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ABSTRACT
In Doodle polls, each voter approves a subset of the available alter-
natives according to his preferences. While such polls can be cap-
tured by the standard models of Approval voting, Zou et al. [18]
analyse real-life Doodle poll data and conclude that poll partici-
pants’ behaviour seems to be affected by considerations other than
their intrinsic preferences over the alternatives. To capture this phe-
nomenon, they propose a model of social voting, where voters ap-
prove their top alternatives as well as additional ‘safe’ choices so
as to appear cooperative. The predictions of this model turn out
to be consistent with the real-life data. However, Zou et al. do not
attempt to rationalise the voters’ behaviour in the context of social
voting: they explicitly describe the voters’ strategies rather than
explain how these strategies arise from voters’ preferences. In this
paper, we complement the work of Zou et al. by putting forward a
model in which the behaviour described by Zou et al. arises as an
equilibrium strategy. In our model, a voter derives a bonus from
approving each additional alternative, up to a certain cap. We show
that trembling hand perfect Nash equilibria of our model behave
consistently with the model of Zou et al. Importantly, placing a
cap on the total bonus is an essential component of our model: in
the absence of the cap, all Nash equilibria are very far from the
behaviour observed in Doodle polls.
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1. INTRODUCTION
Scheduling group meetings is a tedious and time-consuming activ-
ity: the participants have to decide which time slots are suitable
for all or most of them, and to choose one or more slots based on
these constraints. A convenient online tool for this task is Doodle:
the poll initiator creates a list of possible time slots, and all partic-
ipants can then cast their vote online, indicating which time slots
are acceptable for them. In the most basic version of a Doodle poll,
everyone can mark each time slot as suitable or not (there is also a
more flexible option, where each participant is allowed three levels
of approval: ‘yes’, ‘no’, and ‘if need be’), and each participant can
vote ‘yes’ for any number of slots.
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Assuming for simplicity that in the end the meeting time will
be chosen among the time slots that received the largest number of
votes (using a deterministic or randomised tie-breaking rule), we
can view this situation as an approval voting scenario. Now, in
case of dichotomous preferences (where each voter either approves
or disapproves each time slot), approval voting is known to elicit
truthful behaviour from the voters: it is a weakly dominant strat-
egy for each voter to vote exactly for the time slots he approves.
Of course, in reality voter preferences may be more complicated:
for instance, even if one currently has no appointments scheduled
for Monday 08:30, one may prefer not schedule a meeting for this
time if at all possible. If each voter has a weak order over the time
slots, a relevant notion is that of a sincere strategy: an approval
vote is said to be sincere if the voter weakly prefers each of the
approved alternatives to each of the non-approved alternatives (see,
e.g., [4]). Under reasonable assumptions on tie-breaking (and, in
case of randomised tie-breaking, voters’ preferences over the re-
spective lotteries), approval voting is known to encourage such sin-
cere behaviour [7].

However, these theoretical results do not seem to fully explain
the voters’ behaviour that is observed in practice; in particular, they
provide no clue as to how the voters decide how many alternatives
to approve. To address this challenge, recently Zou et al. [18] used
a large dataset from Doodle (over 14 million votes from 2 mil-
lion participants in over 340,000 polls) to analyse user behaviour
in Doodle polls. Their data shows that participants tend to behave
differently in closed polls (where previously cast votes are not vis-
ible) and in open polls (where previously cast votes can be seen).
Specifically, participants in open polls tend to approve more slots
and coordinate with the previous voters. Perhaps more intriguingly,
in open polls both the most popular slots and the least popular slots
tend to receive more votes than in closed polls, with medium pop-
ularity slots receiving a similar number of votes.

Zou et al. explain this phenomenon by introducing the model of
social voting. In this model, besides having intrinsic preferences
for different time slots, voters would like to appear cooperative,
and therefore they gain extra utility from approving many slots.
Thus, in addition to approving their most preferred slots, they may
approve a few extra slots. It makes sense for them to choose these
slots among the unpopular slots (those that have received few votes
so far), to minimise the risk that these slots will actually be selected.
Zou et al. show that this model is consistent with the data: they
generate synthetic data according to their model and obtain voter
behaviour that is qualitatively similar to what is observed in Doodle
open polls.

However, the social voting model proposed by Zou et al. makes
no attempt to rationalise the voters’ behaviour: it simply stipulates
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that each voter will vote for his most preferred slots and some of
his somewhat less preferred slots based on their popularity; the au-
thors do not reconstruct voters’ utilities that make such behaviour
rational. The goal of our work is to fill this gap.

In our model, each voter assigns some utility to each time slot
(with different utilities corresponding to different preference lev-
els), and the winning alternative is selected among the alternatives
with the highest number of approval points using either a lexico-
graphic tie-breaking rule (based on a fixed ordering of the alterna-
tives) or the randomised tie-breaking rule (where the winner is cho-
sen among the top-scoring alternatives uniformly at random). We
remark that tie-breaking rules play a particularly important role in
Doodle polls: since the number of alternatives is often large relative
to the number of votes, ties are quite likely, and, since the decisions
made by Doodle polls are typically low-stake, both tossing a fair
coin and picking the lexicographically first among the top-scoring
alternatives is socially acceptable. It remains to explain how voters
derive utility from appearing cooperative.

A natural first attempt is to assume that, besides deriving the
respective utility from the winning slot, each voter obtains a very
small bonus from each time slot he approves; the second compo-
nent is supposed to capture his social utility. However, we show
that under these assumptions in each Nash equilibrium (NE) of the
resulting game each candidate is approved by almost all voters, and,
moreover, if there is no consensus among the voters, the existence
of Nash equilibria requires a very delicate balance of voters’ pref-
erences. Thus, pure Nash equilibria in this model cannot be viewed
as realistic predictions of voters’ behaviour.

We then consider a more refined version of this approach, where
a voter only gets the social bonus for the first κ time slots that he
approves, for a value of κ that is noticeably smaller than the total
number of alternatives. Indeed, it is plausible that, in practice, to
appear cooperative, one only needs to approve a number of alter-
natives that exceeds a certain threshold, and approving further al-
ternatives may not contribute much to the voter’s perception by his
peers. This is corroborated by empirical findings, which demon-
strate that voters seem to approve very popular and very unpopular,
but not all available slots [18]. This model admits a much richer set
of pure Nash equilibria; indeed, we obtain a plethora of ‘bad’ Nash
equilibria where everyone approves one alternative (which may be
viewed as undesirable by some or even all voters) and κ−1 other al-
ternatives, and approvals are distributed so that every non-winning
alternative is far from becoming a winner; a similar phenomenon is
well-known in the context of Plurality voting (see, e.g., [14]).

Therefore, it becomes important to come up with a suitable equi-
librium refinement that will help us identify Nash equilibria that
are more likely to occur in practice. To do so, we employ a vari-
ant of Selten’s celebrated trembling hand perfect Nash equilibrium
(THPE) [16, 12]: under this notion, each player assumes that, with
small probability, other players may make a mistake when imple-
menting their strategy and choose another (random) strategy in-
stead. It has been argued that THPE is the most important re-
finement of Nash equilibrium [17]; moreover, it is particularly ap-
pealing in our setting, where the number of decisions that a voter
needs to make may be large, and mistakes are rarely costly. Trem-
bling hand perfect equilibria have been studied for a wide variety
of games; in particular, in the context of voting, different variants
of THPE have been proposed to explain voter behaviour in plural-
ity and runoff rule voting games [13, 15], information revelation
scenarios [11] and agenda-setting games [1].

In this work, we modify Selten’s original definition by restrict-
ing the type of mistakes that players may make: specifically, we
assume that each player makes a mistake independently for each

alternative, i.e., for each alternative he considers, with probability
ε he votes ‘Yes’ if he intends to disapprove this alternative and ‘No’
if he intends to approve it, and he votes correctly with probability
1− ε. We then show that, in games with capped bonuses, a voter’s
best response to a trembling hand strategy of other players is to
approve all the alternatives at his top preference level as well as
some of the most unpopular alternatives, with the total number of
approved alternatives never exceeding the cap. This result is con-
sistent with the findings of [18]. The analysis of this model is quite
involved, and can be seen as our main technical contribution.

While our primary goal is to explain voters’ behaviour in Doo-
dle polls, we expect the class of approval voting games with a social
bonus to be of broader interest. Hence, when analysing such games,
we do not limit ourselves to the regime that provides the closest ap-
proximation to Doodle poll games. In particular, while our primary
focus is the setting where the social bonus is capped, we also anal-
yse the setting with uncapped social bonus. For the latter setting
we provide efficient algorithms for computing Nash equilibria if
ties are broken lexicographically or the voters’ true preferences are
dichotomous. We complement these results by showing that, for
uncapped social bonus, it is NP-hard to decide if a given preference
profile admits a pure strategy Nash equilibrium if ties are broken in
a randomised fashion and voters have three or more preference lev-
els. We hope that this analysis will prove useful when considering
other applications of approval voting.

From a conceptual perspective, our contribution is twofold. First,
while the notion of a social bonus was put forward by [18], we are
able to show that this concept can be used to rationalise voters’
behaviour. This turns out to be a non-trivial task: the straightfor-
ward approach of incorporating the social bonus into the voters’
utilities, in an uncapped fashion, results in a model with very few
Nash equilibria, which are, moreover, rather unnatural. To over-
come this difficulty, we introduce the idea of a cap on the social
bonus, which is both intuitively appealing and enables us to obtain
results that agree with the real-life data. Another innovation is the
use of trembling hand perfection as an equilibrium refinement tool:
while this is an elegant and conceptually appealing notion, it has
received surprisingly little attention in the algorithmic game theory
literature; notable exceptions are papers by Hansen, Etessami et
al. [10, 8], which, unlike our work, focus on abstract normal-form
games and obtain computational hardness results rather than effi-
cient algorithms, as well as a very recent paper on trembling hand
equilibria of plurality voting [15], which differs from this work in
that it considers a different voting rule (plurality rather than ap-
proval) and no social bonuses.

2. PRELIMINARIES
The model we introduce in this paper extends the standard model
of approval voting, so we start by formally defining approval voting
and other relevant concepts.

In approval voting, there is a set V = {v1, v2, . . . , v|V |} of vot-
ers, electing a single winner from a set C = {c1, c2, . . . , c|C|}
of alternatives, or candidates. A single vote (or ballot) of voter
v ∈ V is a subset of candidates bv ⊆ C that he approves. We will
also regard bv as a |C|-dimensional binary vector (bv1 , . . . , b

v
|C|)

with bvc = 1 if v approves alternative c ∈ C and bvc = 0 otherwise.
A voting profile b = (bv)v∈V is a vector of ballots, one for each
voter.

Given a profile b, let sc(b) =
∑

v∈V b
v
c denote the score of

candidate c; the vector s(b) = (sc(b))c∈C is then the score vec-
tor of b. The set of (provisional) winners of the election, or
the election outcome, is given by the set of alternatives W (b) =
arg maxc∈C sc(b); the ties among the provisional winners are bro-
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ken by a given tie-breaking rule. We consider two common tie-
breaking rules: lexicographic, which selects the lexicographically
first candidate inW (b) with respect to a given linear order over C,
and randomised, which chooses one uniformly from W (b).

Each voter v ∈ V has preferences over individual candidates,
≥v , modelled as a total (but not necessarily strict) order on C.
That is, ≥v is a reflexive, transitive and complete (but not nec-
essarily anti-symmetric) binary relation on C. We write x ≥v y
to express that voter v likes candidate x at least as much as can-
didate y. We write x >v y (strict preference) if x ≥v y but not
y ≥v x. Thus, ≥v defines a partition of C into L disjoint subsets
{Cv

1 , . . . , C
v
L}, so that v is indifferent among the alternatives in the

same element of the partition, but strictly prefers any alternative in
Cv

` over any alternative in Cv
k , for all ` > k. That is, L denotes the

number of preference levels of the voter. We allow for the possi-
bility that some, but no more than L− 2, elements of the partition
are empty. That is, no voter is indifferent between all the alterna-
tives in C, and it is without loss of generality to assume that all
voters have the same number of preference levels L. Specifically,
L is the maximum number of proper (i.e., non-empty) preference
levels across all the voters, and we require that for each voter v the
preference levels 1 and L are not empty. A voter with exactly two
proper preference levels is called dichotomous, and one with three
proper preference levels is called trichotomous.

When analysing voters’ strategic behaviour, we need to reason
about voters’ preferences over election outcomes, i.e., over sets of
provisional winners. Note that under deterministic tie-breaking,
comparing every pair of outcomes is easy: we apply the tie-breaking
rule to determine the eventual winner in each set, and compare
these winners using the voter’s preference order ≥v . However, if
ties are broken randomly,≥v does not induce a complete order over
all possible outcomes, and a common solution (see, e.g., [5, 2, 9,
6, 15]) is to augment voters’ preferences with cardinal utilities. To
this end, we assume that each voter v is endowed with a function
δv : C → Q that takes at most L distinct values and is consistent
with v’s preferences: δv(c) > δv(c′) if and only if c >v c

′. With-
out loss of generality, we assume that δv(c) = 1 if c ≥v c

′ for all
c′ ∈ C and δv(c) = 0 if c′ ≥v c for all c′ ∈ C. Now, the utility
from the outcome, uv(b), of voter v under ballot profile b is de-
fined as follows. If the ties are broken deterministically, according
to a strict linear order �, then

uv(b) = δv(cmax), where (1)
cmax ∈W (b) and cmax � c for all c ∈W (b) \ {cmax}.

In case of uniform tie-breaking, we consider the expected utility:

uv(b) =
1

|W (b)|
∑

c∈W (b)

δv(c). (2)

Assuming that each voter strives to maximise his utility from the
outcome, for a fixed tie-breaking rule our setting induces a normal-
form game Γ = 〈V, 2C , (uv)v∈V 〉 where the set of players is given
by the set of voters V , the strategy set available to each player is
given by the collection of all subsets (i.e., the power set) of the set
of candidates C, and the utility function of each player is given by
uv as defined by equations (1) or (2) above. We call Γ the approval
voting game (the tie-breaking rule will be clear from the context).

Given voter v’s preference order≥v , a ballot bv is called sincere
if the voter prefers each approved candidate to each disapproved
candidate; that is, if x ≥v y for all x ∈ bv and all y ∈ C \ bv [4].
Observe that according to this definition, a voter can vote sincerely
in a number of ways, and abstention ballots, in particular, are also
considered sincere. It is known that if a voter’s preferences over in-

dividual alternatives are dichotomous, then he always has a sincere
best response under approval voting, irrespective of how these indi-
vidual preferences are extended to preferences over outcomes (i.e.,
sets)—that is, irrespective of how the utility function of game Γ is
defined [3]. Under some additional assumptions on set preferences,
this claim also holds for trichotomous individual preferences, but if
a voter has four or more levels of preference, he may prefer to vote
insincerely. Recently, Endriss [7] has formulated several principles
of lifting individual preferences to set preferences under which a
voter will always have a sincere best response in an approval vot-
ing game, even if he has more than three proper preference levels.
Importantly, the utility functions defined by equations (1) and (2)
satisfy these principles.

3. MODEL
Doodle polls can be seen as an implementation of the approval vot-
ing rule, which was discussed in the previous section. Specifically,
candidates are time slots, and voters indicate their (un)availability
at these slots. We note that Doodle also allows voters to express
trichotomous preferences, by classifying the time slots into ones
that are (1) convenient, (2) feasible but inconvenient or (3) not fea-
sible; however, this setting is not captured by the standard model of
approval voting, so we will not consider it in our work.

Our goal is to provide a game-theoretic model that explains the
experimental findings of Zou et al. [18], and in particular the phe-
nomenon of social voting. To this end, we incorporate social re-
wards into voters’ utility functions. Specifically, we assume that
voter v gets a social bonus, β, for each of his approved alternatives,
as long as their number does not exceed the cap κ, 0 ≤ κ ≤ |C|.
This cap is the maximum number of approved candidates that is so-
cially rewarded. In approval games, κ = 0; if κ = |C|, a voter gets
a bonus for each alternative he approves. We assume that social
bonuses never prevail over the original preferences:

0 < β <
1

|C| min
v∈V

min
c,c′∈C

∣∣δv(c)− δv(c′)
∣∣ . (3)

The total utility of voter v under ballot profile b is then com-
posed of the utility from the outcome uv(b) (given by equation (1)
or (2), as per the tie-breaking rule), and the overall social bonus:

Uv(b) = uv(b) + β ·min{|bv|, κ}. (4)

DEFINITION 1. A Doodle poll game (DPG) is a normal-form
game Γ = 〈V, 2C , (Uv)v∈V 〉 with the set of players V , where for
each player v, his strategy set is the power set of the set of alterna-
tives C and his utility function Uv is defined by equation (4).

4. UNCAPPED SOCIAL BONUS
We start by providing a few simple observations about the struc-
ture of equilibrium profiles in DPGs with uncapped social bonus.
We focus on pure strategy Nash equilibria, to which we may refer
simply as equilibria or Nash equilibria (NE). Our first observation
applies irrespective of whether there is a cap on the social bonus.

OBSERVATION 1. For both of our tie-breaking rules, in each
DPG every voter has a best response where he approves all the
alternatives at his highest level of preference (and possibly some
other alternatives).

Indeed, if a voter fails to approve some of his most preferred al-
ternatives, he can only increase his total utility by adding such an
alternative to his ballot: by doing so he cannot lower his utility
from the outcome, while his social bonus may only grow (unless
capped). In fact, for κ = |C|, every best response is of this form.

878



OBSERVATION 2. For both of our tie-breaking rules, in every
equilibrium of a DPG with κ = |C| every voter approves all the
alternatives at his highest level of preference.

When κ = |C| and ties are broken lexicographically, it is beneficial
for everyone to vote for the election winner.

OBSERVATION 3. In any equilibrium of a DPG with κ = |C|
and lexicographic tie-breaking, all voters approve the (unique) win-
ner of the election.

Indeed, if there is a voter that fails to approve the current winner, he
will strictly increase his utility by adding the winner to his ballot:
this move will not change the winner—and hence the utility from
the outcome—for the voter, whereas his social bonus will grow.
As for the other candidates, for similar reasons, in an equilibrium
profile they all must get maximum possible support, but so that the
current winner remains unchanged.

OBSERVATION 4. In any equilibrium of a DPG with κ = |C|
and lexicographic tie-breaking, the candidates who are lower than
the winner in the tie-breaking order are approved by all voters,
while those who are higher than the winner in the tie-breaking or-
der are approved by exactly |V | − 1 voters.

A variant of Observations 3 and 4 holds for randomised tie-breaking,
in cases where equilibrium profiles result in singleton winner sets.

OBSERVATION 5. In a DPG with κ = |C| and randomised tie-
breaking, if the winning set for an equilibrium profile has size one,
then the unique winner is approved by all voters and every other
candidate is approved by |V | − 1 voters.

By combining these observations, we can see that if the social
bonus is uncapped, the structure of the Nash equilibria is very dif-
ferent from what is observed in real-life Doodle polls, as described
by Zou et al. [18]. In particular, in every equilibrium where the
winner set is a singleton, the winner is approved by all voters and
all remaining candidates are approved by (almost) all voters.

Thus, if we define our goal as to model voters’ behaviour in Doo-
dle polls, we should focus on the setting where the social bonus is
capped, i.e., κ < |C|; indeed, we consider this case in detail in Sec-
tion 5 However, the mathematical model of approval voting with
uncapped social bonus is of interest per se, as it may be applicable
to other approval voting scenarios. Further, the insights obtained by
analysing the simpler case of uncapped social bonus will turn out
to be helpful for understanding the more complex scenario where
the social bonus is capped. Motivated by these considerations, in
the rest of this section we analyse the case κ = |C| in more detail.
While most of our results in this section concern the algorithmic
complexity of computing NE, they also provide useful insights into
the structure of such equilibria: for instance, we leverage Algo-
rithm 1 to show that, for lexicographic tie-breaking, most profiles
do not admit NE.

4.1 Lexicographic Tie-Breaking
When ties are broken lexicographically, it is possible to decide in
polynomial time whether there exists a Nash equilibrium (NE) pro-
file where a given alternative wins the election. We denote the cor-
responding decision problem by ∃NEWIN:

∃NEWIN: Given a DPG with lexicographic tie-breaking and κ =
|C|, and an alternative w ∈ C, is there a NE with winner w?

This problem is solved by Algorithm 1, which relies on subrou-
tines provided by Algorithms 2, 3 and 4. The proof that our algo-
rithm is correct relies on on the following lemma.

Algorithm 1 ∃NEWIN

Input: DPG Γ = 〈V, 2C , (Uv)v∈V 〉 with κ = |C| and tie-
breaking order �; candidate w ∈ C.
Output: YES if there exists an equilibrium with winner w; NO
otherwise.

answerCTOP = TestCTOP (Γ, w)
if answerCTOP 6= POSSIBLE then

return answerCTOP

end if
V ′ := {v ∈ V | δv(w) < 1}
answerNonSupporters = TestNonSupporters(Γ, w, V ′)
if answerNonSupporters 6= POSSIBLE then

return answerNonSupporters
end if
return TestDisapprovedAllocation(Γ, w, V ′)

LEMMA 1. Consider a DPG with lexicographic tie-breaking
and κ = |C|. Let b be an equilibrium with winner w. Then for
every voter v with bv = C we have δv(w) = 1, while for every
voter v and every candidate c with c ≥v w we have c ∈ bv .

PROOF. Let v be a voter that approves all candidates in C and
assume that δv(w) < 1. Then, there exists another candidate cwith
δv(c) > δv(w). By Observation 3, winnerw is approved by all |V |
voters. LetC+ be the set of all candidates that precedew in the tie-
breaking order, and let C− be the set of all candidates that appear
after w in the tie-breaking order. By Observation 4, all candidates
in C+ get |V | − 1 votes and all candidates in C− get |V | votes.
Suppose that v changes her vote from C to {c}. If c ∈ C−, she
becomes the only candidate in C with |V | points, so she becomes
the unique winner. If c ∈ C+, then after the change all candidates
have at most |V | − 1 points and all candidates in C+ \ {c} have
|V | − 2 points, so c wins by the tie-breaking rule. Thus, in both
cases c becomes the new winner, so voter v will get a higher utility
from the outcome. Moreover, by our assumption about the value of
β, his total utility will also increase.

Suppose now that there exist a voter v and a candidate c such
that c ≥v w, but c /∈ bv . Clearly, approving c is a profitable move
for v: the outcome either remains the same or changes from w to
c, so his utility from the outcome does not go down, and his social
bonus increases by β.

Note that it follows from Lemma 1 that no voter may derive zero
utility from an equilibrium winner. This, in particular, implies that
in games with dichotomous preferences, a candidate can be an equi-
librium winner only if she belongs to the top preference level of
each voter.

We are now ready to present a sketch of our algorithm; for im-
plementation details, see the pseudocode (Algorithm 1 and Algo-
rithms 2–4). Assume for convenience that the tie-breaking order �
is given by c1 � · · · � c|C|.
• First, the algorithm considers the subset of candidates CTOP

that consists of the candidates who are at the top preference level of
every voter (subroutine TestCTOP ). By Observation 2 and Lemma 1,
if CTOP 6= ∅ then the election winner belongs to CTOP . Hence,
if CTOP 6= ∅, our algorithm checks whether w is the tie-breaking
winner among the candidates in CTOP . If so, it is possible to con-
struct a NE profile where w wins, by letting all voters vote for their
top choices, and also approve some of their less preferred candi-
dates, so that each candidate gets either |V | or |V | − 1 votes, de-
pending on her position with respect to w in the tie-breaking order.
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Algorithm 2 TestCTOP (first stage of ∃NEWIN)

Input: DPG Γ = 〈V, 2C , (Uv)v∈V 〉 with κ = |C|, tie-breaking
order �; candidate w ∈ C.
Output: YES if there exists an equilibrium with winner w; NO
if it is certain that there is no such NE; POSSIBLE otherwise.

CTOP := {c ∈ C | δv(c) = 1 for all v ∈ V }
if w ∈ CTOP then

if w � w′ for all w′ ∈ CTOP then return YES
else return NO
end if

else
if CTOP 6= ∅ then return NO
end if

end if
return POSSIBLE

Algorithm 3 TestNonSupporters (second stage of ∃NEWIN)

Input: DPG Γ = 〈V, 2C , (Uv)v∈V 〉 with κ = |C|, tie-breaking
order�; candidate w ∈ C; the set V ′ of voters with δv(w) < 1.
Output: YES if there exists an equilibrium with winner w; NO
if it is certain that there is no such NE; POSSIBLE otherwise.

if |V ′| > |C| then return NO
end if
if ∃v ∈ V ′ such that δv(w) = 0 then return NO
end if
if ∃v ∈ V ′ and c ∈ C such that δv(c) > δv(w) and w � c then
return NO
end if
return POSSIBLE

Hence the algorithm returns YES. Otherwise (i.e., ifw 6∈ CTOP , or
ifw is not the tie-breaking winner among the candidates inCTOP ),
it returns NO. Finally, if CTOP is empty, the algorithm proceeds to
the next step.
• At this stage, the algorithm focuses on the subset of voters

V ′ = {v ∈ V | δv(w) < 1} (subroutine TestNonSupporters).
This set is non-empty, since otherwise our algorithm would have
terminated at the previous step. If |V ′| > |C| then it is impossible
to construct a NE with winner w. This is because, by Lemma 1,
in any NE b with winner w we would have bv 6= C for each v ∈
V ′, so the total number of approvals would be at most |C| · |V | −
|V ′| < |C|(|V | − 1), but by Observation 4 in NE the score of each
alternative is at least |V | − 1. Hence, in this case the algorithm
returns NO. Otherwise, it moves to the next step.
• Now we can assume that 1 ≤ |V ′| ≤ |C|. If one of the

voters in V ′ has w among his least preferred alternatives, then by
Lemma 1 there will be no NE with winner w, so the algorithm
returns NO.
• The algorithm also returns NO if there exists a candidate c

with w � c and a voter v with c ≥v w. Indeed, by Observation 4,
in a NE with winner w, both w and c have |V | votes. Thus, v can
make c the winner by changing her vote to {c}.
• Next, the algorithm decides for each voter v ∈ V ′ whether

it can allocate him a candidate that he may disapprove (subroutine
TestDisapprovedAllocation). By Lemma 1, at least one such candi-
date must exist in a NE, and v must prefer w to this candidate. Let
c be the first candidate with respect to the tie-breaking order whom
v prefers to w (note that c � w, since otherwise we would have
terminated at the previous step). Then in any NE v disapproves

some candidate c′ with c′ � c. Indeed, if bv contains all candidates
c′ with c′ � c, then v can make c the winner by changing his vote
to {c}: after this change, everyone has at most |V | − 1 point, and
the tie-breaking rule favours c over all other candidates. Thus, the
algorithm associates v with the prefix of the tie-breaking order that
ends just before c; as argued above, this prefix does not contain w.
• The algorithm now acts greedily, as follows. It orders the vot-

ers in V ′ in the ascending order of the length of the associated pre-
fix of�, and considers them in this order. For each i = 1, . . . , |V ′|,
if ci belongs to the prefix of the i-th voter in this order, the algo-
rithm assigns ci to that voter; otherwise, it returns NO (note that
this happens only if there are more than i voters in V ′ whose asso-
ciated prefixes are contained in c1 � · · · � ci). When all voters in
V ′ have been processed, the algorithm proceeds to its final step.
• Let C′ be the set of candidates that precede w in the tie-

breaking order and have not been assigned to voters in V ′ in the
previous step. If C′ = ∅, the algorithm returns YES. Otherwise,
for each candidate c ∈ C′ the algorithm seeks a voter that will dis-
approve c in NE (we need one by Observation 4). To this end, the
algorithm checks whether there exists a voter in V that prefers w
over c. If such a voter is found for each candidate in C′ (we can
select the same voter for several candidates in C′), the algorithm
returns YES. Otherwise, it returns NO.

Algorithm 4 TestDisapprovedAllocation (third (main) stage of
∃NEWIN)

Input: DPG Γ = 〈V, 2C , (Uv)v∈V 〉 with κ = |C|, tie-breaking
order�; candidate w ∈ C; the set V ′ of voters with δv(w) < 1.
Output: YES if there exists an equilibrium with winner w; NO
if it is certain that there is no such NE.

for all v ∈ V ′ do
kv := min{k | δv(ck) > δv(w)}
Dv := {c1, . . . , ckv−1}

end for
CDIS := ∅
repeat

pick v′ from arg minv∈V |Dv|
if Dv′ = ∅ then return NO
else

c′ := arg min{j | cj ∈ Dv′}
CDIS := CDIS ∪ {c′}
for all v ∈ V ′ do Dv := Dv \ {c′}
end for

end if
V ′ := V ′ \ {v′}

until V ′ = ∅
C′ := {c ∈ C | c � w} \ CDIS

for all c ∈ C′ do
if ∃v ∈ V s.t. δv(c) < δv(w) then C′ := C′ \ {c}
end if

end for
if C′ := ∅ then return YES
else return NO
end if

The main theorem of this section follows easily from the descrip-
tion of the algorithm.

THEOREM 1. Algorithm 1 solves ∃NEWIN in time polynomial
in |V | and |C|.

An easy corollary of Theorem 1 is that we can efficiently check
whether a given Doodle poll game has a Nash equilibrium, by
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querying Algorithm 1 for eachw ∈ C. Further, Algorithm 1 can be
used to construct an example of a profile with no Nash equilibrium.

EXAMPLE 1. Consider an election over a candidate set C with
|C| ≥ 3, where for each candidate c ∈ C there are two voters
v, v′ with δv(c) = δv′(c) = 1, δv(c′) = δv′(c

′) = 0 for all
c′ ∈ C\{c}; note that all voters are dichotomous. It can be verified
that Algorithm 1 will output NO at the second step, which means
that the respective Doodle poll game has no pure Nash equilibrium.

Note that if we add voters to the election constructed in Exam-
ple 1, the resulting election still has no Nash equilibrium. This il-
lustrates that, under lexicographic tie-breaking, in elections where
the number of voters is much larger than the number of candidates,
the existence of NE is highly unlikely: essentially, there has to be
an alternative that is ranked at the top preference level by (almost)
all voters. On the positive side, if there is an alternative that is per-
fect for all voters, some such alternative wins in every equilibrium.

4.2 Randomised Tie-Breaking
Under randomised tie-breaking, the computational complexity of
equilibrium-related problems depends on the number of levels in
voters’ preferences: we obtain easiness results for dichotomous
preferences and hardness results for the general case. We omit the
proofs due to space constraints.

We consider the following decision problems.

∃NE: Does a given DPG with randomised tie-breaking and
κ = |C| possess a NE?

∃NESINGLE: Given a DPG with randomised tie-breaking and
κ = |C|, is there a NE where the winning set is a singleton?

∃NETIE: Given a DPG with randomised tie-breaking and κ = |C|,
is there a NE where the winning set is not a singleton?

For games that have two preference levels, we separately check
whether there exist NE with a unique winner, and whether there
exist NE with multiple winners. Both problems turn out to be com-
putationally easy, and hence so is ∃NE.

THEOREM 2. In games with dichotomous preferences, the prob-
lems ∃NESINGLE and ∃NETIE (and hence ∃NE) are polynomial-
time solvable.

In contrast, for games with trichotomous preferences, we obtain
NP-hardness results for ∃NE and ∃NETIE. Our proof uses the fol-
lowing lemma, which establishes an interesting property of voters’
best responses and may therefore be of independent interest.

LEMMA 2. In a DPG with κ = |C|, randomised tie-breaking
and trichotomous preferences, if in a given profile a voter benefits
from approving a candidate at the intermediate preference level,
then he benefits from approving all the candidates at that level.

Using Lemma 2, we obtain the following hardness results.

THEOREM 3. ∃NE and ∃NETIE are NP-complete for trichoto-
mous preferences.

The proof of Theorem 3 extends easily to voters with more than
three preference levels.

5. CAPPED SOCIAL BONUS
In this section, we consider the variant of our model where κ can
be significantly smaller than |C| (in fact, it is enough to assume
that κ ≤ |C| − 2). We demonstrate that, in contrast with the case
of κ = |C| analysed in the previous sections, in this model there
are many Nash equilibrium profiles, and we use a variant of trem-
bling hand perfect equilibrium to rule out ‘bad’ equilibria. It turns
out that the voters’ behaviour in trembling hand perfect equilibria
of our games provides a good match to the behaviour observed in
practice in Doodle polls, as described by [18]. Therefore, by cap-
ping the social bonus, we can both capture more realistic scenarios
and obtain more stable outcomes.

Consider first the Nash equilibria of a DPG with κ ≤ |C| − 2.
For any candidate c ∈ C, there exists a Nash equilibrium where c
gets |V | approvals, and every other candidate gets κ approvals. Im-
portantly, this holds irrespective of the voters’ preferences: c can be
universally disliked, and some other candidate c′ may be at the top
preference level of all voters. This example indicates the need for
an equilibrium refinement. To this end, we will now define a mod-
ified version of Selten’s trembling hand perfect equilibrium [16] in
order to apply it in our setting: namely, we assume that the vot-
ers’ hands tremble independently over each cell in a poll (i.e., a
candidate) rather than a whole row (strategy).

Specifically, let ε > 0 be the probability of voter v deviating
from his intended action regarding candidate c. We call this quan-
tity the trembling hand (TH) probability. Then, the probability that
voter v submits a ballot b̃v instead of the intended ballot bv , termed
the ballot TH probability, is given by

Pε(b̃v | bv) = εd(b̃
v,bv) (1− ε)|C|−d(b̃v,bv) , (5)

where d(b̃v, bv) is the Hamming distance between binary vectors
b̃v and bv .

For a subset S ⊆ V of voters and a fixed TH probability ε, the
joint ballot TH probability is given by the product of individual
ballot trembling hand probabilities across the set S:

Pε(b̃S | bS) =
∏
v∈S

Pε(b̃v | bv). (6)

For a given voter v, let −v = V \ {v} denote the set of his oppo-
nents in the game. When voter v computes his utility from submit-
ting a ballot bv against the intended joint ballot b−v of the other
voters, he assumes that other voters’ hands (but not his) may trem-
ble independently. Thus, his expected utility for a given TH prob-
ability ε is given by the expectation, under joint conditional proba-
bilities as defined by (6):

Ũε(bv,b−v) =
∑

b̃−v∈{0,1}|V |−1

U(bv, b̃−v)Pε(b̃−v | b−v). (7)

We call this utility the expected ε-TH utility of voter v in (bv,b−v).
Given an ε ∈ (0, 1), we say that a ballot bv is an ε-TH best

response of voter v to an intended joint ballot b−v of other voters if
it maximises v’s expected ε-TH utility in (b,b−v) over all possible
choices of b. Further, we say that bv is a TH best response of v
to b−v if there exists a threshold ε′ such that bv is an ε-TH best
response of v to b−v for all ε ∈ (0, ε′). A ballot profile b is a
trembling hand perfect equilibrium if each voter’s ballot is a TH
best response to other voters’ ballots.

To maintain tractability, we restrict our analysis of TH best re-
sponses in DPGs with κ ≤ |C| − 2 to the case with lexicographic
tie-breaking and dichotomous preferences. While it is plausible
that similar results hold for randomised tie-breaking and three or
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more preference levels, the results of Section 4 indicate that the
analysis for these settings will be significantly more complicated.

Given a voter v with dichotomous preferences, we say that c is
good for v if δv(c) = 1 and bad for v otherwise. We show that a
voter’s TH best response is to approve all of his good alternatives,
and also some of the least popular bad alternatives, so that the total
number of approved candidates does not exceed κ. Algorithm 5
below details the procedure of constructing a TH best response.

Algorithm 5 TH best response

Input: DPG Γ = 〈V, 2C , (Uv)v∈V 〉 with κ ≤ |C| − 2 and
tie-breaking order �; voter v ∈ V ; joint strategy b−v ∈(
{0, 1}|C|

)|V |−1

of voters other than v.

Output: strategy bv ∈ {0, 1}|C| for voter v.

CTOP
v := {c ∈ C | δv(c) = 1}

CAPP
v := CTOP

v

CDIS
v := C \ CTOP

v

for all c ∈ CAPP
v do sc = sc(b

−v) + 1
end for
for all c ∈ CDIS

v do sc = sc(b
−v)

end for
W := arg maxc∈C sc
Pick w ∈W so that w � c for all c ∈W \ {w}
if δv(w) = 1 then

C<
v :=

{
c ∈ CDIS

v | sc + 1 < sw
}

C=
v :=

{
c ∈ CDIS

v | sc + 1 = sw ∧ w � c
}

CSAFE
v := C<

v ∪ C=
v

else
CSAFE

v := CDIS
v

end if
repeat

C′ := arg minc∈CSAFE
v

sc
Pick c′ ∈ C′ so that c′ ≺ c for all c ∈ C′ \ {c′}
CAPP

v := CAPP
v ∪ {c′}

CDIS
v := CDIS

v \ {c′}
CSAFE

v := CSAFE
v \ {c′}

until CSAFE
v = ∅ or |CAPP

v | = κ
return bv , where bvc = 1 for c ∈ CAPP

v , bvc = 0 for c ∈ CDIS
v

First, the algorithm initialises the set of candidates for approval,
CAPP

v , to be the set CTOP
v of v’s good candidates; the bad candi-

dates are placed inCDIS
v . The algorithm then selects the candidates

inCDIS
v that are ‘safe’ for voter v to approve in addition to his most

preferred candidates, under the joint strategy b−v of the other vot-
ers: if the current winner, w, belongs to CTOP

v , then CSAFE
v con-

sists of candidates that would not win the election should v decide
to approve them; otherwise, approving any candidate from CDIS

v

would not lower the voter v’s utility from the outcome, and so they
all are included in CSAFE

v . If CSAFE
v is non-empty and the number

of approved candidates does not exceed κ, the algorithm picks the
most unpopular alternative from CSAFE

v and moves it from the set
of disapproved alternatives, CDIS

v , to the set of approved alterna-
tives, CAPP

v . This alternative also gets excluded from CSAFE
v , and

the algorithm terminates after CSAFE
v is exhausted or the number

of approvals reaches κ.
The following theorem is the main result of this section. It shows
that the behaviour of a voter who plays a TH best response is similar
to what is observed in practice: a voter approves all of his good
candidates and a ‘safe’ subset of his bad candidates.

THEOREM 4. Algorithm 5 computes a TH best response for a

voter v ∈ V in a given DPG with κ ≤ |C| − 2, lexicographic
tie-breaking and dichotomous preferences.

PROOF. Take a voter v ∈ V . By Observation 1, v has a best re-
sponse where he approves all his good alternatives. However, there
may also be other best response strategies where voter v only ap-
proves a (sufficiently large) subset of his good alternatives. Now,
by the same argument as before, there is also a TH best response
where v approves all his good alternatives. Indeed, if a voter disap-
proves any of his good alternatives, he cannot lower his total utility
by adding such an alternative to his ballot, independently of the
choices (or mistakes made due to the trembling hand) of his oppo-
nents. This is because by doing so he can never lower his utility
from the outcome, while his social bonus may only grow. More-
over, in the presence of the trembling hand, it is no longer a best
response for v to approve only a subset of CTOP

v , as there is a pos-
itive probability that v is a pivotal voter for one of his disapproved
good candidates, who will be beaten by v’s bad candidate, thus re-
ducing v’s expected utility. Hence, in a TH best response, a voter
must approve all of his good alternatives.

If |CTOP
v | ≥ κ, the algorithm returns CTOP

v as the set of ap-
provals, and this is the only TH best response strategy for voter v.
If |CTOP

v | < κ, it may be beneficial for v to also approve some
of his bad alternatives. However, while in the absence of the trem-
bling hand it would be a best response strategy for v to approve
any subset of CSAFE

v so that the total number of approved candi-
dates reaches or even exceeds κ, in a TH best response, it becomes
unsafe to exceed the cap, as with a positive probability voter v is
pivotal for some of his approved bad candidates, while the current
winner may be among v’s good candidates. Hence, it is clearly a
dominated strategy to approve extraneous bad candidates, i.e., in a
TH best response, a voter approves min{|CSAFE

v |, κ−|CTOP
v |} of

his bad candidates.
It remains to prove that in a TH best response, a voter only ap-

proves least popular candidates from CSAFE
v . Assume there are

two candidates ci, cj ∈ CSAFE
v such that sci(b

−v) > scj (b−v).
It suffices to show that in the presence of the trembling hand, ap-
proving ci is strictly less beneficial for v than approving cj , for
any combination of approvals over other candidates by voter v. For
convenience, we assume that both ci and cj are lower in the tie-
breaking order than all of v’s good alternatives. The proof for other
cases is analogous, but requires a lengthy case analysis.

Note that since δv(ci) = δv(cj) = 0, if the current winner of the
election (that is, the winner under the trembling-hand profile b̃−v

and the ballot obtained from bv by removing approvals for ci and
cj) is not in CTOP

v , then v is indifferent between voting for ci and
voting for cj . Therefore, we only need to consider the cases where
the current winner belongs to CTOP

v . In such cases, the utility from
the outcome for voter v can only change (namely, decrease) if his
newly approved bad candidate (ci or cj) beats the current winner.
Thus, we need to show that the probability of ci beating the current
winner is strictly greater than the probability of cj beating it.

Let z be the number of approvals received by the election winner,
and let

p1 = P
(
sci(b̃

−v) = z | bv
)
, p2 = P

(
scj (b̃−v) ≤ z | bv

)
.

Then, p1p2 is the probability that v makes ci (but not cj) the elec-
tion winner. Similarly, let

p3 = P
(
scj (b̃−v) = z | bv

)
, p4 = P

(
sci(b̃

−v) ≤ z | bv
)

;

then p3p4 is the probability that v makes cj (but not ci) the election
winner. It suffices to prove that p1 > p3 and p2 > p4.
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To compute p1 and p3, for each |V |-dimensional binary vector
with exactly z ones (that is, for each possible b̃−v where ci or cj
gets exactly z votes), we consider its Hamming distance to each of
the vectors b−v

ci and b−v
cj , representing the other voters’ intended

votes for ci and cj , respectively.
For convenience, and without loss of generality, we permute the

voters so that b−v
ci and b−v

cj are decreasing, that is, we assume that

b−v
ci = (1, . . . , 1,︸ ︷︷ ︸

i

0, . . . , 0), b−v
cj = (1, . . . , 1,︸ ︷︷ ︸

j

0, . . . , 0),

where i = sci(b
−v), j = scj (b−v) and i > j.

Note that these two vectors are identical in the first j bits. Thus,
we can divide all the vectors with z ones into disjoint subsets de-
fined by their configuration in the first j bits. For every vector in
some such subset, the first j bits will contribute equally to its dis-
tance from b−v

ci and from b−v
cj , and therefore it suffices to consider

the remaining n = |V | − j bits. We will now prove our claim
separately for every subset of vectors in our partition.

Fix some such subset, and denote the number of ones in the last
n bits of each of its vectors by y ≤ z (different configurations of
these y ones define different vectors in the subset). Note that b−v

cj

only has zeroes in the last n bits, and b−v
ci has t = i − j ones and

n− t zeroes. The required probabilities would then depend on how
many of these y ones fall in the first t bits, and how many of them
fall in the remaining n− t bits. We get

p1 =

t∑
k=0

(
t

k

)(
n− t
y − k

)
εy+t−2k(1− ε)n−y−t+2k (8)

p3 =

t∑
k=0

(
t

k

)(
n− t
y − k

)
εy(1− ε)n−y. (9)

In Equation (8), the voters make two types of mistakes: t − k of
them consist of placing zeroes instead of ones, and y − k of them
consist of placing ones instead of zeroes. Hence, we get y+ t− 2k
deviations in total. In Equation (9), all y ones are a result of the
trembling hand.

For comparison, divide both equations by εy(1 − ε)n−y . We
have to show that

t∑
k=0

(
t

k

)(
n− t
y − k

)
εt−2k(1− ε)2k−t >

t∑
k=0

(
t

k

)(
n− t
y − k

)
.

Note that εt−2k(1 − ε)2k−t =
(
1−ε
ε

)2k−t
> 0 for any k, so we

can omit the terms with k < t
2

from the left-hand side. We obtain

t∑
k= t

2

(
t

k

)(
n− t
y − k

)(
1− ε
ε

)2k−t

>

t∑
k=0

(
t

k

)(
n− t
y − k

)
.

For k = t
2

we have
(
1−ε
ε

)2k−t
=
(
1−ε
ε

)0
= 1, so we can extract

the respective term on both sides of the inequality. By the symmetry
of binomial coefficients on the right-hand side, we obtain

t∑
k= t

2
+1

(
t

k

)(
n− t
y − k

)(
1− ε
ε

)2k−t

> 2

t∑
k= t

2
+1

(
t

k

)(
n− t
y − k

)
.

The inequality holds since 1−ε
ε
> 2 as ε→ 0, and 2k − t > 1.

The proof that p2 > p4 follows the same lines: we show the
inequality for each 0 ≤ y ≤ z, and then sum up.

Importantly, one can use Algorithm 5 to compute a trembling
hand perfect equilibrium of a dichotomous Doodle poll game. To

this end, we start with the profile where each voter approves his
good alternatives, and then allow each voter to make a best response
move in some fixed order. We obtain the following corollary.

COROLLARY 1. Given a Doodle poll game with κ ≤ |C| − 2,
lexicographic tie-breaking and dichotomous preferences, it is pos-
sible to compute a trembling hand perfect equilibrium in time poly-
nomial in |V | and |C|.

6. CONCLUSIONS
Our primary goal in writing this paper was to put forward a plau-
sible explanation to the counterintuitive phenomena observed in
Doodle polls. While Zou et al. [18] suggested that these phenom-
ena may be caused by voters’ desire to appear cooperative, they
stopped short of providing a model of voters’ utilities that matches
the observed behaviour. Building on their work, we developed a
computationally tractable model whose results agree with the real-
life data. Besides the basic idea of rewarding voters for approving
additional alternatives, our model has two new ingredients: plac-
ing a cap on the social bonus and identifying a suitable equilibrium
refinement, namely, trembling hand perfect equilibria (THPE).

Our analysis in this paper, together with that of [15] for plural-
ity voting, demonstrates that the concept of trembling hand equi-
libria is very useful in the context of voting games, where each
player (voter) has limited power, which gives rise to multiple (and
often undesirable) pure Nash equilibria. It is perhaps not surpris-
ing that profiles arising at THPE are intuitively appealing; interest-
ingly, they also turn out to be efficiently computable for a useful
class of settings (lexicographic tie-breaking and dichotomous pref-
erences). It may thus be interesting to understand the structure of
THPE in other important application scenarios that have received
significant attention in algorithmic game theory, such as, e.g., con-
gestion games.

While we see our results for the setting with capped social bonus
as our main contribution, the algorithmic results in Sections 4.1
and 4.2 help us identify important features of our model. In partic-
ular, we use the algorithm for lexicographic preferences described
in Section 4.1 in order to build a profile with no NE and to argue
that such profiles are quite likely in large elections. On the other
hand, hardness results of Section 4.2 indicate that randomised tie-
breaking gives rise to games where finding equilibria is intractable,
so, when studying the setting with capped social bonus, we focus
on the easier case of lexicographic tie-breaking.

The main take-home message of Zou et al. [18], as well as of
our work is that there are settings where voters engage in strategic
behaviour under approval voting. In particular, this happens when
voters’ utilities are different from those assumed in the classic ap-
proval model, and specifically take into account social effects. It
would be interesting to investigate the potential impact of such ef-
fects in other voting scenarios.

A topic that deserves further study is the effects of sequential
nature of open polls on voters’ behaviour. On the one hand, regard-
less of the order in which the voters submit their responses, each of
them can return to the poll any time and change his strategy. Hence,
a single-shot game is indeed a valid model for this scenario. On the
other hand, in practice many voters seem to ignore this opportu-
nity and tend to approve more slots the later they join the poll [18].
Hence, sequential effects need closer examination.
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