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ABSTRACT
Many everyday decisions involve a social dilemma: cooper-
ation can enhance joint gains, but also make one vulnera-
ble to exploitation. Emotion and emotional signaling is an
important element of how people resolve these dilemmas.
With the rise of affective computing, emotion is also an im-
portant element of how people resolve these dilemmas with
machines. In this article, we learn a predictive model of
how people make decisions in an iterative social dilemma.
We further show that model accuracy improves by incorpo-
rating a player’s emotional displays as input to this model,
and provide some insight into which emotions influence so-
cial decisions. Finally, we show how this model can be used
to perform “social planning”: i.e., to generate a sequence of
actions and expressions that achieve social goals (such as
maximizing individual rewards). These techniques can be
used to enhance machine-understanding of human behavior,
as social decision-aids, or to drive the actions of virtual and
robotic agents.

CCS Concepts
•Computing methodologies→Machine learning; Mod-
eling and simulation; Agent / discrete models; Cognitive
science;

Keywords
agent-based analysis of human interactions, affective behav-
ior, virtual agents for social dilemmas, player modeling, game
theory, emotion in social dilemmas

1. INTRODUCTION
Social dilemmas are a big part of our everyday lives. Com-

peting nations deciding to either invest in weapons or reduce
defense spending (disarm) [19], competing economies curb-
ing CO2 emissions to avoid global impact on climate change,
athletes opting to use illegal performance enhancing drugs;
all of the above are examples of competitive social dilemmas
where joint cooperation has the most benefits long-terms but
defecting can give one competitor the clear advantage. In
those cases, it is important to be able to predict cooperative
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intentions so that we can opt to work together towards joint
gains or issue corrective (punitive) actions when those are
necessary.

However, predicting people’s decisions in social dilemmas
is a complex and multi-faceted problem. Even in simple
two-person dilemmas, people don’t usually make rational
decisions [18, 17] and are influenced among other factors by
affect, communication with their partners, and elements of
reciprocity [14, 26, 10]. We are particularly interested in the
role that emotion plays in how people solve competitive so-
cial dilemmas. Prior research has shown 1) that emotional
expressions can telegraph a person’s cooperative tendencies
and 2) that observers use these expressions to inform their
own decision-making [10, 15, 7, 29, 27, 24, 4]. For example,
in the prisoner’s dilemma, Brosig and colleagues found that
observers could predict if a person would cooperate by ob-
serving their expressions [4] and Stratou and colleagues used
automatic expression analysis to show that smiles predicted
these cooperative tendencies [27]. Other work has examined
how expressions shape observers decisions. For instance, de
Melo and colleagues had participants play the iterated pris-
oner’s dilemma with an expressive agent [7]. They showed
that agents that displays guilt after exploiting a participant
elicits greater cooperation from participants than an agent
that smiles. Krumhuber and colleagues showed that tempo-
ral dynamics of a smile can also shape decisions in a two-
player trust game [15]. Even the lack of emotion can be an
important signal, as Schug and colleagues showed that in-
expressive opponents are viewed as untrustworthy [24]. Fi-
nally, Stratou and colleagues [27] showed that untrustworthy
players can take advantage of their opponents by attending
to their expressions. For instance, they showed that smil-
ing players were more likely to be exploited in an iterated
prisoner’s dilemma, because positive emotions signal coop-
eration.

Despite this extensive research, there are still limitations
in our understanding of these signaling processes. Many
of the aforementioned findings gloss over the moment-to-
moment patterns of expressions. For example, Stratou and
colleagues [27] treat a multi-round prisoner’s dilemma game
as a single unit of analysis and examine how the frequency
of expressions over this entire interaction is correlated with
cooperation rate. Research that focuses on the moment-to-
moment dynamics has done so using artificial emotional dis-
plays and scripted interactions (e.g.,[7]), which may not be
suitable for modeling emotional exchanges in real human-
human interactions. In general, there is limited work on
computational models that actually predict a human oppo-
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nent’s decision in real-time based on their immediate re-
actions (as one of the few exceptions, Park and colleagues
[21] trained a model that could predict whether an oppo-
nent would accept or reject offers in a multi-issue bargaining
task).

In this paper, we develop a real-time prediction model
that predicts a player’s actions in a social dilemma, based
not only on their opponent’s prior actions, but also on their
opponent’s emotional expressions. This model can be used
to drive the actions of virtual and robotic agents that can
perceive or even participate in the exchange of strategic emo-
tional displays, simulating the way humans interact in these
scenarios [6, 8]. The model could also be used to provide
real-time decision support to a decision-maker by analyzing
the behavior of their opponent or to help teach students how
to attend to emotions in social interactions (e.g [3, 13]).

Specifically, we incorporate immediate reactions or emo-
tional displays of a player as input into the decision model
of the opponent in an iterated prisoner’s dilemma task. We
train this model on data from natural, unscripted interac-
tions between pairs of human players and consider game de-
cisions as well as emotional signaling by each player. In the
next section we describe our goals and the related literature.
In Section 3, we describe the data collection setup and how
we extracted the behaviors. In Section 4 we present the per-
formance of the opponent decision model and we show that
by adding information to the model such as emotional ex-
pressions we can increase the predictive accuracy. Further-
more we will provide insight into the circumstances under
which emotions have the potential to shape decisions. Then,
in Section 5, we demonstrate the potential of this model to
perform social planning (i.e., to generate a sequence of ac-
tions and expressions that achieve a goal like maximizing
individual or group reward). Again, we show that incor-
porating emotional signals enhances the ability to generate
these plans. Finally, we follow up with discussion in Section
6 and conclusions in Section 7.

2. MODELING DECISION-MAKING IN
SOCIAL DILEMMAS

To examine the importance of emotional signals in so-
cial dilemmas we train predictive models on a large cor-
pus of people playing an iterated prisoner’s dilemma game
[22]. The prisoner’s dilemma is a game commonly ana-
lyzed in game theory and can serve as a means of study-
ing cooperation between people. The game is interesting
because it provides an incentive to cooperate (players will
do well if they both cooperate), but a temptation to ex-
ploit (a player receives the highest payout if their opponent
cooperates but they are non-cooperative). In the standard
prisoner’s dilemma, each player’s must choose cooperation
or defection (by convention, the non-cooperative choice is
referred to as defecting) without knowing how their oppo-
nent will decide (the joint outcome is revealed after both
players decide). In the iterated prisoner’s dilemma, players
repeat this decision over multiple rounds. In our corpus,
players participated in a finite-horizon (10-round) iterated
prisoner’s dilemma where both players knew in advance that
the game would terminate after ten rounds.

There are several approaches to predicting how players
will act in this game. By applying game theory, it can be
shown that mutual defection is the rational strategy (defec-

tion dominates the single-round game and thus, by back-
wards induction, it also dominates all decisions in a multi-
round game). Thus, if all players were rational (in a game
theoretical context), they should always make the non-co-
operative choice, regardless of context. Interestingly, human
players cooperate far more than this “rational” solution pre-
dicts, and thereby receive a far higher payout than players
that adopt the game-theoretic solution [5]. Empirically, hu-
man players tend to cooperate between 60 and 80 percent of
the time across a wide variety of studies. As a result, they
perform far better than the game-theoretic solution. Thus, a
model that always predicts cooperation would perform rea-
sonably well and we use this as a naive baseline model to
compare the performance of our learned model.

Both the rational solution (always defect) and our base-
line model (always cooperate) are context-insensitive in that
they predict the same decision regardless of the opponent’s
past decisions. Yet psychological research shows that most
people engage in “conditional cooperation” [9]. This means
that participants cooperate as long as their opponent does
so as well. However, should their opponent fail to cooper-
ate, they will choose to punish them for this by choosing
to defect in the next round of the game. This behavior is
captured in the popular “tit-for-tat” approach [1, 14]. This
seems to model human interactions well, but humans have
been observed to be more generous with each other (e.g.,
allowing some percentage of the opponent’s defections to go
unpunished) [12] and as such tit-for-tat might be too rigid
as a predictive model. Thus we use tit-for-tat as a second
baseline and seek to improve upon this.

In order to improve upon the tit-for-tat approach, we will
use a machine learning approach, using a Naive Bayes classi-
fier. Machine learning has previously already been explored
as a possible approach to improving decision models in the
prisoner’s dilemma. Sandholm and Crites used an online
approach in order to learn an optimal approach to playing
an iterated prisoner’s dilemma [23]. Using agents that im-
plemented reinforcement learning and by having them play
against an opponent using tit-for-tat, these agents would
all learn to play optimally against tit-for-tat in an infinite-
horizon game. Applying an algorithm such as this in a
finitely repeated game might not be the optimal solution.
Gal and colleagues used an offline approach to a decision-
making model in a negotiation context [11], using a rule
based mechanism and supplementing it with character traits
on its negotiation partners it applied different negotiation
strategies based on their nationality. As a result their model
managed to apply different strategies in a finite-horizon ne-
gotiation on participants without using data on the partici-
pant’s past behavior.

We aim to develop a model that predicts an opponent’s
decision for any given round of the iterative social dilemma,
that takes into account both game behaviors (actions in pre-
vious rounds) and their emotional displays shown directly
before the round. Some previous work has looked at emo-
tional signals before as a means of predicting decisions, how-
ever this work was in different contexts than a prisoner’s
dilemma (e.g. Park and colleagues [21] in a negotiation con-
text) and to the best of our knowledge this approach has
not yet been applied to the iterated prisoner’s dilemma. For
our model we are specifically interested in the effect of a
player using emotional displays as a means of signaling on
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the decision of the opponent.1. Based on prior work and the
nature of the game, we hypothesize that:

• Game acts in previous rounds can help predict the op-
ponent’s decision in the next round

• A player’s emotional displays (reactions) in the previ-
ous round can influence the opponent’s decision and a
model can use this information to enhance predictive
performance

By learning a predictive model of the opponent’s decision
in the iterative social dilemma, we will be able to investi-
gate the intricate dynamics in iterative social dilemmas. For
example, using the opponent model in simulations, one can
explore different strategies. In this case, we are incorpo-
rating emotional signaling in this model, and we are espe-
cially interested in emotional signaling strategies: how do
the player’s emotional displays affect the outcome of the
game, and can one form strategies based on displayed emo-
tion? We hypothesize that:

• Emotional signaling in combination with game behav-
ior can influence opponent game acts

As far as the emotion perception is concerned we use
methods that work in real-time so that we can implement
our findings in a real-time agent system. Specifically we
use computer vision to automatically detect and classify fa-
cial expressions in videos. This way, we capture natural
expressions from real interactions and can incorporate real-
istic emotion displays in our model (as opposed to assign-
ing theoretical states of emotion). Besides investigating the
subtle dynamics of human facial display exchanges, we are
able to point to realistic behaviors as part of strategic social
planning for humans or virtual agent opponents.

To summarize, in this paper, we describe the creation of
a real-time decision model based on real human interactions
that can be used for robotic or virtual agents in live systems.
This model factors in both game decisions and naturalistic
emotion displays that will be captured live from the player.
This emotion-aware decision model can support research ef-
forts by allowing investigation of the dynamics of an interac-
tion on both those levels (game acts and emotion displays)
and can also produce virtual opponents with emotion per-
ception for training systems, where one can test different
social planning strategies.

3. IPD CORPUS
In this section we describe the Iterated Prisoner’s Dilemma

(IPD) dataset. In subsection 3.1, we describe our data acqui-
sition process and in subsection 3.2, we describe extraction
process of our behavior descriptors and ground truth.

3.1 Data Collection
This dataset includes a large corpus of people playing an

iterated prisoner’s dilemma. The data was collected using a
computer-mediated version of the game based on the British
TV show Golden Balls. This framing makes the structure of

1Emotion displays also show felt affect which has been
shown to influence a player’s decisions as well [14], but given
our goal of creating a virtual opponent such displays would
be the output of the system rather than input.

Figure 1: The interface of the game. On the left
side, the game is displayed to the participants where
they make their choice and can see game info (score,
rounds left etc.) On the right side, participants see
themselves and their opponent via a videochat-like
interface.

the game very clear to players and we felt this would reduce
any variance in the data resulting from player confusion.
In the TV show, players interact face-to-face and are given
two golden balls that represent the two choices in the game.
The cooperative choice is labeled Split (meaning that the
player intends to evenly split a set of resources) and the non-
cooperative choice is labeled steal (meaning that the player
intends to steal all the resources). In our version, players in-
teract through a Skype-like interface (see fig. 1) where they
can see each other but cannot speak to each other. Players
engage in a 10-round game. In each round players received
a payout described in Table 1. For those familiar with the
TV show, this payoff matrix is slightly different as the TV
show doesn’t strictly follow the constraints of the prisoner’s
dilemma (in the TV show, mutual non-cooperation yields
zero points for each player).

Data was collected in a large room with computers. Each
player was seated individually in front of a computer sur-
rounded by a barrier. Before playing the game, players
filled out a demographic questionnaire and some person-
ality scales. They then read instructions about the game
and had the opportunity to ask questions before the game
commenced. The game interface contains a panel display-
ing the graphical representation of the game on one side
of the screen. Below this some additional information was
displayed, namely the current score, the number of rounds
remaining and a description of the last game event that oc-
curred. On the other side of the screen a panel displayed
the real time webcam video feed of their opponent on top.
Below this a smaller video feed of their own webcam was
displayed, so participants could ensure they were visible to
the camera and to reinforce that their opponent could see
them. After the game they filled out additional questions
about their impressions.

Each player was paid a $30 for their participation; addi-
tionally they were incentivized to maximize their own self-
interest by having a chance to receive an additional $100
through a group lottery. In each of the 10 rounds, both play-
ers were offered 10 lottery tickets to divide amongst them-
selves. Based on the decisions whether or not to cooperate,
player would divide the tickets (see table 1 for these round
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Table 1: Round payoffs in the iterated prisoner’s
dilemma

Other cooperate Other defect

Player cooperate 5,5 0,10

Player defect 10,0 1,1

Table 2: Overview of extracted features used for
modeling

Category Feature Description\encoding Source

G
a
m

e
B

eh
av

io
r

Self last pick C or D

IP
D

ev
en

t
d
a
ta

b
a
se

Opp. last pick C or D

Prev. state CC,CD,DC,DD

Curr. round 2,...,10

Relative score playerscore
jointscore

Coop. rate % cooperation so far

CC rate % of joint coopera-
tion so far

CD rate % of being exploited
so far

DC rate % of exploiting oppo-
nent so far

DD rate % of mutual defec-
tion so far

F
a
ci

a
l

D
is

p
la

y
s

AU6 Cheek raiser

F
A

C
E

T
[1

6
]AU10 Upper lip raiser

AU12 Lip corner puller

AU14 Dimpler

AU17 Chin raiser

AU24 Lip pressor

payoffs). By gathering more tickets, players could increase
their chances at winning the lottery.

In total, we collected data on 370 players. Besides the
synchronized videos of each player, the corpus consists of
decision on each round (split or steal), including the time
of this decision and the time of the start of a new round.
The webcam video feeds were stored on a server for further
analysis.

3.2 Automatic Behavior Extraction
For the purpose of studying the IPD interactions we cre-

ate both game behavior and displayed behavior (expression)
features that describe these actions and expressions. Table
2 summarizes those features by category.

When discussing the game behavior of players, we will
be using the term player to refer to the player whose facial
displays we are looking at and who makes that prediction,
and opponent to refer to the player’s opponent whose next
move we are trying to predict.

Game Behavior : Player decisions are presumably influ-
enced by actions taken on previous rounds. Thus, one fea-
ture is the individual choice made by each player on the
preceding round: cooperate (C) or defect (D). A second fea-
ture is the game state which is decided by the joint decision
made by the dyad on the preceding round: joint coopera-
tion (CC), the player is exploited by the opponent (CD),
the player exploits the opponent (DC) or joint defect (DD).

Additional features include the current round number, the
ratio of the participant’s score of the combined participants’
score, the cooperation rate of both participants over preced-
ing rounds, and rates for of how often the four game states
occurred throughout the game (e.g, how often did joint co-
operation occur in the preceding rounds).

Facial Displays: Player decisions may well be influenced
by how their opponent emotionally reacts to the previous
outcome (for example, de Melo et al. showed that people
are more likely to cooperate if their opponent looks guilty
after exploiting them). To examine this, we extracted facial
expressions using a tool called FACET [16]. FACET ana-
lyzes each frame of a video individually for evidence of 19
facial action units (these are components of a facial expres-
sion: e.g., action unit 12, or AU12 for short, denotes up-
turned corners of the mouth). The evidence values describe
the likelihood on a logarithmic scale of a specific action unit
being active, with positive values indicating that FACET
classifies the action unit as active and negative values indi-
cating inactivity. These values where then averaged for each
round using the mean evidence values between specific event
timings, for example, while participants are deciding what
to do and when the joint decision is revealed. Since the
strongest facial expressions occurred following this reveal,
we used the average evidence in the first six seconds after
this event. To consider only facial action units that have
reasonable occurrence rate in the data we screened the AUs
by activation ratio, and kept only the action units with an
overall activation of more than 25% of the data frames. This
process left us with six AU features in total: AU6 (cheek
raiser), AU10 (upper lip raiser), AU12 (lip corner puller),
AU14 (dimpler), AU17 (chin raiser) and AU24 (lip pressor).
We only considered emotional reactions to the immediately
preceding reveal; although in future work we might consider
features that summarize facial activity over all preceding
rounds of the game.

Moreover, participant data was screened using a threshold
value based on the number of frames the software output had
confidence in its output. Dyads with detection rates of less
than 75% of the video were discarded from this work, leaving
us with 296 participants total. Finally, the first round of
the IPD was excluded from our modeling process due to its
special circumstances, since participants at that point do
not have prior game actions or expression displays to base
their decision on.

All our features presented in Table 2 were extracted auto-
matically and are available online in real-time for evaluation
of our model.

4. OPPONENT MODELING
In this section, we will give details on our model of op-

ponent decisions in our corpus. We look at the available
information in each independent round, such as the previ-
ous events that occurred in the game and the player’s facial
displays, to predict the game decision of the opponent in the
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next round. Specifically, the model uses the joint game de-
cisions and their results (e.g. current score and game state)
and the player’s facial displays during the reveal of the re-
sults of the previous round as inputs. In Subsection 4.1, we
describe our methodology and in Subsection 4.2, we describe
the performance of the model and in Subsection 4.3, what
we learned.

4.1 Method
Although a variety of learning techniques are possible, we

used a Naive Bayes classifier using a kernel density estimate
function in order to construct our model. This classifier
was chosen since the learned model is easily interpretable
(so that we might gain insight into how emotion impacts
decision-making) and because it readily facilitates the social
planning that we will discuss in Section 5. To examine the
contribution of different modalities, we learn several mod-
els using different grouping of features. We learn a model
using all features (both actions and opponent expressions),
but then contrast this with models trained on actions alone
or with expressions alone. These learned models are fur-
ther compared with our two baselines described in Section 2.
Recall that the naive baseline always chooses the most com-
mon action (i.e., cooperate), whereas tit-for-tat cooperates
following the opponent’s cooperation and defects following
the opponent’s defection.

Models were trained with leave-one-participant-out train-
ing and testing method. Within each fold, we first per-
formed feature selection. Using the Lasso regression anal-
ysis method, we tested several different feature sets based
on specific degrees of freedom; 3, 5, 7, 10, 15 and 20. After
selecting these different feature sets we used a Naive Bayes
algorithm to construct the model.

4.2 Model Performance
Table 3 summarizes the performance of each model in

terms of F1 score and overall accuracy, as well as the de-
grees of freedom that gave us the best results.

As shown in the table, a model trained on actions alone
can outperform our naive baseline and the tit-for-tat model,
confirming our hypothesis that actions factor in the decision
in the next round, and people are more complex than the
baseline and tit-for-tat strategy can capture. A model based
on expressions alone does not manage to outperform the tit-
for-tat strategy but still gives more balanced performance
(as measured by F1 score) than the naive baseline. The
best performing model used both actions and facial expres-
sions, confirming our hypothesis that opponent expressions
enhance predictive accuracy. This model yielded correct de-
cisions almost 75 percent of the time.

The difference in performance between the models using
both actions and expressions and the model using actions
alone is small, however using logistic regression we demon-
strate that the action and expression features both add an
independent contribution to our prediction. Using this ap-
proach both the actions-only model (p<0.001, coeff=-2.269)
and the expressions-only model (p=0.008, coeff=-0.280) add
a significant unique contribution to the prediction.

From the actions, the features most commonly selected
were: oppLastPick, selfCoopRate,CC%,DD% (referencing Ta-
ble 2). From the set of expressions, all AUs were selected
uniformly in the different models. We show this using the
prediction of a model using either game or expression fea-

Table 3: Performance of baselines and different
models

Model F1 score Accuracy DoF

Actions and expressions 0.742 0.744 5

Actions alone 0.739 0.742 5

Expressions alone 0.521 0.581 7

Tit-for-tat 0.691 0.708 -

Baseline 0.375 0.601 -

tures as input for a logistic regression to predict the ground
truth.

4.3 What Did it Learn?
We performed additional analysis to give insight into how

the opponent’s emotions are influencing a player’s decisions.
In particular, we wanted to see if specific expressions were
more important at different points in the game. Recall that
the majority of participants cooperated in the game. As a
result, most of the predictions in our corpus are made when
the previous round involved joint cooperation (CC). We had
conjectured that emotion may be most valuable when play-
ers deviate from this most-common state. Therefore we par-
titioned our corpus into four subsets based on the four basic
states that occur in the prisoners’ dilemma game: joint co-
operation (CC), joint defection (DD), the player exploits
opponent (DC) and the player being exploited by oppo-
nent (CD). In other words, the player being exploited (CD)
subset only contained decisions that followed the situation
where the opponent has just exploited the player. We then
trained models from these four subsets and examined how
they performed. As before, we trained combined models (us-
ing both action- and expression-features), action-only mod-
els, expression-only models, and contrasted these with our
two baselines.

As shown in Table 4, the action-only model performs
best following the joint cooperation (CC) state, however
the combined model performs best in the being exploited
state (CD), player exploits opponent (DC) and joint defec-
tion (DD) states. Additionally, we can see that the action
unit-only model does better when a player exploits or gets
exploited (the CD and DC states) than it does in the joint
cooperation state, indicating that these states in particu-
lar might benefit from using facial displays when model-
ing them. These results indicate that expressivity might be
more important in these states compared to the much more
common joint cooperation state. One final thing to note is
that the performance of the state models appear lower than
that of the overall models in table 3. However this is only the
case because of the weighted nature of the F1-score, when
combining the specific state models into a “hybrid” model
its F1-score is similar or better to the full game models.

We next tried to visualize what the models learned. Al-
though the model is nonlinear, we can display the way the
Naive Bayes model use these descriptors as kernels by plot-
ting them using the probability distribution. As an illus-
tration of the effects of facial expressions, AU12 has a dif-
ferent effect when shown while the player is being exploited
(CD) than when the player exploits (DC). Figure 2 shows
the probability distribution used by two different models for
this action unit. What this graph indicates is that when the
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Being Exploited (CD) Exploit (DC) 

active active 

AU12 evidence AU12 evidence 

Figure 2: Probability distribution of AU12 used for
the “player being exploited” (CD) and “player ex-
ploits” (DC) models. A circle notes the AU12 evi-
dence value where max{P (C)− P (D)} is observed.

Table 4: F1-score performance of state based models

Model

State Combined Action AUs Baseline Tit-for-tat

CC 0.662 0.670 0.459 0.460 0.460

CD 0.617 0.594 0.527 0.308 0.308

DC 0.615 0.607 0.514 0.301 0.363

DD 0.627 0.598 0.504 0.227 0.414

player exploits the opponent (DC) it is better not to smile,
a finding in line with previous research as smiling might in-
dicate that you are more willing concede [7]. Additionally,
by smiling after choosing to defect a participant can signal
that they enjoy taking advantage of their opponent and are
therefore more likely to be punished for this. Whereas, if
it was the player being exploited (CD), it is beneficial for
the player to display AU12 (a smile) in order to make their
opponent return to cooperating, perhaps as a means of show-
ing you forgive their transgression. Smiling appears to only
be beneficial in the specific state when your opponent just
betrayed you.

When looking at the specific action units used as descrip-
tors by each model, differences can be found as well. The
main action units used when the player is exploited (CD)
are AU12 (lip corner puller) and AU24 (lip pressor), AU12
is often related to joy while AU24 can often be interpreted
as negative. If AU12 is active it is more likely that the
opponent will cooperate, whereas AU24 should be inactive
in order to maximize cooperation likelihood. AU24, the lip
pressor can be seen as a type of mouth control. Therefore if
it is active at the same time as AU12 this could indicate that
the smile is not as sincere as when AU24 is absent. There-
fore this seems to indicate that after an opponent defects it
would be best to smile sincerely in order to have them coop-
erate again. When the player exploits their opponent (DC)
AU6 (cheek raiser) and AU17 (chin raiser) are used, again
this is an action unit related to positivity (AU6) and one to
negativity (AU17). Although AU6 being active only seems
to slightly improve cooperation likelihood, however when it
is inactive it will greatly increase the likelihood of the oppo-
nent defecting (and therefore punishing the participant).

5. SOCIAL PLANNING
Our analysis on the performance of the model indicated

that the facial expressions of one participant influences their
opponent’s decisions. This raises the question of whether it
is possible to strategically influence the opponent’s decisions
by choosing different facial expressions (we refer to this pro-
cess as social planning). Second, even if we can determine
which expression will influence the opponent, is this expres-
sion practically significant (i.e., would it make a meaningful
difference in outcomes)? In this section, we provide prelim-
inary evidence that the answer to both of these questions is
yes.

In its broadest sense, social planning would allow a player
to generate a sequence of actions and expressions that influ-
ence the opponent to achieve a goal, such as maximizing the
player’s individual reward. In describing how this is possi-
ble, consider the simple case of influencing the opponent’s
decision on the very next round.

More specifically, consider that player A has just been
exploited by their opponent (player B) and would like to
influence their opponent to start cooperating again.

This situation is illustrated by the probability distribu-
tions on the left-hand side of Figure 2. This graph indicates
what player B will do after they just exploited player A and
they observe player A showing AU12. If player A fails to
show AU12 (i.e, evidence is zero or lower), then player B is
most likely to defect, as because the probability of defection
(the red line) is higher than the probability of cooperation
(the blue line). In contrast, if player A clearly shows AU12
(i.e, evidence is greater than 1), then player B is most likely
to cooperate a second time. Therefore, if player A wants to
exploit player B again, they should smile. This concept can
be extended to multi-step plans by using forward chaining.

Although the best test of this idea would be to run this
social planning model against actual human opponents, here
we provide a feasibility test of this idea by using the idea of
a simulated opponent. In particular, we use the model we
learned in Section 4 as a proxy for an actual human oppo-
nent (we leave a test against human opponents for future re-
search). We consider if a player could increase their individ-
ual score by showing specific facial expressions and contrast
this to the score that could be obtained by showing only a
neutral expression. If judicious choice of expressions can in-
crease a players score, then this provides evidence that such
expressions are practically significant (in that they mean-
ingfully shape outcomes).

Specifically, we attempt to derive an action and expres-
sion policy for player A that maximizes player A’s score.
Because of the nature of the payoff matrix for prisoner’s
dilemma, player A can maximize their score by coercing
player B to cooperate as much as possible while, further,
exploiting player B as much as player A can get away with.
(By inducing player B to cooperate, player A will have the
opportunity to score five points when cooperating and 10
points when exploiting, whereas a defecting player B will af-
ford only zero or one points per round). We derive this policy
through brute-force forward-simulation2 with the simulated

2For this simulation we used a well performing model that
uses the six action units with an activation rate over 25%
as descriptors. Since our model does not simulate the first
round, we assume that participants start in the CC state for
this, as it is the most common game state in the first round
in our dataset.
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Table 5: Examples of optimal strategies when us-
ing a neutral expression and manipulating certain
decisions

Maximum Score Example decision

Neutral 70

C-C-D-C-D-C-D-C-C-D

C-C-C-D-D-C-D-C-C-D

C-C-C-C-C-C-D-D-D-D

Manip. C 90
C-D-D-D-D-D-D-C-D-D

C-C-D-D-D-D-D-D-D-D

opponent. At each round in the game we branch on player
A’s action (cooperate vs. defect) and identify the expres-
sion that maximizes B’s probability of cooperation. We then
compare this against an agent that shows only neutral ex-
pressions. For the no expression simulation we will assume
none of the action units are active (using a FACET value of
-1).

By plotting the probability distributions we were able to
identify the optimal strategy for using our expression. This
strategy involves displaying the action units that are often
related to happiness, as well as the Duchenne smile; AU6,
the cheek raiser, should be active (with a value of 1.76) and
AU12, the lip corner puller, had an optimal value of 1.45.
AU10, the upper lip raiser, can be detrimental to the result
when active and has an optimal value is -1.89. AU10 can
often be related to negative emotions such as anger. AU24
should also be inactive as well (-0.87), while the last two
action units used in the model can generally have some low
form of activation: AU14 has a value of 0.49 and AU17’s
optimal value is 0.65.

Although this model shows that it is possible to achieve a
better result when being able to predict your opponent’s be-
havior, it is likely that actual human opponents will change
their strategy when they are confronted with an approach
such as this. Additionally it is possible to deceive a model
such as this, for instance, by presenting behavior that is com-
pletely different than the behavior that was used to learn the
model. Therefore the results of the simulation should not be
considered as an optimal strategy when playing against hu-
man opponents. Nonetheless the simulation illustrates that
a better understanding of action and emotion can inform
social planning, although the effectiveness of this approach
will need to be demonstrated in subsequent research.

Table 5 summarizes the score obtained and the resulting
policy that results from these social planning simulations.
When using the neutral expression strategy, the maximum
possible score you can achieve is 70 points (out of a maxi-
mum of 100). This score can be obtained by defecting four
times throughout the game, with one of these defections oc-
curring in the final round as this leaves the opponent unable
to respond. This pattern is sufficient to induce the simu-
lated opponent to always cooperate and shows one possible
explanation why our model performs better than a tit-for-tat
approach, as the tit-for-tat approach would defect at least
three times when faced by four defections. In contrast, by
using appropriate facial expressions, it is possible to defect
up to eight times, resulting in a score of 90 points. Again,
these results are suggestive and need to be verified against
human opponents.

6. DISCUSSION
We presented work on modeling opponent decisions in an

iterative prisoner’s dilemma task. We created a real-time
model trained on real interactions between humans, which
incorporates both game actions and the player’s emotional
displays as input and decides what the opponent will pick
in the next round (cooperate or defect). We showed that
previous game actions can be a strong input in deciding
what the opponent will pick next (more so than deciding
purely on emotion signals). A simple interpretation is that
because of the iterative nature of this task previous actions
speak “louder than words” (or in this case signaled inten-
tions via emotional signaling), but still, combining both
game acts and emotional displays is what yields the best
performance. This finding validates previous research out-
put that emotional signals influence game decisions in joint
tasks and moreover, we provided a model, a mechanism,
on how emotion contributes to the opponent’s decision in a
certain round.

To dissect the impact of emotion in more detail, we also
modeled the opponent decision separately in the four pos-
sible states of the game (joint cooperation, joint defection,
player exploits and player being exploited), as discussed in
Section 4.3. By adding this context information we were able
to highlight better the impact of emotion in the decision of
the opponent by coupling it with specific game events (e.g.,
being exploited, or self exploiting on an opponent). This
analysis revealed that emotion input has more impact in
the opponent’s decision following a state that involved de-
fection (joint defection, player exploits or opponent exploits)
as opposed to joint cooperation (Table 4). This observation
perhaps makes sense considering that the majority of people
picked cooperation (joint cooperation, makes up for ∼46% of
the data) and with continuous cooperation being the default
scenario there is perhaps less need to signal or communicate
intentions for the next round. Defecting however, breaks
the loop of default expectations (continuous cooperation)
therefore triggering more emotional reactions and also cre-
ating more uncertainty, and thus need to plan the next move
and that includes estimating the opponent’s intentions by all
available input (actions and emotions). This also suggests
that the impact of emotion may in fact be underrepresented
in the overall model, since most of the population in this
scenario opted for continuous cooperation.

By employing the learned model in a simulated opponent,
we also present a sophisticated tool to study human inter-
actions in social dilemmas and perform social planning in
an environment where emotional signals can also yield re-
wards. We would like to use this tool as a simulated human
opponent and plan policies to achieve social goals, similar to
reinforcement learning approaches[20, 25]. In this paper, we
have shown that this is possible, based on a simple example
of employing a combination of action and emotion signals to-
wards maximizing one’s own score. Although some of these
action sequences seem unlikely while playing against a hu-
man opponent we provide them as an illustration of how
understanding of action and emotion can inform this form
of planning (which is also an important link to how this
informs robots and virtual humans). Indeed, many of the
human participants succeeded in exploiting their opponent
multiple times including one that was exploited 10-times and
quite a few up to 6-times (so while this behavior seems un-
usual it is not unprecedented in our data). Still, we would
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claim that the ultimate effectiveness of the approach can
only be judged empirically in subsequent research against
human opponents.

Another aspect of this is to create agents that display
more “human-like” behavior. Based on Blascovich’s theoret-
ical model of social influence [2], agents that exhibit more
agency and are perceived as more realistic will be treated
more like humans than those who do not. Using this model
we could have a virtual agent simulate human behavior more
accurately and investigate whether these agents are treated
differently from those that use different approaches, such as
tit-for-tat.

Another interesting point of discussion is how we cap-
ture and handle emotion input in this model. We believe
a novelty of this work to be the inclusion of naturalistic
emotional displays from real interactions captured via auto-
matic methods. As a result, we are using realistic (human-
appropriate) emotion signals in our model and not theoret-
ical emotional states. This translates to generating more
meaningful and realistic policies in order to achieve social
planning. For example, anger has been studied a lot in the
context of negotiation and is commonly viewed as a means
of signaling a tough position in order to avoid exploitation
[28, 7], however in our data we observe limited occurrences
of anger as it is traditionally defined. Perhaps the specific
task does not trigger the specific expression as much, and we
fail to observe its impact here, or perhaps, in real interac-
tions people choose to show other more subtle signals (such
as lip pressing- AU24) or derivative expressions of frustra-
tion/confusion rather than anger. This makes working with
this data more challenging since we are dealing with subtle
expressions, but it is more realistic since this is what people
actually do.

As a summary, we saw that most facial expressions ob-
served in this data span into the two loosely defined cate-
gories of smiling (AU6, AU12), and mouth controls (AU10,
AU14, AU17, AU24), and this is an intuitive policy that we
could either train people to employ for social planning, or
implement in a virtual agent to test with.

7. CONCLUSION
We have shown that both joint game actions and the facial

displays of a player have predictive power in a classification
model for decision making behavior in a iterated prisoner’s
dilemma. Secondly we have shown how an individual or
agent can use this model for social planning by employing
not only strategic game decisions but also emotions.

We wish to further investigate the impact of a realistic
model using emotional displays such as this in a real life
setting and are therefore planning to implement these mod-
els into our framework. By using the webcam video feed as
input, analyzing the facial expressions of the participant in
the video and then using them as descriptors for our model
in a real-time to study the effects of a virtual human using
these models while playing against human participants.
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