
BDI Agent Reasoning with Guidance from HTN Recipes

Lavindra de Silva
Institute for Advanced Manufacturing

University of Nottingham
Nottingham, UK

lavindra.desilva@nottingham.ac.uk

ABSTRACT

Belief-Desire-Intention (BDI) agent systems and Hierarchical Task

Network (HTN) planning systems are two popular approaches to

acting and planning, both of which are based on hierarchical and

context-based expansion of subgoals. Over the past three decades,

various authors have recognised the similarities between the two

approaches, and developed methods for making the domain knowl-

edge embedded in one system accessible to the other, and for aug-

menting BDI agents with the ability to perform HTN-style “looka-

head” planning. This paper makes a novel contribution to this

strand of work by developing a formal account of “plugging” in

available HTN hierarchies (e.g. from the International Planning

Competition) into a BDI agent’s goal-plan hierarchy. When com-

bined with lookahead-based execution, the agent is then guaranteed

to behave in accordance with the “operational guidelines” embed-

ded in the HTN hierarchies. We also explore how HTNs could be

used to obtain BDI hierarchies that can be executed without per-

forming any lookahead. In particular, we first characterise a useful

class of BDI agent hierarchies that any such translation should pro-

duce, and we then characterise the restrictions that need to be im-

posed on HTNs in order to encode them as useful BDI hierarchies.

1. INTRODUCTION
Belief-Desire-Intention (BDI) agent systems [18] and Hierarchi-

cal Task Network (HTN) planning systems [8] are well-understood

and successful approaches to acting and planning. Both of these

approaches are based on hierarchical and context-based expansion

of subgoals: while BDI agents interleave this process with acting

in order to be responsive to environmental changes, HTN planners

perform complete “lookahead” over subgoal expansions in order to

guarantee that they are achievable. Over the past three decades,

various authors have recognised, to different extents, the similar-

ities between the two approaches (e.g. [3, 15, 23, 9, 6, 20, 19]).

This has led to methods for making the (operator-supplied) domain

knowledge that is available in one system accessible to the other,

and for augmenting BDI agents with the ability to perform HTN-

style (complete) lookahead over their goal-plan hierarchies.

This paper makes a novel contribution to this strand of work by

developing a formal account of “plugging” available HTN hierar-

chies, e.g. from the International Planning Competition [5] or real-

world HTN planning applications [13], into a BDI agent’s goal-

Appears in: Proceedings of the 16th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2017), S.
Das, E. Durfee, K. Larson, M. Winikoff (eds.), May 8–12, 2017,
São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

plan hierarchy. These may either represent new strategies/proce-

dures for achieving an agent’s existing goals, or represent a col-

lection of procedures for handling new goals altogether. When the

plugged hierarchies are combined with the lookahead-based acting

semantics of [19], the agent is guaranteed to behave in accordance

with the “operational guidelines” that are in the original (HTN) hi-

erarchies. In general, lookahead-based acting allows an agent to

deliberate over the outcomes of making one choice (e.g. regard-

ing how to decompose a subgoal) over another. Such deliberation

is sometimes necessary for avoiding undesired situations and guar-

anteeing goal achievability, such as when irreversible actions are

present that may lead to “dead end” states—from where there is

no successful outcome; action execution takes significantly longer

than lookahead deliberation; or actions may consume important re-

sources [19, 20]. We also explore how HTNs could be used to

obtain BDI hierarchies that can be executed without needing to per-

form any lookahead, and we study the resulting tradeoffs.

In past work, the first systematic study of the similarities and

differences between HTN and BDI systems is presented in [6]. In

particular, the authors map from an existing HTN Blocks World

domain into an equivalent BDI agent domain, and provide pre-

liminary results which suggest that the HTN hierarchies can then

be executed more effectively by an agent when the environment is

dynamic. Unlike our work, [6] uses a specific implementation of

each system (JSHOP [14] and JACK [2], respectively), rather than

their formal syntax and semantics. The first formal mapping from

one system to the other is proposed in [19, 20] with the CANPlan

framework. CANPlan is an extension of the CAN [24] BDI agent

programming language to include HTN planning is a built-in fea-

ture, allowing an agent to perform lookahead deliberation from

user-defined points in the agent’s goal-plan hierarchy. To this end,

the authors show how CANPlan (recipe) libraries can be converted

into equivalent HTN domains, though not the other way around as

we do in this work. It turns out that converting HTN domains into

CANPlan libraries requires a different approach to the one in [19,

20], particularly because HTNs employ certain constraints which

have no direct counterparts in CANPlan (or CAN).

The contributions of this paper are twofold. First, we propose a

novel translation from HTN domains into CANPlan agent libraries.

We show that by performing lookahead-based execution on the re-

sulting recipes, the agent will conform to the “operational guide-

lines” embedded in the HTN domain. To this end, we use the

notion of a “declarative goal”, which is central in CAN, and we

briefly describe a necessary alternative to the operational semantics

of declarative goals in the context of planning. Second, we ex-

plore the tradeoffs in translating HTN domains into the traditional

(non-planning) AgentSpeak-like, CAN libraries. In particular, we

first characterise a useful class of CAN agent library that any such

759

translation should produce, and we characterise the restrictions that

need to be imposed on HTN domains in order to encode them as

useful CAN libraries.

2. BDI AND HTN SYSTEMS
This paper uses the CAN and CANPlan syntax and semantics

from [20], and the most general HTN planning syntax and seman-

tics from [8]. We summarise these formalisms below, and touch

upon their similarities.

2.1 BDI Agent Programming Languages
A CAN or CANPlan BDI agent is created by specifying a be-

lief base B, i.e., a set of ground atoms; a plan-library Π, i.e., a set

of plan-rules; and an action-library Λ. A plan-rule is of the form

e(t):ψ ← P , where e(t) is an event-goal; t is a vector of terms;

and ψ, a formula, is the context condition. The plan-body P is built

from: actions act(t); belief addition +b and removal −b programs

which are used to respectively add and remove atom b from B; test

programs ?φ, where φ is a formula, which are used to test whether

φ holds in B; event-goal programs !e, where e is an event-goal;

and declarative goals Goal(φs, P, φf), specifying that formula φs

(the declarative goal) should be achieved using program P , failing

if φf becomes true. As a plan-body “evolves”, the following “in-

ternal” constructs may also be used: programs nil, P1 ⊲ P2, and

Lψ1 : P1, . . . , ψn : PnM. Intuitively, nil indicates that there is noth-

ing left to execute; program Lψ1 : P1, . . . , ψn : PnM is the set of

plan-rules that are relevant for an event-goal; and P1 ⊲ P2 captures

failure recovery: P1 should be tried first, failing which P2 should

be tried. Formally, a CAN plan-body is described by the grammar

P ::= nil | act | ?φ | +b | −b | !e | P1;P2 | P1 ‖ P2 | P1 ⊲ P2 |
Lψ1 : P1, . . . , ψn : PnM | Goal(φs, P, φs).

The above grammar also describes a CANPlan plan-body when

construct Plan(P) is included, specifying that program P should

be executed only if it has a successful HTN decomposition.

The transition relation on a CAN configuration is defined as a

set of derivation rules in the style of [16]. A derivation rule has an

antecedent and a conclusion: the latter is a (single) transition, and

the former can be empty or have transitions and auxiliary condi-

tions. A transition C −→ C′ denotes that configuration C yields

configuration C′ in a single execution step. A configuration is a tu-

ple 〈Π ,Λ,B,A,P〉, where A is the sequence of actions executed

so far, and the other elements are as above; when comparing config-

urations, we ignore the static elements Π and Λ, and we sometimes

omit them for brevity. CANPlan uses labelled transitions denoted

C
lab
−→ C′, where lab ∈ {bdi, plan}, and when there is no label on

a transition both types apply. Intuitively, bdi-type transitions are

used for standard BDI reasoning and acting, and plan-type transi-

tions for “internal” steps within a planning context. These transi-

tion types allow precluding certain rules, e.g. those capturing BDI

failure recovery, from being applied in a planning context.

For example, consider the two CANPlan derivation rules below.

In rule D1, configuration 〈B,A, !e〉 evolves to 〈B,A, L∆M〉—with

only an update to the last component—in one transition of type bdi

or plan. Construct mgu stands for “most general unifier” [11], and

L∆M is the possibly empty set of relevant plan-rules for e, i.e., the

ones whose associated event-goal unifies with e. Rule D2 states

that any (single) bdi-type execution step on Plan(P) necessitates

one or more (internal) steps that yield a successful HTN decompo-

sition of P .

∆ = {ψiθ : Piθ | e′ : ψi ← Pi ∈ Π ∧ θ = mgu(e, e′)}

〈B,A, !e〉 −→ 〈B,A, L∆M〉
D1

〈B,A,P〉
plan
−→ 〈B′,A′,P ′〉 〈B′,A′,P ′〉

plan∗−→ 〈B′′,A′′, nil〉

〈B,A,Plan(P)〉
bdi
−→ 〈B′,A′,Plan(P ′)〉

D2

Finally, the action-library Λ is a set of action-rules which, like

STRIPS operators, are of the form act(v):ψ ← Φ+; Φ−, where

act(v) is an action; v is a vector of distinct variables; ψ is as above;

and Φ+ and Φ− is the add-list and delete-list, respectively. All

variables appearing in the rule must also occur in v, and any given

action has at most one associated action-rule in Λ.

2.2 HTN Planning
Like BDI agent reasoning, HTN planning is the process of de-

composing, from an initial state, the compound tasks in an initial

task network, until only primitive tasks remain. However, while

HTN systems are concerned with hypothetical off-line reasoning

about actions and their potential interactions within a pursued plan

for solving a task, BDI systems focus on the effective online exe-

cution of plans, in complex and dynamic environments.

Formally, an HTN planning problem is a tuple 〈d , I,D〉, where

d is a task network and I is an initial state (set of ground atoms).

Element D = 〈Op,Me〉 is an HTN (planning) domain, where Op

is a set of STRIPS-like operators and Me is a set of methods. Ele-

ments d, I, Op and Me are comparable to elements P , B, Λ, and Π
above (respectively).

A task network d is a tuple [S, φ], where S is a non-empty set of

elements of the form (n : τ (t)); element n is a task label, which

is unique in the planning problem; and τ (t) is either a compound

task or primitive task. Element φ, the task network formula, is a

Boolean formula built from negation, conjunction, disjunction, and

the following constraints: variable binding constraints of the form

(t = t′), requiring t and t′ (function-free terms) to be equal; or-

dering constraints of the form (n ≺ n′) (sometimes with brackets

omitted), requiring task label n to precede task label n′; before

(resp. after) state constraints of the form (l, n) (resp. (n, l)), re-

quiring literal l to hold (in the state) immediately before (resp. af-

ter) label n; and between state constraints of the form (n, l, n′),

requiring literal l to hold in all states between labels n and n′ (the

constraint holds vacuously if no such states exist).

Like a CAN action, an HTN primitive task has at most one asso-

ciated operator in Op, and like a CAN event-goal (or event-goal

program), a compound task can have more than one associated

method in Me. A method is a tuple Jτ, dK, where τ is a compound

task and d a task network. An example of a set of methods—which

we use as the running example in this paper—is shown below; all

tasks are primitive except for τ1, τ3 and τ4.

m1 = Jτ1, [{(2 : τ2(Y)), (3 : τ3)}, 2 ≺ 3 ∧ (q(Y), 2)]K

m2 = Jτ3, [{(4 : τ4), (5 : τ5)}, 4 ≺ 5 ∧ (4, p, 5)]K

m3 = Jτ4, [{(7 : τ7), (8 : τ8)}, 7 ≺ 8 ∧ (q(2), 7)]K

m4 = Jτ4, [{(9 : τ9)}, true]K

Given an HTN planning problem 〈d = [Sd , φd], I,D〉, withD =
〈Op,Me〉, HTN planning involves selecting a reduction method

m = Jτm, dmK ∈ Me and applying it to a compound task (n :
τ) ∈ Sd (provided τ and τm unify) to yield a new, and typically

“more primitive” task network d′. Formally, this is denoted by

d′ = reduce(d, n,m), and the set of all reductions of d is denoted

by red(d,D). Applying a reduction to (n : τ) above involves up-

dating the set Sd by replacing (n : τ) with the tasks in dm, and

760

CANPlan Entities HTN Entities

belief base B state I
action act (in plan-body) primitive task
belief operations +b and −b primitive tasks
event-goal !e compound task
test program ?φ state constraints, e.g. (l, n)
plan-rule context condition ψ state constraints
a sequence of two programs P ; P ′ ordering constraints
programs in parallel P ‖ P ′ no ordering constraints
plan-body P task network d = [S,φ]
plan-rule e(t) : ψ ← P method Jτ, dK
plan-library Π set of methods Me

Table 1: A summary of the core mapping from CANPlan to HTNs.

updating φd to include the constraints in dm. Reductions are ap-

plied to the given task network until a primitive task network is

obtained, i.e., one in which no compound tasks appear.

Finally, from a primitive task network, a completion σ is com-

puted. Informally, this is a total ordering of a ground instance of

the task network, that does not violate any constraints in the task

network formula. Given elements d, I and D as above, the set

of all completions is denoted as comp(d, I,D), and the set of all

HTN (primitive) solutions as sol(d, I,D) =
S

n<ω
soln(d,I,D),

where soln(d, I,D) is defined inductively as

sol1(d, I,D) = comp(d,I,D),

soln+1(d, I,D) = soln(d, I,D) ∪
[

d′∈red(d,D)

soln(d′, I,D).

Intuitively, the set of HTN solutions for the planning problem is

the set of all completions of all primitive task networks that can be

obtained from zero or more reductions of d. Table 1 shows a sum-

mary from [19] of the conceptual mapping from CANPlan entities

to HTN entities.

3. PRELIMINARIES
In this section we introduce some preliminary definitions and

state the assumptions that we make. First, we define a “recovery-

free” execution trace as a sequence of steps in which, if there is no

external interference, there is no (BDI-style) recovery from a failed

step (via program P1 ⊲ P2). Failure occurs when a configuration

〈B,A,P 6= nil〉 is reached such that 〈B,A,P〉 6
plan
−→ holds, namely,

P has become “stuck”. This will happen, for instance, if an event-

goal program has no relevant plan-rules, resulting in the set ∆ being

empty in ruleD1 above. In the definition below, Pn denotes the last

element in configuration Cn.

Definition 1 (Execution Trace). An execution trace of a config-

uration C = 〈Π ,Λ,B,A,P〉 is a finite sequence of configura-

tions C1 · . . . · Cn such that (i) C = C1; (ii) either Pn = nil or

Cn 6
plan
−→, i.e., the trace is “complete”; and (iii) Ci

plan
−→ Ci+1 for all

i ∈ [1, n− 1]. If Pn = nil, then the trace is a successful execution

trace, and it is a failed one otherwise. We use T (P,B,A,Λ,Π) to

denote the set of all execution traces of C. �

In [20], the authors propose one possible operational semantics

for declarative goals, where failure conditions are ignored when

goals are adopted from within a planning context. To this end, the

authors introduce a new derivation rule, and adapt the original rule

for goal adoption to make it applicable only in a non-planning con-

text. The new rule (D3) and the adapted one (D4) are shown below.

〈B,A,Goal(φs , !e, φf)〉
plan
−→ 〈B,A, (!e; ?φs)〉

D3

B 6|= (φs ∨ φf) 〈B,A, !e〉
bdi
−→ 〈B′,A′,P〉

〈B,A,Goal(φs , !e, φf)〉
bdi
−→ 〈B′,A′,Goal(φs ,P � P , φf)〉

D4

In rule D4, program P is the original set of relevant plan-rules

for event-goal program !e, which is “copied” during goal adoption

and persistently re-instantiated by another derivation rule if P even-

tually fails (i.e., it becomes “blocked”).

The authors point out, however, that another possible semantics

for declarative goals in the context of planning is where the failure

condition is used as declarative “control information”. Since such

a semantics is crucial for our translation from HTNs to BDI agent

recipes, we shall briefly describe the main changes needed. First,

we remove rule D3, and remove the labels on D4’s transitions, so

that all derivation rules defined for declarative goals may be used in

a planning context. To be consistent with the rest of the semantics,

however, we preclude the “goal restart” rule—which recovers from

a “blocked” program P by retrying the original program P ′—from

being used in a planning context, by replacing its transitions with

bdi-type ones. The resulting rule is shown below.

〈B,A,P〉 6
bdi
−→ 〈B,A,P ′〉

bdi
−→ 〈B′,A′,P ′′〉

〈B,A,Goal(φs ,P � P ′, φf)〉
bdi
−→ 〈B′,A′,Goal(φs ,P

′′
� P ′, φf)〉

Finally, the assumptions that we make in this paper are as fol-

lows. First, intuitively, we assume that any given HTN domain

“works” in at least one situation, or in other words, that it is inter-

nally consistent. Formally, given an HTN domain D = 〈Op,Me〉,
for any method Jτ, dK ∈ Me, there exists an initial state I such that

sol(d, I,D) 6= ∅. Second, we assume without loss of generality

that any variable occurring in a task network d = [S, φ] is men-

tioned at the “start” of d. Formally, there exists a task (n : τ) ∈ S
such that (i) φ ⊃ (n ≺ n′) for all (n′ : τ ′) ∈ S with n 6= n′;

and (ii) any variable occurring in d also occurs in some before con-

straint (l, n) with φ ⊃ (l, n).1 Basically, this assumption amounts

to ensuring that any declarative goal will be ground at the time it is

adopted by the agent, as required in [20].

4. HTNs TO PLANNING AGENTS
This section develops mechanisms for essentially “plugging in”

a given HTN domain into a CANPlan agent’s plan-library. To this

end, the main problem that needs to be addressed is how to convert

HTN methods into equivalent CANPlan plan-rules. By performing

lookahead-based execution on the resulting rules, the agent is then

guaranteed to behave in accordance with the HTN constraints that

are specified in the HTN domain.

We start by defining a class of HTN domain called a conjunctive

HTN domain. These have simpler constraint formulas which are

easier to convert into BDI entities, but are no less expressive than

standard HTN constraint formulas.

Definition 2 (Conjunctive HTNs). An HTN task network [S, φ]
is conjunctive if its formula φ is a conjunction of possibly negated

HTN constraints. An HTN domain 〈Op,Me〉 is conjunctive if the

task network d in every method Jτ, dK ∈ Me is conjunctive. �

In what follows, we assume that all HTN task networks and do-

mains are conjunctive. The following theorem states that any HTN

1When checking material implication, we treat HTN constraints as
propositions.

761

domain has at least one conjunctive counterpart, and that by using

a conjunctive domain we do not lose generality. In the following

theorem and later in the paper, we sometimes assume for simplicity

(and WLOG) that the task network to be solved (i.e., the first ele-

ment in the planning problem) has only one task, as it can always

be replaced with a more “complex” task network via a reduction.

Theorem 1. Let D = 〈Op,Me〉 be an HTN domain. There exists

a conjunctive HTN domain D′ = 〈Op,Me′〉 such that for any la-

belled task (n : τ) and initial state I , sol(d, I,D) = sol(d, I,D′),

where d = [{(n : τ)}, true]. �

Given an HTN domain D as above, we obtain a conjunctive do-

main D′ = 〈Op,Me′〉 as follows. For each method Jτ, [S, φ]K ∈
Me, we add the method Jτ, [S, φ′]K to Me′ (which is initially empty)

for each disjunct φ′ appearing in φdnf , where φdnf is φ in disjunc-

tive normal form.

Next, we define some auxiliary notions that are needed for our

translation. First, we define the notion of a set of terminating tasks

of a given compound task. Intuitively, this set represents one possi-

ble sequence of decompositions of the compound task into a prim-

itive task network.

Definition 3 (Terminating Tasks). Let (n : τ) be a compound la-

belled task and D = 〈Op,Me〉 an HTN domain. If there exists a

method Jτ ′, [S, φ]K ∈ Me such that τ ′ and τ are the same type,2

then let S1 (resp. S2) be the set of labelled primitive (resp. com-

pound) tasks in S; otherwise, let S1 = S2 = ∅. A set of termi-

nating tasks of (n : τ) relative to D, denoted FIN((n : τ),D), is

defined inductively as

S1 ∪
[

(n′′:τ ′′)∈S2

FIN((n′′ : τ ′′),D).

The set of all terminating tasks of (n : τ) relative toD, denoted by

FIN
∗((n : τ),D), is the smallest set such that for any set FIN((n :

τ),D), the set is in FIN
∗((n : τ),D). �

Observe that FIN
∗((n : τ),D) is a set of sets. Given a primitive

labelled task (n : τ), we define FIN((n : τ),D) = {(n : τ)}, and

FIN
∗((n : τ),D) = {{(n : τ)}}.

Given a task, we use its set of all terminating tasks to deter-

mine whether its corresponding BDI entity (action or event-goal)

has completed execution. In particular, we query the agent’s belief

base to check whether one of the sets of terminating tasks (actions)

corresponding to the event-goal has been executed. To this end, the

agent’s belief base keeps track of all the actions executed so far,

as well as the sequence of decompositions—or “path”—that led to

an action, via the distinguished function symbol f. Formally, a path

function (or path) is defined inductively as the 2-ary (FOL) function

symbol f(t1, t2), where t2 is a variable or task label, and t1 is either

the distinguished constant top or a path function. For example, if

task label n3 corresponds to an action, then f(f(f(top, n1), n2), n3)
represents two decompositions of the top-level event-goal (com-

pound task) corresponding to label n1. We sometimes omit the

arguments of a path function when they are not needed.

We define the prefix and end of a given path with the following

three axioms (i.e., Horn clauses as in [1]), and assume that they are

taken into account when the agent queries its belief base B.3

2i.e., the two tasks have the same symbol and arity
3CAN simply assumes that an operation exists for checking
whether a condition φ follows from a belief base B [20]. Thus,
we assume that an operation B |=A φ is provided, where A =
{A1,A2,A3} is our set of axioms.

Axiom (Prefix & End).

(A1) PREF(X,Y) ← X = Y
(A2) PREF(X,Y) ← ∃R,S

`

Y = f(R,S) ∧ PREF(X,R)
´

(A3) END(X,Y) ← ∃R
`

Y = f(R,X)
´

Finally, by including predicate p(Z) in the add-list (Φ+) of ev-

ery action-rule in the agent’s action-library Λ, where p is a distin-

guished predicate and Z is a variable that will always bind to the

path that led to the action, the following condition can be used to

query the belief base B—while a plan-body is being executed—

to check whether a particular event-goal occurring in the body has

executed its first action:

Φ1(f,D)
def
= ∃Y,p(Y) ∧ PREF(f, Y),

where f = f(X,n), and intuitively: variable X represents the path

that led to the event-goal, n corresponds to the event-goal itself, and

Y represents the path that led to an action that was executed. (We

shall make these clearer in Section 4.2.) Similarly, the following

condition can be used to check whether the event-goal has executed

all of its associated actions:

Φ+(f,D)
def
=

W

S∈FIN∗((n:τ),D)
V

(n′:τ ′)∈S
∃Y,p(Y) ∧ PREF(f, Y) ∧ END(n′, Y),

where f is as above. Informally, it is sufficient to check whether one

set of terminating tasks of the event-goal has finished execution.

We now have the necessary formal machinery for translating a

given HTN domain and planning problem into their BDI counter-

parts. Since an HTN initial state and operator-library have simi-

lar representations to a CAN belief base and action-library, respec-

tively, we shall restrict our attention to translating HTN methods.

4.1 HTN Methods as BDI Plan-Rules
Given an HTN method m = Jτ (t), [S, φhtn]K ∈ Me, the corre-

sponding CAN plan-rule is em : ψm ← Pm, where each of these

components is defined as follows.

The event-goal. We take em = τ (t ·X), namely, we use the corre-

sponding HTN compound task and append X to its vector of terms

t. The former is a variable that will always bind to the path that led

to the event-goal.

The context condition. Let task (n1 : τ1) ∈ S be the one that pre-

cedes all the other tasks in S. Recall that such a task always exists

due to our assumption in Section 3. Then ψm is the conjunction of

the literals in the following set:

{l | (l, n1) occurs in φhtn} ∪ {¬l | ¬(l, n1) occurs in φhtn}.

Intuitively, the context condition is composed of the literals that

need to hold before the first task in the task network.

The plan-body. Given the variableX above and the HTN method’s

set of tasks S = {(n1 : τ1), . . . , (nm : τm)}, for each (ni :
τi(ti)) we either create the event-goal program Pi =!τi(t

′

i) (if τi

is compound) or the action Pi = τi(t
′

i) (if τi is primitive), where

t
′

i = ti · f(X,ni). Then, we take the plan-body Pm above as the

declarative-goal

Goal(p(X), P, φf),

where program

P =
`

P1 ‖ . . . ‖ Pm

´

; +p(X)

762

with each Pi as defined above. Informally, the declarative goal can

be accomplished if p(X) can eventually be made to hold, i.e., all

parallel steps occurring in P can be successfully interleaved and

completed, but without ever making failure condition φf hold. In-

tuitively, combining this declarative goal with the lookahead con-

struct (Plan) allows “monitoring” the program P being pursued

and “backtracking” when a step makes φf true, which amounts to

violating a constraint in the HTN method’s constraint formula.

For example, the translation in this section produces the follow-

ing plan-rules, from the methods introduced in Section 2.2:4

r1 = !e1 : q(Y)← Goal(φs1
, P1, φf1

)
r2 = !e3 : true← Goal(φs2

, P2, φf2
)

r3 = !e4 : q(2)← Goal(φs3
, P3, φf3

)
r4 = !e4 : true← Goal(φs4

, (a9; +φs4
), false)

where
P1 = (a2(Y) ‖ !e3); +φs1

P2 = (!e4 ‖ a5); +φs2

P3 = (a7 ‖ a8); +φs3

4.2 HTN Constraints as Failure Conditions
We take the failure condition φf as the negation of the formula

TRANS(c1) ∧ . . . ∧ TRANS(ck), where each ci is a conjunct in the

HTN constraint formula φhtn above, and TRANS(ci) is defined be-

low. In what follows, we ignore the HTN domain D; e.g. we write

Φ1(f) instead of Φ1(f,D). Let us now consider the possible values

for a conjunct c in φhtn.

• Conjunct c = (n1 ≺ n2), i.e., c is an ordering constraint.

Then, TRANS(c) is the following formula, which requires all

actions of n1 to have completed at some point before the first

action of n2 starts:

Φ1(fn2
) |= Φ+(fn1

),

where fi denotes f(X, i). Strictly speaking, the left hand side

of the condition checks whether the first action of n2 has

completed (as opposed to started), but this is sufficient be-

cause (i) an action completes in one (CAN) step; (ii) the con-

dition will be checked at every step; and (iii) actions cannot

overlap (i.e., they are interleaved).

• Conjunct c = (n1, l, n2), i.e., c is a between state constraint.

Then, TRANS(c) is the following formula, which requires lit-

eral l to hold from just after the last action of n1 until just

before the first action of n2:
`

Φ+(fn1
) |= l

´

∨ Φ1(fn2
).

• Conjunct c = (l, n), i.e., c is a before state constraint. Then,

TRANS(c) is the following formula, which requires literal l
to hold until just before the first action of n:

`

Φ1(fn′) |= l
´

∨ Φ1(fn).

Informally, task label n′ represents the primitive task (action)

that precedes n in the above method’s task network. We leave

out the formal definition for brevity. The translation of an

after state constraint, where c = (n, l), is analogous to the

translation above.

We translate negated HTN constraints as follows. If c is ¬(l, n)
or ¬(n, l), we define TRANS(c) as respectively TRANS((¬l, n)) or

4For legibility, we ignore constraint 4 ≺ 5, some path functions in
plan-rules, and HTN before constraints.

TRANS((n,¬l)). If c = ¬(n1 ≺ n2), then TRANS(c) is the con-

verse of the formula corresponding to the case where c = (n1 ≺
n2), as we must now check that at least one of the actions of n2

complete before all of the actions of n1 complete.5 For example,

the failure conditions φf1
, φf2

, and φf3
in the declarative goals of

our running example are the negations of the following formulas,

respectively:

Φ1(f3) |= Φ+(f2),
`

Φ+(f4) |= p
´

∨ Φ1(f5), Φ1(f8) |= Φ+(f7).

Using the described translation from HTN methods to BDI plan-

rules, we can show that an HTN planner will find a solution for a

labelled task (n : τ (t)) if and only if the corresponding CANPlan

agent finds the same solution by performing lookahead on the cor-

responding event-goal program !τ (t · f(top, n)), which we denote

as !en. In the theorem below, subscripts denote the HTN entities

that were used to obtain the corresponding CANPlan entities; e.g.,

ΠMe is the CANPlan plan-library obtained from the HTN method-

library Me, via the translation above.

Theorem 2. For any HTN domain D = 〈Op,Me〉, initial state I,

task network d = [{(n : τ)}, true], and action sequences σ,A:

σ ∈ sol(d, I,D) iff for some B′

〈ΠMe,ΛOp,BI,A,Plan(!en)〉
bdi∗−→ 〈ΠMe,ΛOp,B

′,A · σ, nil〉.

�

Thus, any sequence of actions σ executed by the agent from be-

lief base BI , in order to achieve event-goal !en via the libraries

ΠMe and ΛOp (translated from D), will be an HTN solution for the

corresponding HTN planning problem, and vice versa.6 The proof

of this theorem is involved, and is based on induction on both the

structure of HTN methods and the length of HTN and CANPlan de-

composition sequences. Informally, the main step is to show that a

“successful” sequence of HTN reductions of a task network corre-

sponds to a sequence of CANPlan configurations C1 · . . . ·Ck, such

that for each Ci, no adopted (and possibly “nested”) declarative

goal appearing in Pi has a failure condition that holds in Bi (where

Pi and Bi is the plan-body and belief base in Ci, respectively.) We

shall illustrate this main step in the example below.

4.3 An Example
As an example of how the failure conditions of declarative goals

are monitored, let us once again consider the HTN methods and

resulting BDI plan-rules from our running example. Let us also

suppose that the primitive task τ2(Y) removes atom q(Y) and adds

atom p, and that tasks τ5 and τ9 remove atom p.

Consider a possible lookahead-based execution of event-goal pro-

gram !e1, i.e., a particular execution trace of the CANPlan program

Plan(!e1(t · f(top, 1))), from a belief base B0 |= q(1) ∧ q(2).

First, plan-rule r1 is selected to achieve !e1, substitution {Y/1} is

applied to its context condition, and the associated declarative goal

is adopted via the rule described in Section 3. The latter is possible

because the current belief base does not entail the success condition

φs1
nor the failure condition φf1

. These must not be entailed by

the belief base as the goal progresses either, and the same holds for

any other (possibly nested) declarative goals that are adopted.

Next, action a2(1) is chosen (arbitrarily) from the parallel steps

in P1, resulting in atom q(1) being removed from B0, and atom p

5The case where c = ¬(n1, l, n2)—i.e., ¬l must hold somewhere
between n1 and n2—requires a more involved translation which
we have left out for brevity.
6Conversely to the above result, [20] shows that CANPlan libraries
can be translated into equivalent HTN entities. However, the proof
of our theorem follows a similar approach to theirs.

763

and the “path predicate” p(f(f(top, 1), 2)) being added to it, yield-

ing the updated belief base B. Following this, plan-rule r2 is se-

lected to achieve event-goal program !e3, and plan-rule r3 is se-

lected to achieve !e4, resulting in their associated declarative goals

also being adopted.

In our scenario, the next action that is chosen is a7, adding atom

p(f(f(f(f(top, 1), 3), 4), 7)) to B. At this point, B still does not en-

tail φf1
: while !e3 did indeed just execute its first action, this was

done only after a2. Similarly, action a8 is chosen next, adding its

associated path predicate to B. At this point, B still does not en-

tail φf3
: action a8 was indeed just executed, but only after a7.

Moreover, B still does not entail φf2
either: all actions associ-

ated with !e4 were just executed, but proposition p also holds in

B (due to a2). The belief addition +φs3
is then executed with

φs3
= p(f(f(f(top, 1), 3), 4)), resulting in the success condition

φs3
holding in B, and the associated declarative goal being no

longer pursued (by replacing it with program nil). Finally, a5 is

chosen, adding its path predicate to B and asserting ¬p. While it is

now true that B |= ¬p, HTN constraint (4, p, 5) (and thus formula

¬φf2
) still holds, as p only needed to hold between !e4 and a5.

5. HTNs TO NON-PLANNING AGENTS
While the above approach ensures that a CANPlan agent will

never make a choice that leads to the violation of an HTN con-

straint during execution, the approach does not suit traditional BDI

agent programming languages such as CAN and AgentSpeak [17],

which cannot perform any lookahead. For instance, given the plan-

library in our running example, a CAN agent may well: (i) se-

lect plan-rule r4 instead of r3, thereby essentially violating HTN

constraint (4, p, 5) (when a9 removes atom p); (ii) decompose !e3
before executing action a2, thereby essentially violating HTN con-

straint (2 ≺ 3); or (iii) substitute the variable Y that appears in

r1 with 2 instead of 1, thereby making r4 the only applicable rule

when decomposing !e4.

Thus, in some sense, our translation produces CAN libraries that

are ideally failure-free, i.e., failure-free in the “ideal” cases where

the agent begins execution in the “right” belief base and makes all

the right choices during execution.

Definition 4 (Ideally Failure-Free). A (CAN) plan-library Π is

ideally failure-free (relative to an action-library Λ) if for any rule

e : ψ ← P ∈ Π and action sequence A, there exists a belief base

B and substitution θ such that B |= ψθ (where ψθ is ground), and

at least one trace in T (Pθ,B,A,Λ,Π) is successful. �

It is not difficult to see that a plan-library produced by our trans-

lation is indeed ideally failure-free. This follows from Theorem

2 and our assumption (in Section 3) that for any HTN domain

D = 〈Op,Me〉 and method Jτ, dK ∈ Me, there exists an initial

state I such that sol(d,I,D) 6= ∅.

Proposition 1. Let 〈Op,Me〉 be an HTN domain, and ΛOp and ΠMe

the corresponding CAN action- and plan-library, respectively. Then,

ΠMe is ideally failure-free relative to ΛOp. �

A more useful library for a CAN agent is one that is (always)

failure-free. That is, if a plan-rule is applicable (its context condi-

tion holds in the current belief base), then the associated plan-body

will not fail during execution (if there is no external interference)

[12]. Thus, in some sense, the context conditions in such libraries

endow an agent with certain “lookahead” abilities.

Definition 5 (Failure-Free). A (CAN) plan-library Π is said to be

failure-free (relative to an action-library Λ) if for any plan-rule

goToWork(X, Y)

R0

−→

true

getReady

or

R1hvFC

wearFC

¬wCC ∧ wFC

R2friday

wearCC

wCC ∧ ¬wFC

travel(X, Y)

or

R3 ¬wFC∧

walk(X, Y)

R4 hvCoins

takeBus(X, Y)

d(X, Y, 2)

Event-goal

Plan-rule

Action

Figure 1: A CAN plan- and action-library depicted as a hierar-

chy. An arrow below a plan-rule indicates that its steps are ordered

from left to right. Context conditions of plan-rules appear along-

side them, and the effects of actions appear below them.

e : ψ ← P ∈ Π, ground instance eθ of e, belief base B, and ac-

tion sequence A, if B |= ψθθ′ (where ψθθ′ is ground), any trace in

T (Pθθ′,B,A,Λ,Π) is successful. �

In order to obtain such a CAN library, context conditions need to

be made sufficiently “cautious”, and doing so involves determining

(offline) which choices the agent will or may make under different

situations, and the resulting violations to context conditions. To

minimise the uncertainty regarding such choices, and consequently

avoid the need for “overly cautious” context conditions, HTN “con-

trol knowledge” in the form of ordering constraints should be made

explicit in BDI plan-bodies. This contrasts with our approach in the

previous section, where such knowledge was implicitly encoded in

failure conditions. In the next two sections, we explore the follow-

ing two points, as well as their associated losses in completeness:

(i) how a CAN plan-library can be made failure-free; and (ii) how

an HTN method can be converted into a CAN plan-rule in which

HTN ordering constraints are represented as sequential and parallel

compositions of event-goal programs and actions.

5.1 Making CAN Libraries Failure-Free
It turns out that we can always obtain a failure-free CAN library

from a given plan-library (such as one that was translated from an

HTN domain), by adding “guards” into context conditions. To state

this formally, we introduce the following auxiliary notions. First,

given only a program P , an action-library Λ, and a plan-library Π,

we use T (P,Λ,Π) to denote the union of all sets T (P,B,A,Λ,Π)
for any B and A. Second, given only an action-library Λ and a

plan-library Π, we use T (Λ,Π) to denote the union of all sets

T (Pθθ′,B,A,Λ,Π), for any B, A, and ground plan-body Pθθ′

taken from the library, i.e., where a rule e : ψ ← P ∈ Π exists

with B |= ψθ. Finally, TS(Λ,Π) is the set of all successful exe-

cution traces in T (Λ,Π), i.e., those that end in a configuration in

which the plan-body is nil.

Theorem 3. Let Π be a plan-library and Λ an action-library. There

exists a failure-free plan-library Π′ that can be obtained from Π by

replacing each rule e : ψ ← P ∈ Π with some rule e : ψ ∧ ψ′ ← P
(possibly with ψ′ = true). �

Observe that for any such Π′, we have T (Λ,Π′) ⊆ TS(Λ,Π).

The theorem holds because we can, in extreme cases, take one or

more of the guards ψ′ above as false. As an example of what these

guards might look like in general, consider Figure 1. This depicts a

CAN plan- and action-library for going to work from a location X
to Y , which involves getting ready and then travelling. The former

is either achieved by wearing formal clothes if the agent has them

764

(hvFC), which asserts that formal clothes were worn (wFC) and

that casual clothes were not (¬wCC), or by wearing casual clothes

if it is Friday. Travelling involves either walking if ¬wFC holds

and the distance betweenX and Y is less than 2 miles (d(X,Y, 2)),

or taking the bus if the agent has coins. Then, observe that by

making the context condition of ruleR0 the following:

ψ =
`

(hvFC ∧ ¬friday) ⊃ hvCoins
´

∧
`

(¬hvFC ∧ friday) ⊃ (d(X,Y, 2) ∨ hvCoins)
´

∧
`

(hvFC ∧ friday) ⊃ hvCoins
´

,

the rule will only be applicable (and execute a first action) if no

choice that might later be made during the plan-body’s execution,

e.g. on reaching the (uncontrollable) choice between plan-rules R1

and R2, will result in the failure of a step.

Observe, however, that ψ above is “cautious”: it will not hold

when the agent believes hvFC∧friday∧¬hvCoins∧d(a, b, 2)
(when pursuing !goToWork(a, b)). Consequently, it will never

pursue the execution (or HTN solution) where ruleR2 is chosen by

chance, followed by R3. More precisely, T (Λ,Π′) ⊂ TS(Λ,Π),

where Π and Λ represent the libraries depicted in Figure 1, and

Π′ represents the modified one above. Importantly, such a loss in

completeness cannot be avoided (while keeping the library failure-

free) by simply rewriting ψ above. However, there are also failure-

free CAN libraries with no such loss in completeness, e.g. the one

depicted in Figure 1 but with the context conditions of R1 and R2

being mutually exclusive, i.e., hvFC ∧ ¬friday and ¬hvFC ∧
friday, respectively. We can then remove the last conjunct in ψ.

5.2 HTN Methods as BDI Plan-Rules
We shall now discuss a crucial restriction that must be imposed

on HTNs in order to be able to convert HTN methods into CAN

plan-rules in a way that makes the ordering explicit between event-

goals and actions. This allows the (non-planning) CAN agent to

follow “structural” guidelines regarding the execution order of such

steps, and thereby also avoid the need to have “overly cautious”

context conditions. For example, if the two event-goal programs

in R0 in Figure 1 are written not as sequential steps but as parallel

ones (as in Section 4.1), the above context condition ψ of rule R0

will need to be the “overly cautious” condition ψ = false, to pre-

clude the CAN agent from making the (uncontrollable) choice to

travel before getting ready, which will essentially violate the asso-

ciated HTN ordering constraint and lead to failure.

Analogously to the notion of a series-parallel graph [22], we

call our restricted class of HTNs series-parallel HTNs. Intuitively,

these are HTNs that can be incrementally constructed by the appli-

cation of only sequential and parallel compositions of tasks.

Definition 6 (Series-Parallel HTNs). Let d1 = [S1, φ1] and d2 =
[S2, φ2] be task networks that do not mention the same variables or

task labels, and let the set of ordering constraints C = {(n1 ≺
n2) | (n1 : t1) ∈ S1, (n2 : t2) ∈ S2}.

• A sequential product of d1 and d2, denoted d1 ◦ d2, is any

task network d3 = [S1 ∪S2, φ1 ∧φ2 ∧φ3 ∧
V

c∈C c], where

no ordering constraints occur in φ3.7

• A parallel product of d1 and d2, denoted d1 | d2, is any task

network d3 = [S1 ∪ S2, φ1 ∧ φ2 ∧ φ3], where no ordering

constraints occur in φ3.

Then, d = [S, φ] is a series-parallel (SP) task network if either

|S| = 1, d = d1 ◦ d2, or d = d1 | d2, for some SP task networks

7Strictly speaking, one or more “transitive” ordering constraints
can also be removed from the formula in d3.

1 2 3 4

5

6

(a)

1 2 3 4

5

6

(b)

1 2 3 4

5

6

(c)

1 2 3 4

5

6

(d)

1 2 3 4

5

6

(e)

1 2 3 4

5

6

(f)

Figure 2: DAGs depicting the structures of a non-SP task network

(a) and SP task networks (b)-(f). Vertices represent HTN task la-

bels, and an edge (i, j) represents the ordering constraint (i ≺ j).

d1 and d2. An HTN domain 〈Op,Me〉 is a series-parallel one if for

each method Jτ, dK ∈ Me, d is an SP task network. �

Figure 2 shows SP task networks and a non-SP task network

depicted as DAGs. Observe that the latter cannot be constructed

incrementally as defined above. For this to be possible, its task

label 5 (resp. 6) must either be “inside” or “outside” the subgraph

with vertices 2, 3, 4 and 6 (resp. 1, 2, 3 and 5), as in DAGs (e) and

(f) (resp. (b) and (c)).

In some cases, HTN task networks can have implicit ordering

constraints, which do not appear in the constraint formula. These

must also be taken into account in order to “truly” recognise SP

task networks. For example, if the negated between constraint

¬(n1, p, n2) (for some proposition p) occurs in a constraint for-

mula, then ordering constraint (n1 ≺ n2) is “implicit” in it (if it

does not occur in the formula), as the former requires a state to exist

between n1 and n2 in which ¬p holds.8

Moreover, unlike series-parallel graphs which are “static” in that

they are orthogonal to any state, an implicit ordering constraint of

an SP task network may only become “active” in certain states.

For example, consider the primitive task network d = [{(n1 :
τ1), (n2 : τ2)}, true], where τ1 asserts proposition p, and τ1 and

τ2 have preconditions true and p, respectively. Then, any HTN

solution (completion) for d will have (a ground instance of) τ1 be-

fore (a ground instance of) τ2 for initial states in which p does not

hold. In other words, implicit constraint (n1 ≺ n2) only becomes

“active” in such states. We therefore define implicit ordering con-

straints relative to a state.

Definition 7 (Implicit Constraints). Let d = [S, φ] be a task net-

work, I an initial state, D = 〈Op,Me〉 an HTN domain, and

c = (n1 ≺ n2) an ordering constraint that does not occur in φ,

where n1, n2 ∈ S. Then, c is an implicit ordering constraint of d
relative to D and I if sol(d, I,D) = sol([S, φ ∧ c], I,D). �

An SP task network with implicit ordering constraints may in

essence be a non-SP task network, and vice versa. For example,

adding an edge from 5 to 3, and from 2 to 6 in the DAG in Figure

2(d) will essentially make it the DAG in Figure 2(a), which depicts

a non-SP task network. Thus, we require below for implicit order-

ing constraints to be made explicit. The theorem states that some

non-SP task networks cannot be captured by SP ones.

Theorem 4. There exists an initial state I, a non-SP task network

d = [S, φ], and an HTN domain D, such that sol(d,I,D) 6=
S

i∈[1,n] sol(di, I,D) for any set of SP task networks d1, . . . , dn,

8Recall that (n1, p, n2) holds vacuously if n2 precedes n1.

765

where each di = [S, φi], and di and d have no implicit ordering

constraints (relative to D and I). �

Thus, in some situations, even multiple HTN methods containing

SP task networks (d1, . . . , dn) will not be able to yield the exact set

of solutions as a single method containing a non-SP task network

(d) with the same set of tasks.9 To see why this holds, consider

Figure 2. Suppose that each task label i ∈ [1, 6] corresponds to a

compound task that is decomposed into two primitive tasks, which

we denote by i1 and i2. Then, the sequence of task labels

11 · 12 · 51 · 21 · 22 · 61 · 52 · 31 · 32 · 62 · 41 · 42

represents an HTN solution for the non-SP task network in the fig-

ure, but not for any of the SP task networks, except for (d) which

also produces “invalid” solutions: those that violate ordering con-

straints (5 ≺ 3) and (2 ≺ 6) in (a).

Consequently, in some situations, a non-SP task network can-

not be represented in terms of CAN plan-bodies encoded (purely)

as sequential and parallel compositions of event-goals and actions

(with no “implicit constraints”, e.g. in goals as in Section 4.2).

However, any SP task network’s structure can be straightforwardly

encoded as such a plan-body; e.g., Figure 2(b) represents the plan-

body 1 ; (5 ‖ (2 ; 6)) ; 3 ; 4, with the task labels here repre-

senting event-goals/actions. Conversely, any given goal-free CAN

plan-body can also be translated into an SP task network.

Proposition 2. Let Π and Λ be BDI plan- and action-libraries, re-

spectively, and MeΠ and OpΛ their corresponding HTN method-

and operator-libraries, respectively, as defined in [20]. Then, D =
〈OpΛ,MeΠ 〉 is an SP HTN domain. �

The proof follows from Definition 6 and the translation provided

in [20] from CAN libraries into HTN domains.

Translating the Remaining HTN Constraints

We conclude this section with a note regarding how the remaining

HTN constraints could be translated into CAN entities.

Interestingly, we need to enforce a final restriction, namely, dis-

allowing negated HTN ordering constraints. In particular, this is

to disallow “forced” interleaving of steps. For example, constraint

formula ¬(n1 ≺ n2) ∧ ¬(n2 ≺ n1) forces all HTN solutions to

have at least one primitive task associated with n1 (or resp. n2)

occurring between two primitive tasks associated with n2 (or resp.

n1). There is no corresponding construct in CAN to specify such

“forced interleaving”.

Similarly, there is no CAN construct to check whether a literal

l holds “immediately before” a step n, to capture the HTN before

constraint (l, n). With some loss in generality, we could, however,

capture this in CAN by checking that the literal holds “at some

point before” the step, and then ensuring that the literal is never

violated. For example, consider the before constraint (p(X), n)
and plan-body a1 ‖ a2, where action a1 corresponds to n, and

action a2 asserts literal ¬p(Y). Then, we first take plan-body

(?p(X) ; a1) ‖ a2 (which checks that p(X) holds at some point

before a1) and then change it into plan-body (?p(X) ; a1) ; a2,

which ensures that a2 is not interleaved between the test program

and a1, and thereby that p(X) is not undone by a2.10 HTN state

constraints (n, l) and (n, l, n′) can be translated similarly.

9An example of a situation in which this does not hold is when the
DAGs in the figure depict primitive task networks.

10This is assuming that an agent’s top-level event-goals are not in-
terleaved, or are interleaved with care [21]. In our example, we
lose generality when variables X and Y are not substituted with
the same constant: it is then acceptable for a2 to occur before a1.

6. DISCUSSION AND FUTURE WORK
We could use existing algorithms for detecting such potential vi-

olations to CAN test programs, and avoiding them as described

above. For example, in Partial Order Planning (POP), such res-

olutions are called “resolving threats” [25]. Similarly, while we

have demonstrated that it is indeed possible to make CAN libraries

failure-free (Section 5.1), it would be interesting to study how this

could be automated. Some of the required techniques already exist,

such as the ones used in [21, 7, 4] to “propagate” context conditions

up the hierarchy and detect when they are potentially or definitely

violated (e.g. in Figure 1, R3’s context condition is potentially vi-

olated when hvFC ∧ friday holds). We could ignore potentially

violated context conditions when building the relevant conditionals

for the higher-level “cautious” context condition (as we did when

building the third conditional in R0’s context condition).

Another avenue worth exploring is whether we could use exten-

sions of the CAN operational semantics, or a different one alto-

gether, to more closely capture certain aspects of HTNs. For exam-

ple, in the extension of CAN to support “maintenance goals” [10],

the violation of a “maintenance condition” is detected during BDI

execution and an attempt is made to re-establish the condition via

an available event-goal. Maintenance conditions might therefore

serve as a useful representation for encoding HTN constraints.

In this paper we have demonstrated how HTN domains can be

converted into corresponding BDI libraries. This allows for avail-

able HTN domains to be essentially “plugged in” to supplement a

BDI agent’s plan-rules. When combined with lookahead-based ex-

ecution, the new plan-rules are guaranteed to operate in accordance

with the constraints specified by the designer of the HTN domain.

To achieve this, we described a necessary alternative to the oper-

ational semantics of CANPlan, which now uses failure conditions

in declarative goals as “control information” during lookahead. We

also studied how HTN domains could be converted into the more

traditional (AgentSpeak-like) CAN libraries, and the resulting loss

in completeness. In particular, we characterised (i) a restricted class

of HTN task networks that can be represented as “series-parallel”

CAN plan-bodies, and (ii) a useful class of CAN libraries called

failure-free libraries, which, in some sense, have context conditions

that “mimic” HTN-style lookahead. We showed how a failure-free

library can always be obtained from any given plan-library.

7. ACKNOWLEDGEMENTS
The author is grateful to Lin Padgham and Sebastian Sardina for

many useful discussions on closely related work while the author

was a PhD student at RMIT University, and in particular for discus-

sions relating to the insight in Section 5.1. The author would also

like to thank the anonymous reviewers for their helpful feedback,

and Brian Logan for pointing out that a translation from HTNs to

BDI agent recipes might have useful applications.

REFERENCES

[1] N. Alechina, R. H. Bordini, J. F. Hübner, M. Jago, and

B. Logan. Belief revision for AgentSpeak agents. In Int.

Joint Conf. on Autonomous Agents and Multiagent Systems

(AAMAS), pages 1288–1290, 2006.

[2] P. Busetta, R. Rönnquist, A. Hodgson, and A. Lucas. JACK

Intelligent Agents: Components for intelligent agents in

Java. AgentLink Newsletter, 2:2–5, Jan. 1999. Agent

Oriented Software Pty. Ltd.

[3] B. J. Clement and E. H. Durfee. Exploiting domain

knowledge with a concurrent hierarchical planner. In

Proceedings of the Workshop on Analysing and Exploiting

766

Domain Knowledge for Efficient Planning, Working Notes,

pages 57–62, 2000.

[4] B. J. Clement, E. H. Durfee, and A. C. Barrett. Abstract

reasoning for planning and coordination. Journal of Artificial

Intelligence Research (JAIR), 28:453–515, 2007.

[5] A. Coles, A. Coles, A. G. Olaya, S. Jiménez, C. L. López,

S. Sanner, and S. Yoon. A survey of the seventh international

planning competition. Artificial Intelligence Magazine,

33(1):83–88, 2012.

[6] L. de Silva and L. Padgham. A comparison of BDI based

real-time reasoning and HTN based planning. In Proceedings

of the Australian Joint Conf. on Artificial Intelligence, pages

1167–1173, 2004.

[7] L. de Silva, S. Sardina, and L. Padgham. Summary

information for reasoning about hierarchical plans. In

European Conf. on Artificial Intelligence (ECAI), pages

1300–1308, 2016.

[8] K. Erol, J. A. Hendler, and D. S. Nau. HTN planning:

Complexity and expressivity. In Proceedings of the National

Conf. on Artificial Intelligence (AAAI), pages 1123–1228,

1994.

[9] J. R. Firby. Adaptive Execution in Complex Dynamic

Domains. PhD thesis, Yale University, 1989. Technical

Report YALEU/CSD/RR #672.

[10] J. Harland, D. N. Morley, J. Thangarajah, and

N. Yorke-Smith. An operational semantics for the goal

life-cycle in BDI agents. Autonomous Agents and

Multi-Agent Systems, 28(4):682–719, 2014.

[11] J. W. Lloyd. Foundations of Logic Programming. Springer,

second edition, 1987.

[12] F. Meneguzzi and M. Luck. Leveraging new plans in

AgentSpeak(PL). In Proceedings of the International

Workshop on Declarative Agent Languages and

Technologies (DALT), volume 5397 of Lecture Notes in

Computer Science (LNCS), pages 111–127, 2009.

[13] D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, D. Wu, F. Yaman,

H. Muñoz-Avila, and W. Murdock. Applications of SHOP

and SHOP2. IEEE Intelligent Systems, 20(2):34–41, 2005.

[14] D. S. Nau, Y. Cao, A. Lotem, and H. Muñoz-Avila. SHOP:

Simple hierarchical ordered planner. In Proceedings of the

Int. Joint Conf. on Artificial Intelligence (IJCAI), pages

968–973, 1999.

[15] M. Paolucci, O. Shehory, K. P. Sycara, D. Kalp, and

A. Pannu. A planning component for RETSINA agents. In

Agent Theories, Architectures, and Languages, pages

147–161, 1999.

[16] G. D. Plotkin. A structural approach to operational

semantics. Technical Report DAIMI-FN-19, Computer

Science Department, Aarhus University, 1981.

[17] A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical

computable language. In Proceedings of the European

Workshop on Modeling Autonomous Agents in a Multi-Agent

World (Agents Breaking Away), volume 1038 of Lecture

Notes in Computer Science (LNCS), pages 42–55, 1996.

[18] A. S. Rao and M. P. Georgeff. Modeling rational agents

within a BDI-architecture. In Proceedings of the Int. Conf.

on Principles of Knowledge Representation and Reasoning

(KR), pages 473–484, 1991.

[19] S. Sardina, L. de Silva, and L. Padgham. Hierarchical

planning in BDI agent programming languages: A formal

approach. In Proceedings of the Int. Conf. on Autonomous

Agents and Multi-Agent Systems (AAMAS), pages

1001–1008, 2006.

[20] S. Sardina and L. Padgham. A BDI agent programming

language with failure recovery, declarative goals, and

planning. Autonomous Agents and Multi-Agent Systems,

23(1):18–70, 2011.

[21] J. Thangarajah and L. Padgham. Computationally effective

reasoning about goal interactions. Journal of Automated

Reasoning, 47(1):17–56, 2011.

[22] J. Valdes, R. E. Tarjan, and E. L. Lawler. The recognition of

series parallel digraphs. In Proceedings of the Annual ACM

Symposium on Theory of Computing, pages 1–12, 1979.

[23] D. E. Wilkins, K. L. Myers, J. D. Lowrance, and L. P.

Wesley. Planning and reacting in uncertain and dynamic

environments. Journal of Experimental and Theoretical

Artificial Intelligence, 7(1):197–227, 1995.

[24] M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah.

Declarative & procedural goals in intelligent agent systems.

In Proceedings of the Int. Conf. on Principles of Knowledge

Representation and Reasoning (KR), pages 470–481, 2002.

[25] H. L. S. Younes and R. G. Simmons. VHPOP: versatile

heuristic partial order planner. Journal of Artificial

Intelligence Research (JAIR), 20:405–430, 2003.

767

