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ABSTRACT
User-supplied domain control knowledge in the form of hier-
archically structured Goal-Plan Trees (GPTs) is at the heart
of a number of approaches to reasoning about action. Rea-
soning with GPTs connects the AAMAS community with
other communities such as automated planning, and forms
the foundation for important reasoning capabilities, espe-
cially intention progression in Belief-Desire-Intention (BDI)
agents. Research on GPTs has a long history but suffers
from fragmentation and lack of common terminology, data
formats, and enabling tools. One way to address this frag-
mentation is through a competition. Competitions are in-
creasingly being used as a means to foster research and chal-
lenge the state of the art. For example, the AAMAS confer-
ence has a number of associated competitions, such as the
Trading Agent Competition, while agent research is show-
cased at competitions such as RoboCup. We therefore issue
a call for a Goal-Plan Tree Contest, with the ambition of
drawing together a community and incentivizing research in
intention progression.

Keywords
intention progression; goal-plan trees; competition

1. INTRODUCTION
A key problem for an agent with multiple, possibly in-

consistent, goals is: ‘what should I do next’? What to do
next can be formalized as the intention progression prob-
lem (IPP): what means (i.e., plan) to use to achieve a given
(sub)goal; and which of the currently adopted plans (i.e., in-
tentions), to progress at the current moment. An important
capability of an intelligent agent is the ability to progress
multiple intentions in parallel, by interleaving the steps in
each intention to provide the best outcome for the agent.
This problem is both central to agent reasoning and complex
in its nature. For example, ‘best outcome’ may have differ-
ent definitions depending on the application, while goals and
plans may conflict given the resources available.

We call for a Goal-Plan Tree Contest to incentive research
around the multi-faceted problem of intention progression.
Competitions in specific areas of Computer Science are now
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familiar as a means to foster research. They range from
‘grand challenges’ (e.g., those from DARPA) to commercial
contests (e.g., Netflix Challenge), to more academic contests
(e.g., DIMACS, IPC, TAC) and competitions with long-term
objectives (e.g., RoboCup). However, none of these existing
competitions addresses intention progression as relevant for
intelligent agents.

2. BACKGROUND
We delineate the Intention Progression Problem in the

context of BDI agents that are characterised by having a
library of (parameterized) plans. An agent chooses the most
appropriate set of plans and how to execute them in order
to achieve a set of goals – or more generally to maximise
some objective function. The steps of a plan may contain
(sub)goals which are in turn achieved by other plans.

This goal-plan decomposition is essentially the decompo-
sition of high level tasks into smaller tasks, and is similar
to Hierarchical Task Network (HTN) planning [4]. The dif-
ference between classical HTN planning and situated BDI
agent planning, is that the former assumes that the set of
(achievement) goals and the environment are static, while
the paradigm of BDI agents is one of interleaved replan-
ning and execution in a dynamic environment. This dy-
namism arises because of exogenous ‘natural’ events (such
as weather) and the actions of other agents, and perhaps
because of limitation in the agent’s perception, its actions
(e.g., action failure), or both.

These differences mean that BDI agents focus on the next
step to progress while HTN planners aim to produce a com-
plete solution that is conflict-free. HTN planning is com-
plete when the resulting task network consists only of prim-
itive tasks, together with a set of constraints that ensure
the preconditions of a task hold when the task is executed.
The primitive task network is then linearised yielding a fixed
sequence of actions, which makes it difficult to handle ex-
ogenous events. No actions are executed until the plan is
complete. As the process of ensuring solutions are conflict-
free is costly (depending on the branching factor of the task
hierarchy and the number of interacting conditions in each
task in the network [7]), there can be a significant delay in
responding to new goals or changes in the environment. In
contrast, in the BDI approach, the focus is on timely (soft
real-time) selection of which intention to progress.

We note that HTN planners could be configured to be-
have more like BDI agents, by decomposing high level tasks
by a single step rather than attempting to find a complete
conflict-free solution, and we hope that the Goal-Plan Tree
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Figure 1: Example goal-plan tree

Contest would foster hybridisation with innovative techniques
from the HTN planning community.

The IPP involves not only planning and replanning, but
also online scheduling (e.g., see [20]). The agent has limited
resources, goals may have deadlines, and plan steps may
interfere with each other: hence the agent must decide in
what order to execute plan steps. As with plan selection,
action scheduling is a dynamic process subject to change
according to the agent’s desires and environmental changes.

3. GOAL-PLAN TREES AND INTENTIONS
Abstract agent programming languages such as AgentS-

peak and CAN define intentions and their progression in
terms of partially-executed programs; the agent configura-
tion progresses by executing a single step of one of the pro-
grams [13]. However, which step of which intention is se-
lected is a black box. To allow reasoning about intention
progression, we instead define intentions and their progres-
sion in terms of goal-plan trees.

A BDI agent program consists of a set of pre-defined plans
that are used to achieve the agent’s goals. Each plan consists
of steps which are either basic actions or sub-goals. Each
sub-goal is in turn achieved by some other plan. This rela-
tionship is naturally represented as a tree structure termed
a goal-plan tree [3, 21, 4, 20]. The root of a GPT is a top-
level goal (goal-node), and its children are the plans that can
be used to achieve the goal (plan-nodes). Usually there are
several alternative plans to achieve a goal: hence, the child
plan-nodes are viewed as ‘OR’ nodes. By contrast, plan ex-
ecution involves performing all the steps in the plan: hence,
the children of a plan-node are viewed as ‘AND’ nodes. As
in Yao et al. [29, 26], we consider goal-plan trees in which
plans may contain primitive actions in addition to sub-goals.

Figure 1 shows a simple goal-plan tree. The top-level goal
G0 can be achieved by either of the two plans P0 or P2

(‘OR’ nodes). The plan P0 involves performing the action
A0 and achieving the sub-goal G1 (‘AND’ nodes), while plan
P2 involves executing the actions A3 and A4 and achieving
the sub-goals G2 and G3 (‘AND’ nodes) and so on.

Formally, we define a goal-plan tree by the BNF in Fig-
ure 2 [25]. A GoalType is a template for a goal. A GoalIn-
stance is created when an agent chooses to pursue a particu-
lar instance of goal-type. Similarly, a PlanType is a template
for a plan, and a PlanInstance is created when the agent ex-
ecutes a particular plan. An ActionType is a template for an
action, and an ActionInstance is created when a particular
action is chosen for execution by the agent. GoalTypeName,
PlanTypeName and ActionTypeName are labels that indi-

〈GoalType〉 ::= 〈GoalTypeName〉 〈Precondition〉
〈In-condition〉 〈Postcondition〉
〈Plans〉

〈GoalTypeName〉 ::= 〈Label〉
〈Plans〉 ::= 〈PlanTypeName〉 (, 〈PlanTypeName〉)∗

〈PlanType〉 ::= 〈PlanTypeName〉 〈Precondition〉
〈In-condition〉 〈Postcondition〉
〈PlanBody〉

〈PlanTypeName〉 ::= 〈Label〉
〈PlanBody〉 ::= 〈ExecutionStep〉 (; 〈ExecutionStep〉)∗

〈ExecutionStep〉 ::= 〈ActionTypeName〉 | 〈GoalTypeName〉
| (〈ExecutionStep〉 ‖ 〈ExecutionStep〉)

〈ActionType〉 ::= 〈ActionTypeName〉 〈Precondition〉
〈In-condition〉 〈Postcondition〉

〈ActionTypeName〉 ::= 〈Label〉

〈Precondition〉 ::= ε | 〈Condition〉 (, 〈Condition〉)∗
〈In-condition〉 ::= ε | 〈Condition〉 (, 〈Condition〉)∗

〈Postcondition〉 ::= ε | 〈Condition〉 (, 〈Condition〉)∗
〈Condition〉 ::= 〈Statement〉 | NOT 〈Statement〉
〈Statement〉 ::= string | 〈Variable〉 = 〈Value〉

〈Label〉 ::= unique string
〈Variable〉 ::= unique string

〈Value〉 ::= string

〈GoalInstance〉 ::= 〈InstanceName〉 〈GoalType〉
〈PlanInstance〉 ::= 〈InstanceName〉 〈PlanType〉

〈ActionInstance〉 ::= 〈InstanceName〉 〈ActionType〉
〈InstanceName〉 ::= 〈Label〉

Figure 2: BNF Syntax of GPTs with actions [25]

cate the type of the goal, the plan or the action respectively.
Plans represents the set of plan-types that may be used to
satisfy a goal of the corresponding GoalType. We assume
that it is possible to generate a GPT corresponding to each
top-level goal that can be achieved by an agent program.1

3.1 Intention Progression
Following Yao et al. [28], we define intentions and the IPP

in terms of goal-plan trees, as follows.
The intentions of an agent are represented by a set T of

goal-plan trees, where the root goal gi of each GPT ti ∈ T
corresponds to a top-level goal of the agent. The progres-
sion of an intention to achieve a top-level goal gi amounts
to traversing a path through the goal-plan tree ti. The path
specifies a sequence of plans, actions, sub-goals and sub-
plans that, if executed successfully, will achieve gi. The
execution of an agent program thus corresponds to an inter-
leaving of paths through each of the GPTs in T .

More precisely, let T = {t1, . . . , tn} be the set of goal-
plan trees corresponding to the agent’s intentions, and S =
{s1, . . . , sn} be a set of pointers to the current step of each
intention. The current step si of a goal-plan tree ti is either a
primitive action or a sub-goal, and is initially set to the root
goal of ti, gi. We define next(si) as the step of ti following
the current step si. If si is a primitive action, then next(si)
is the primitive action or sub-goal following si in the same
plan, or, if si is the last action in a plan, next(si) is the next
primitive action or sub-goal in the parent plan of the current

1Note that the set of goal-plan trees corresponding to an
agent program can be computed offline, from the code of the
program itself. Some approaches incorporate online plan-
ning [5, 13] to allow dynamic extension or customization of
the plan library.
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plan. If si is a sub-goal, advancing the current step involves
choosing a plan for the sub-goal, and setting next(si) to be
the first action or sub-goal of the selected plan. A current
step si is progressable if next(si) points to a step which is
either an action whose precondition holds, or a sub-goal for
which at least one plan is applicable in the current state of
the agent and environment.

We can then define a function to progress the current step
si of an intention as follows:

prog(S, si) = S′ s.t. S′ = S \ {si} ∪ {next(si)}.

Note that prog is a partial function; it is not defined if si is
not progressable. (In practice, attempting to, e.g., execute
an action whose precondition does not hold would typically
result in an error condition; we do not consider this here.)

At each deliberation cycle, the agent has a set of inten-
tions T corresponding to its current top-level goals, and their
associated current step pointers S. Note that T may vary
from cycle to cycle, e.g., if the agent adopts a new top-level
goal, or the progression of an intention at the previous cycle
resulted in the achievement of a goal.

The intention progression problem can now be stated as
that of specifying a policy Π(T, S), that, at each deliberation
cycle, selects a current step si ∈ S to progress so as to
maximise some overall utility function UΠ(T, S). Formally:

Π(T, S) = si and @ Π′ s.t. UΠ′
(T, S) > UΠ(T, S).

Deciding on an appropriate utility function (or set of util-
ity functions) is a key task in defining the rules of a Goal-
Plan Tree Contest. For example, the utility function could
be such that progressing si would achieve more goals than
progressing any other step, or, if they achieve the same num-
ber of goals, that progressing si results in an interleaving
that is at least as fair, or achieves more high priority goals,
or more goals by their deadline, etc.

3.2 Reasoning over GPTs
Approaches to reasoning over GPTs include recursive tree

algorithms [20, 6], Petri nets [15], constraint programming
[14], and stochastic approaches based on sampling [29, 26,
28]. However, despite the long history of research on GPTs,
the state of the art in solving the IPP in current BDI agent
programming languages is limited to simplistic (e.g., round
robin) approaches to intention scheduling, or involves sig-
nificant effort by the programmer to hand-craft a solution
for the application at hand. While there are a number of
promising automated approaches in the literature, current
work is fragmented: e.g., using GPT coverage and over-
lap [22], decision-theoretic approaches [1], and Monte-Carlo
Tree Search [27].

Further aspects and consequences of the IPP, include pos-
itive and negative interactions between the steps in inten-
tions [20, 29], deadlines and temporal reasoning [10], and
aborting or suspending goals or plans [16, 17]. The ‘best
outcome’ may have different definitions depending on the
application – for example, the number of goals achieved,
the time taken to achieve the goals, and so on [23, 18, 19]
– and depend on the timeframe considered and amount of
predictive lookahead. Extensions to GPT include first-order
representations [10] and multi-agent planning [2].

As in HTN planning [3, 9], GPTs can have information
associated with nodes, such as costs or deadlines, and this in-
formation can be propagated through the tree. Information

can be summarized and the summaries used as a basis for
the agent’s reasoning [20, 19]. Similar approaches are found
elsewhere in the agents literature, such as in the TAEMS
multi-agent coordination framework [8], indicating the gen-
erality of the GPT representation.

4. PROPOSAL FOR A COMPETITION
We propose the inaugural Goal-Plan Tree Contest to be

held in 2018, co-located with AAMAS 2018.

4.1 Rationale
Competitions are increasingly being used as a mechanism

to incentive research in computer science. A partial list of
competitions familiar to AAMAS participants includes:

• RoboCup (Soccer, Rescue, @Home, etc) – since 1997

• International Planning Competition (IPC) – since 1998

• Trading Agent Competition – since 2000

• Competition on Knowledge Engineering for Planning
and Scheduling – since 2005

• Agent Reputation and Trust Competition – 2006–08

• Power Trading Agent Competition – since 2012

In addition to these largely academic competitions, there
are various Grand Challenges and contests sponsored by
DARPA, other funding bodies, and commercial entities. None
of these existing competitions addresses the Intention Pro-
gression Problem.

Competitions serve at least four purposes: 1) providing
common terminology, data formats, and problem instances;
2) comparing approaches in a scientific manner; 3) fostering
software engineering and robustness of approaches; and 4)
raising the academic and public profile of an area.

The specific rationale for Goal-Plan Tree Contest is the
importance of GPT representation, not least for the IPP,
contrasted with the current fragmentation of research on
GPTs; the lack of common terminology, data formats, and
enabling tools; and the need to focus on a motivating chal-
lenge, which we identify as intention progression.

4.2 Tasks
Organising the competition involves five main tasks:

1. Common data format. The first task to is to define
a data format for GPTs and the execution environment
sufficient to capture problems of interest. We propose
an XML-based format.

2. Problems. The second task is to define the pre-
cise variants of Intention Progression Problem that
entrants will address, including specifying the utility
function UΠ. At a high level, the problem is to specify,
within a given computation time limit, what decisions
the agent should take over its intentions. The decisions
can include progressing an intention step, adopting a
new intention, changing the plan for an intention, etc.
We envision potentially two dimensions of problems:
1) the nature of the environment (e.g., deterministic
vs. non-deterministic), and 2) the degree and type of
dynamism (e.g., environmental, arrival of new goals).
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3. Instances. The third task is to collect potential prob-
lem instances. The recent GenGPT of Yao [24] is
the first publicly-available open source GPT generator.
GenGPT generates synthetic (i.e., random) GPTs of
arbitrary depth/width. Plans may contain both sub-
goals and (deterministic or nondeterministic) actions,
and a simple form of parallel construct is supported
(all actions and/or sub-goals in a plan are executed
in parallel). It is also possible to control the number
of conflicts and interactions between trees. The Con-
test will however also require non-random problem in-
stances. Sources for extracting such instances include
published examples of BDI agent programs; solutions
to the Multiagent Programming Contest, etc.; instan-
tiations of, e.g., Prometheus designs [11]; translations
of HTN planning domains from, e.g., the IPC (see, for
example, [12]).

4. Call for Entrants. The fourth task is to announce
the Contest, solicit entrants, and prepare the contest
framework. To ensure fairness, we envisage that code
submitted by entrants will be run on a virtual machine.

5. Scoring. The fifth task is to run the entries on the
instances, using automated scoring mechanisms. The
results will then be announced, perhaps with an asso-
ciated prize. The problems used and source code for
all entries would be published on the Contest website.

We envision that a new workshop, or session within an
established AAMAS workshop such as EMAS, could provide
a forum for entrants to discuss the techniques embodied in
their Contest entries, and for the announcement of results.

5. CALL TO ACTION
This paper provided a crisp characterisation of the Inten-

tion Progression Problem, a reasoning task that is central to
intelligent agents, especially those in the BDI tradition, and
one that connects with the HTN planning community. To
foster research on the IPP, we call for a Goal-Plan Tree Con-
test to develop the best ‘intention progression’ mechanism
that provides the most optimal outcome for the agent. Our
ambition is to draw together a community and incentivize
research.

We welcome from the AAMAS community: 1) expressions
of interest and support, 2) contributions of ideas, and 3)
volunteers to help organize the inaugural contest in 2018.

Acknowledgements. We thank the AAMAS 2017 review-
ers for their encouraging comments.
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