follows from the fact that (RG2)
is provably equivalent to the account given in [15] and [17].

Let PRGP(·) be the probability distribution obtained from (RG2)
when X = costdifRGP(s, g,O) (Equation (RG3)) and P1(·) the
distribution obtained when X = costdif1(s, g,O) (Equation (1)).

THEOREM 4. Let O be an observation sequence and suppose
that, for some potential goal g ∈ G, it is the case that:

1. Π∗(s,O, g) = Π∗(s, g), that is, observations are exclusively
optimal; and

2. for every g′ ∈ G \ {g}, optc(s,O, g′) > optc(s, g′), that
is, observations would result in suboptimal paths to all the
other possible goals.

Then, for all g1, g2 ∈ G and g1 6= g2, it is the case thatP1(g1|O) >
P1(g2|O) if and only if PRGP(g1|O) > PRGP(g2|O).

PROOF. Take any g′ ∈ G \ {g}. From the first assumption and
Theorem 1, we know that costdifRGP(s,O, g′) = costdif1(s,O, g′)
and optc¬(s,O, g) = optc(s, g). Since, by the second assumption,
optc(s,O, g′) > optc(s, g′), using Equation (1) we conclude that:

costdifRGP(s,O, g′) = costdif1(s,O, g′) > 0.

So, all cost difference values will be the same and greater than
zero, using either formula, for all goals different from g. It re-
mains to verify goal g. Because O is necessary to travel from s
to g in any optimal way (first assumption), any route that does
not embed O must be suboptimal. Formally, optc¬(s,O, g) >
optc(s, g) = optc(s,O, g). Using this in Equation (RG3) we get
that costdifRGP(s, g,O) < 0. In turn, from Equation (1), we get
that costdif1(s, g,O) = 0. Thus, from what we have shown, for all
g′ ∈ G \ {g}, we conclude that:

• costdif1(s, g,O) = 0 < costdif1(s, g′, O); and

• costdifRGP(s, g,O) < 0 < costdifRGP(s, g′, O).

Putting it all together, both cost difference accounts rank all goals in
G equivalently. That is, for all g1 6= g2 ∈ G, costdifRGP(s,O, g1) <
costdifRGP(s,O, g2) iff costdif1(s,O, g1) < costdif1(s,O, g2) and,
using Observation 1, the thesis follows.

So, even in this corner case, using the simpler cost difference for-
mula lets us determine the same ranking among potential goals and
hence is sufficient to identify the “most probable” goal.

There remains one variation of exclusive optimality that we have
so far excepted. It is the case where observations coincide with the
only optimal paths to multiple goals (rather than one). We have
argued that exclusive optimality for one goal is unusual; clearly,
for multiple goals, it is even more so. Should the situation arise,
however, the complex formula (RG3) would return multiple (neg-
ative) cost differences, which could be ranked, whereas the simple
formula (1) ranks all goals for which observations match the op-
timal path equally. Arguably, however, this situation is not only
extremely unlikely, it also concerns the very set of goals in which
this probabilistic account [17] is least interested.

Why use the more complex formula?
Our discussion so far supports the use of P1(·) rather than PRGP(·)
for reasoning about the goal of an observed agent: it is conceptu-
ally simpler, computationally less demanding and, except in one
unlikely circumstance, yields the same (practical) outcomes. We
note, however, that Ramirez and Geffner make a case for preferring
the more demanding formula (RG1) [17], which we now consider.

A better predictor. To arrive at a probability distribution, their ac-
count appeals to Bayes’ Rule, P (G|O) = αP (O|G)P (G) where
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Figure 2: P (L|O′) is the same as P (R|O′).

α is a normalising constant. Prior probabilities in P (G) are given,
so the challenge is to account for P (O|G). Example 1 demon-
strated that costdifRGP(s, g,O) only differs from costdif1(s, g,O)
when observations match the only optimal way to goal and it is
correct, the authors say, that P (O|M) should exceed P (O|L) and
P (O|R) because goal M better predicts the observations.

The intuition behind this account seems to be that probabilities
are somehow linked to the number of available paths to goal; that, if
there had been four optimal paths and the agent was seen on one of
them, the probability of the goal would be correspondingly lower;
and that, if there had been 100 optimal paths, it would be lower still.
This is not the case, however. In fact, as soon as there is a second
optimal path to goal, the account fails to follow that intuition.

EXAMPLE 2. Consider a domain with two goals, L and R as
depicted in Figure 2. The rectangular block of cells, (2, 2) to
(5, 10), is not navigable. Now, instead of one optimal path to goal
M (which has been removed), there are two optimal paths to goal
L. Meanwhile, (owing to the notorious symmetry of gridworlds)
there are 3003 optimal paths to R, as before. Equation (RG3),
however, can no more distinguish between L and R than can the
simpler formula (1). In this scenario, P (O|L) should, if we are
counting paths, be very much greater than P (O|R) but, for both
goals, both formulas return zero and, by the posterior probability
calculation (RG4), both goals appear to be equally probable.

A single solution path. Finally, in the extreme case, where obser-
vations conform not just to the only optimal path to a goal g but
to the only path per se, the cost of a path that does not conform to
observations is infinite (because no such path exists) and Equation
(RG3), as Ramirez and Geffner [17] point out, returns −∞. Given
that the model hinges on the notion that the lower the cost differ-
ence, the higher the probability, this result should give g the high-
est possible probability within the distribution. However, in order
to normalise the probabilities, each must be divided by their sum.
Where one probability is infinite, the sum is infinite and therefore,
using (RG3), normalisation fails (division by infinity) and proba-
bilities cannot be calculated for any goal in the domain.

Thus, what seemed to be part of the case for the (RG3) formula
turns out to be part of the case against after all. In an identical situ-
tation, Equation (1) (based on optimal cost from start to goal rather
than “optimal cost given not the observations”) returns zero and a
complete distribution, clearly favouring g, is successfully returned.

Summary
To conclude this section, we summarise the case for formula (1):

• the simpler formula costdif1(s, g,O) returns the same result
as the more complex costdifRGP(s, g,O) in all cases bar one;

• the one case where the formulas do not return identical re-
sults relates to fully rational agent behavior, which is pre-
cisely not the motivation of the probabilistic PR model;

• even when costdif1(s, g,O) returns a different result from
costdifRGP(s, g,O), it is unlikely to impact the overall prob-
ability distribution;

• in the most extreme case when costdif1(s, g,O) returns a dif-
ferent result from costdifRGP(s, g,O)—because there is no
alternative path to the goal without the observations—it may
return no result at all; and

• costdif1(s, g,O) is computationally advantageous: it does
not require ‘negative’ reasoning about observations (which
implies any standard path-planner can be used off-the-shelf);
and in certain domains, its second term may be pre-computed.

5. OBSERVATION-FREE RECOGNITION
We have seen above that, in all but one extreme corner case,

the simpler formula (1) can be used interchangeably with the more
complex formula (RG3). In this section, we go further and prove
that the ranking among potential goals, as judged by the probabil-
ity distribution P1(·) generated using cost difference (1), can be
achieved without reference to the observation sequence.

At first sight, the finding is counter-intuitive. Indeed, it implies
that we can perform goal recognition without observing how the
agent behaves over time! Nevertheless, if we know an agent’s start
location (e.g., because it is one of a finite number of building en-
trances) and the location of each candidate goal, we require only
the agent’s current location in order to calculate a probability dis-
tribution within which the goals will be ranked in exactly the same
order as if we had used formula (1).

Our observation-independent cost difference formula, costdif2 :
N ×N ×N 7→ R is defined as:

costdif2(s, g, n) = optc(n, g)− optc(s, g), (2)

where n stands for the location last observed (i.e., n = O|O|), that
is, the current or most recently observed location of the agent whose
destination we are trying to determine. Let P2(·) be the probability
function obtained by taking X = costdif2(s, g, n) in (RG3).

THEOREM 5. LetO be an observation sequence. For all g1, g2 ∈
G, P1(g1|O) > P1(g2|O) iff P2(g1|O) > P2(g2).

PROOF. From Observation 1, P1(g1) > P1(g2) if and only if
costdif1(s, g1, O) < costdif1(s, g2, O). Recall, from Equation (1),
that for each i ∈ {1, 2}:

costdif1(s, gi, O) = optc(s,O, gi)− optc(s, gi),

where the first term can be written as:

optc(s,O, gi) = optc(s,O0) + optc(O) + optc(O|O|, gi).

Let nl = O|O| be the last observation inO. From Observation 1,
recall that the relative ranking between g1 and g2 w.r.t. their poste-
rior probabilities can be deduced directly from the relative value of
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their cost difference formulas. So, let us expand that value:

costdif1(s, g1, O)− costdif1(s, g2, O)
= [optc(s,O0) + optc(O) + optc(nl, g1)− optc(s, g1)]−

[optc(s,O0) + optc(O) + optc(nl, g2)− optc(s, g2)]
= optc(s,O0) + optc(O) + optc(nl, g1)− optc(s, g1)−

optc(s,O0)− optc(O)− optc(nl, g2) + optc(s, g2)
= optc(nl, g1)− optc(s, g1)− optc(nl, g2) + optc(s, g2)
= [optc(nl, g1)− optc(s, g1)]− [optc(nl, g2)− optc(s, g2)]
= costdif2(s, g1, nl)− costdif2(s, g2, nl).

It follows then that costdif1(s, g1, O) > costdif1(s, g2, O) iff
costdif2(s, g1, O) > costdif2(s, g2, O). Thus, from Observation 1,
P1(g1|O) > P1(g2|O) iff P2(g1|O) > P2(g2).

The finding is useful and unexpected. All parameters are inde-
pendent of the observation sequence (modulo wherever the agent is
“now”) and can be obtained by calls to any standard path-planner:
no specialised path-finding system is needed to reason about ob-
servations. Furthermore, if all the start and candidate goal loca-
tions are known—as would typically be the case in most domains—
formula costdif2(s, g, n) can be fully pre-computed offline for any
node n ∈ N in the domain.

The implications are significant. It means that we can create a
sort of “heat map” of the domain, showing the probability of each
goal according to where the agent entered. If we have a particular
goal of interest (e.g., a valuable location to monitor and protect),
we can focus our attention fully on the locations where that goal
becomes the most probable. That is, rather than tracking an agent’s
movements all over the terrain, we can just monitor the “hot” spots
and only start tracking her in earnest if she arrives at one of them.

We close the section by noting that the above result is actually
not dependent on formula (RG4) itself. Rather, it is applicable
whatever manipulation is used to derive the probability distribu-
tion, provided that the posterior probability function satisfies the
property that the lower the cost difference, the higher the probabil-
ity, and the relative cost differences are preserved.

6. EXPERIMENTAL SETUP AND RESULTS
In this section, we report our results on the performance of goal

recognition in path-planning when using the original (complex)
cost difference (RG3), the simpler version (1) that does not rea-
son negatively about observations, and the observation-free ver-
sion (2) in problems adapted from the well-known Moving-AI8 path-
planning benchmarks [19]. The aim was to develop an experimen-
tal framework for the problem of goal recognition in path-planning
to empirically confirm that (a) the case of observations conforming
to the only optimal path to a goal (as in Theorem 3) is rare and,
otherwise, the simpler formula yields identical posterior probabil-
ity distributions; (b) all three accounts return posterior probability
distributions that rank goals the same; and (c) use of either of the
latter two formulas cuts processing time by more than half.

6.1 Experimental setup
We generated an initial problem set of 990 individual problems

from a base set of 60 scenarios selected at random from two sets
of Moving-AI benchmarks [19]:9 game landscapes from StarCraft;
and connected room layouts (chosen for their similarity to inter-
nal locations, such as airport terminals or shopping centres). Since
the scenarios are intended for path-planning, we adapted them for
8http://movingai.com/
9Experiments were conducted on a i7 1.8GHz dual core with 8GB
RAM in a Linux environment.

goal recognition as follows. First, we added two to five additional
(reachable) candidate goals at random locations. Second, to gen-
erate the observations, we used Weighted-A* [14] to build a full
continuous path from the start location to the real goal. We then
extracted observation sequences varying three dimensions: path
quality (optimal, suboptimal, greedy), observation density (sparse
20%, medium 50%, dense 80%) and two observation distributions
(random selects random locations along the path, prefix selects a
consecutive sequence of location nodes from the start location).

In addition to the auto-generated problem set, we manually set
up individual experiments to trial the various cost difference formu-
las against completely open landscapes and “single-pixel” mazes
(through which there is typically only one path from any given
starting point to goal).

For simplicity and, given that planners are meant to be used “off-
the-shelf”, optimal costs for paths with, and without, waypoints
were calculated using a standard A* algorithm [8]10. To obtain the
cost of an optimal path given not the observations, inspired by the
technique in [17], we modified A* so that each search node, in addi-
tion to a location indicator, also included an “observation counter”.
When the counter reached the total number of observations (mean-
ing all observations had been encountered) the node—and so the
associated path that embedded the observations—was pruned.

We used the usual uniform cost approach for grid-type settings,
where all horizontal and vertical moves were costed at 1, and all
diagonal moves at 1.414. Like [17], we assumed equal goal priors
and calculated the probability of each goal using Equation (RG4).

6.2 Results
Our results confirmed the hypotheses. In maps representing rel-

atively open landscapes, the formulas performed exactly as pre-
dicted: formulas (RG3) and (1) returned identical results, all three
formulas ranked goals identically by probability and (after the first
iteration in a domain with the same start location and goals) for-
mula (RG3) was half the speed of formulas (1) and (2).

In the single-pixel maze, again as predicted, the implementation
based on formula (RG3) was unable to return a probability distri-
bution (because the most probable goal gave a cost difference of
−∞), whereas formulas (1) and (2) returned in 0.005 and 0.002
seconds, respectively, and successfully identified the real goal.

Importantly, the corner case in which observations conform to
the only optimal path to goal did not arise in any of the randomly
generated scenarios. We were only able to reproduce the condition
by exactly replicating the example scenario. That is, we set up an
environment in which diagonal moves were prohibited, there were
three goals, observations were on the optimal path to all of them
but one goal lay in a straight line from the start location. In the
resulting probability distributions, formula (RG3) returned 0.329,
0.342, 0.329 (for L, M and N in Figure 1, respectively), whereas
formulas (1) and (2) returned 0.333 for all three goals.

Tables 1 and 2 summarise our results for suboptimal observa-
tion sequences.11 Column O displays the percentage of nodes from
the full path that were included in the observation sequence: P in-
dicates that the observations were presented as a continuous path
prefix, and R that they were randomly drawn from the length of the
path. Column T displays the average time-taken per goal recog-
nition problem. Column M shows the percentage of probability

10We used a Python-based infrastructure, originally designed as a
simulator and testbed for path-planning algorithms, which already
included implementations of A* and Weighted A* in its library
(https://tinyurl.com/p4sim).

11To save space—and to avoid repetition—we have not tabulated
the greedy or optimal results but have discussed them inline.
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Table 1: Rooms - suboptimal

PRGP P1 P2

O T T M ∆ T M ∆
20P 30.915 6.795 100% 0 3.182 37.0% 0.024
20R 13.916 2.749 100% 0 2.688 27.5% 0.313
50P 32.001 2.439 100% 0 2.428 27.5% 0.097
50R 21.077 2.755 100% 0 2.698 27.5% 0.337
80P 34.970 2.465 100% 0 2.425 24.1% 0.242
80R 29.980 2.775 100% 0 2.712 27.6% 0.340

180 problems. Average goals: 4.8. Average path cost: 362.

Table 2: Landscapes - suboptimal

PRGP P1 P ∗2
O T T M ∆ T M ∆

20P 24.596 3.835 100% 0 1.780 34.6% 0.040
20R 10.346 2.112 100% 0 2.062 53.8% 0.025
50P 31.934 1.706 100% 0 1.681 38.5% 0.034
50R 18.962 2.110 100% 0 2.073 57.7% 0.024
80P 33.274 1.876 100% 0 1.848 42.3% 0.035
80R 26.073 2.111 100% 0 2.062 57.7% 0.023

156 problems. Average goals: 4.35. Average path cost: 280.74.
We obtain P ∗2 as P2 but adding a constant to the corresponding
cost difference (see discussion inline).

distributions that exactly matched those generated using cost dif-
ference formula (RG3). Where a difference was recorded, column
∆ displays the average difference for those cases. On average, the
implementation using cost-difference (RG3) performed even more
slowly than we expected. In the room layouts, as shown in Table 1,
it was four to 12 times slower than using the simple formula. This
is, in part, explained by outliers. For example, we found the com-
plex implementation slow to identify an alternative optimal path
(i.e., where cost difference returned zero). Our results also showed
that observations presented as a path prefix took, in some cases
twice as long to solve as those presented randomly. This is because
the algorithm backtracks and, if observations are consecutive, re-
peatedly reaches the final observation via multiple different routes.
Ultimately, however, the relative slowness may be a symptom of
the calculation’s inherent complexity. We note that the “Easy IPC
Grid” experiments reported in [17] (which most closely resemble
our experiments, though in the context of planning which, we ap-
preciate, is necessarily more demanding) took, on average, over
three minutes to complete problems with observation densities of
50% using an optimal planner comparable to A*, on problems with
average optimal path lengths of just 17 steps. Ramirez and Geffner
improved performance by using a suboptimal planner. We did try a
suboptimal—and much faster—algorithm but, although it returned
approximately equivalent probability distributions, it failed to pre-
serve the corner cases, which were of interest to us.

As can be seen from the tables, use of formula (1) cut process-
ing time, in some cases returning a result in a twelfth of the time
taken by equivalent calls to formula (RG3). We should note that, in
our experiments, the 20% density, prefix observations were always
the first to be tested in each new problem set. This meant that it
was always when running the 20P test that optimal costs to each
goal were calculated (and stored for future use). This is reflected in
the results, which clearly show the simple formula taking approxi-
mately twice the time of the minimal formula for that problem.

Whereas the probabilities based on cost difference (1) always ex-
actly matched those based on cost difference (RG3), probabilities

generated using formula (2) were usually different. This is because
the actual values returned by that formula are different: it is the
relative cost differences that are maintained. Equation (RG4) uses
exponential values to generate posterior probabilities and so is par-
ticularly sensitive to any small variation. Furthermore, although the
relative cost differences always exactly match those of the simpler
formula (as proved in Theorem 5) the actual cost differences are al-
most always negative and sometimes (on map problems involving
paths of 1000 or more steps) vastly so. This translates, when used
as a cost difference parameter in probability distribution formula
(RG4) to negative exponentials, that is, tiny fractions. As a result,
the output loses precision and the posterior probability distribution
tends to equalise across multiple goals.

This accounts for the sometimes higher than expected delta val-
ues (see Table 1) but is easily rectified by adding a large constant to
the function’s output, raising it always above zero whilst preserv-
ing relative rank (see Table 2). Furthermore, whether or not the
constant is added, in all cases, use of the observation-independent
formula successfully identified the same goal as having the highest,
or equal highest, posterior probability as either other formula.

7. CONCLUSION
In this work, we have examined techniques for performing prob-

abilistic plan recognition, first introduced in the insightful work of
Ramirez and Geffner [17], and applied them in the context of path-
planning. In particular, we focused on how a cost-based approach,
which they pioneered, translates to the path-planning realm.

We have shown that a simpler cost difference formula (1) (which
does not require reasoning negatively about observations and is
achieved by standard calls to a standard path-planner) returns an
identical result to the original formula (RG3) (which reasons about
optimal path cost “given not the observations”) in all but one spe-
cific case, which we characterize. We argue, in line with intuitions
expressed in [17], that this is a case of little interest and, in fact, it
is one that did not even arise in our automated tests.

Further, we have presented an alternative cost difference for-
mula (2) that does not depend on the observation sequence but
nevertheless generates a posterior probability distribution that ex-
actly preserves the ranking of goals from the simplified account
and, by extension, results in an identical ordering to formula (RG3)
in all cases bar one. This formula requires similar computational
effort to the simpler formula (two calls to a standard path-planner
for each goal but without having to consider waypoints) and has
the benefit that it can be pre-computed in many realistic domains,
namely, whenever the start and potential goals are known at the
outset (e.g., doors to a building and rooms that require protection).
This amounts to a finding that the relative probability of possible
goals is a function of the domain. So one can create a sort of
“heat map” of posterior goal probabilities from which to identify
the perimeter that should be monitored around any goal of inter-
est, knowing that, at all locations within the perimeter, that goal is
ranked highest (i.e., it has become the most probable).

We close by noting that our ability to derive an observation-
independent formula demonstrates (at least with regard to the or-
dering of goals) that the “cost difference” method of goal recogni-
tion is inherently Markovian. We note also that, while reasonable,
our account inherits the limitation of assuming that the observed
agent is rational.
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