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ABSTRACT
We introduce a probabilistic graphical model of ranked preferences
for social choice based on a restricted version of a kth-order Markov
tree. The system is similar to Plackett’s model, and is based on the
intuition that, in some domains, an agent’s next most preferred al-
ternative is highly predictable given a few of the immediately pre-
ceding alternatives. We provide a bound on the data requirements
to learn the parameters of such a model and show eventual consis-
tency between most probable sequences of the model and both the
centroid of a Mallows model and the induced ranking of a RUM,
theoretically and on artificial data; this is followed by a full evalua-
tion of the model as a social choice system, including comparisons
with existing approaches on 6 real world datasets. An application
of the system to a simulated multiagent coordination task is also
demonstrated, in which the proposed system offers pronounced ad-
vantages over existing approaches.

1. INTRODUCTION
Multiagent decisions arise when a society of autonomous agents

must select from among some set of alternative actions which the
society will undertake collectively. When this coordination prob-
lem is solved by having each agent express an individual prefer-
ence regarding the various alternatives, and applying an algorithm
to aggregate these individual preferences into a group preference,
the problem is studied using the tools of social choice theory [3, 7].

Both individual and group preferences can be expressed as a
ranking of the alternatives available to the agent society. An in-
dividual agent’s ranking over a set of alternatives (candidates) C,
denoted�, is a binary relation over elements of C that is transitive,
reflexive and antisymmetric (i.e. a partial ordering of C). Thus, for
two candidates ci, cj ∈ C, ci � cj denotes ci preceding cj in the
ordering of the candidates (ci is preferred to cj). A social choice
function f aggregates rankings from the individual members of a
society into a single communal ranking, implementing some aggre-
gation algorithm. The two longstanding and central results in social
choice theory [2, 10, 21] show that for the special case where all
agents’ rankings are total orders over C, no aggregation algorithm
can produce a result that is properly representative of the prefer-
ences of the society, as specified by a set of axiomatic fairness
properties. Consequently, there exist many competing social choice
functions, which may be considered better or worse for a given so-
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ciety depending on the circumstances of the choice it faces. For
example, recent work [6, 8] advances social choice functions that
minimize the maximum possible regret that the society could col-
lectively experience as a result of the function’s choice of aggregate
ranking. This approach is an effective method of making a decision
when rankings provided by individual agents are incomplete [13],
or under the assumption that agents preferences have been induced
by underlying utility functions that are unknown [6]. Alternative
techniques include building a model of how agents’ preferences
might be generated, and then using the individual rankings to infer
the parameters of the model. The resulting model parameters can
then be used to suggest an aggregated ranking directly [23, 19, 15,
17], or to impute any missing preference information before apply-
ing an existing social choice function [9].

In this work, we offer a particular approach for modelling how
agent preferences can be generated, a probabilistic graphical model
called a restricted Markov tree. The resulting model is shown to be
consistent with two existing families of ranked preference distribu-
tions, but with the additional benefit of modelling the entire distri-
bution of preferences, rather than just estimating the most common
ranking. This means that a side effect of inferring the parameters
of our model is to provide an excellent model for the imputation of
missing preference information. We demonstrate that the new tech-
nique is highly effective when used to impute missing preferences
from real world electoral data, and also show, through the use of a
simulation, that the new model outperforms competitors for certain
problem domains.

While learning from ranked preferences is central to analysis of
data in domains like the Netflix challenge, as indicated above, the
application which motivates our work and is used for discussion in
this paper is that of social choice (i.e. aggregating individual ranked
preferences to reach communal decisions); a companion concern is
thus addressing how to predict missing preference information, of
use in various real world scenarios.

2. BACKGROUND
There has been considerable recent interest in learning models

of ranked preference data. Generally, such approaches begin by the
specification of a model, or family of models, from which prefer-
ences might be drawn, and then proceed to show how to infer the
parameters of the model efficiently from a sample of ranked prefer-
ence data. This sample can take many forms, ranging from arbitrary
pairwise relationships between the alternatives presented through
to more constrained representations like top-t orderings (where the
t most preferred candidates are ordered, and the remainder are un-
ordered, except insofar as they follow the first t), through to total
orders over the set.
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The simplest such model is the Mallows Distribution, roughly
analogous to a Gaussian distribution over rankings [15]. In a Mal-
lows model, a centroid ranking over the alternatives, µ, fulfills
roughly the role of the mean in a Gaussian, while a dispersion pa-
rameter φ is analogous to the variance. The probability of a rank-
ing R being produced by a particular Mallows model is given by
1
Z
e−φd(R,µ), where Z is a normalization constant, and d(R,µ) is

the Kendall-Tau distance between R and µ [11] (i.e. the number
of adjacent swaps required to transform R into µ). Several recent
papers discuss efficient inference over mixtures of Mallows models
(or classes which include them) via Gibbs sampling [12, 17].

An alternative, simple, preference model is the random utility
model or RUM [14, 18]. In this model, the subjective utility (qual-
ity) assigned by a given agent or ranker to given alternative is a
random variable drawn from some distribution over the reals. These
subjective utilities are not observed. Instead, an agent’s subjective
utilities for all alternatives together induces an ordering over the al-
ternatives, which the ranker then expresses. Like with the Mallows
model, there has been considerable recent interest in inferring the
parameters (typically means and variances) of the subjective util-
ities distributions of alternatives, given ranked data to learn from.
These approaches range from being able to infer the parameters
of RUMs where distributions lie in certain families (e.g. where all
subjective utility distributions are normal distributions with identi-
cal variances [4]), to more general classes, including models with
ranker-specific distributions [5].

Several other techniques have been developed that do not rely
on a specific model from which preferences are drawn in order to
infer an aggregated group ranking from individual rankings. Typ-
ically these approaches are more concerned with facilitating de-
cision making (i.e. social choice, voting), than inferring a partic-
ular true ranking. The Minimax Regret approach [13] determines
this order by ranking candidates with respect to the lowest possi-
ble rank they could achieve given an adversarial completion of any
preferences that are incomplete (i.e. less than total rankings), un-
der a given voting or aggregation rule. In contrast, the approach
of [9] is to learn predictive models for the completion of differ-
ent users’ preferences, and to complete them with said predictions
before making a decision using a given voting or aggregation rule.

The approach described in this paper describes a new model of
preferences that is detailed enough to provide reasonable inference
of a central ranking, but is still able to provide a predictive model
of individual user’s preferences. This is accomplished by learning
a Markov model that describes preference rankings as sequences.
An agent that can provide a portion of their own ranking can then
have the remainder predicted by the model (allowing for applica-
tions like the imputation-based social choice approach mentioned
above), while at the same time, a ‘most probable sequence’ can be
extracted from the model as a representation of the overall decision.

3. MODEL
Among distributions over (complete) preferences, the most straight-

forward and nonrestrictive model is a general joint distribution over
the set of possible total orderings. Agents’ preferences are mod-
elled being sampled from a set R of random variablesR1, ..., R|C|,
which all have domain C, the set of candidates or alternatives. The
elements of R are constrained to take on mutually exclusive values
(i.e.Ri = c→ Rj 6= c, ∀ 1 ≤ i 6= j ≤ |C|). If, in an agent’s pref-
erences, candidate c is preceded by exactly i − 1 candidates, then
in the corresponding assignment of values to the random variables
in R, Ri = c. The model is defined by a probability distribution
P (R1, ..., R|C|) over possible ballots. Given such a model, it is
also very easy to impute an incomplete preference provided by an

agent. For example, if an agent states that they like c1 the most,
and c2 second most, one could simply consult the model, find the
most common completion of ballots that started with c1 and c2, and
impute that completion. If the model was learned from actual bal-
lots, then this idea amounts to the notion of looking for other agents
who also ranked c1 and c2 first, and completing the original agent’s
ranking based on the preferences of these other agents. Although
the algorithm for accomplishing this inference is straightforward,
the size of the input to the algorithm can be prohibitively large, be-
cause the probability distribution may contain enormous amounts
of detail. There are |C|! possible ballots, and in theory, the proba-
bilities for each can be separately encoded. If most of the ballot is
incomplete, reasoning over possible completions is similarly hard.

One way of representing a probability distribution over a se-
quence of values for random variables is with a Markov Model,
which stores a probability distribution for the next value in the se-
quence given some number of previous values, as well as a dis-
tribution over starting values for the sequence. This is similar in
spirit to Plackett’s model [18], which shows that a nested series of
logistic models can be used to learn higher order sequences of pat-
terns. A Markov Model assumes that the value of the variable at
the present step is dependent only on the value of the variable in
the previous step of the sequence, or perhaps in some (finite) num-
ber of additional sequence steps in the past. This assumption allows
it to factor the joint distribution over a sequence of values R into
a series of simpler distributions. For example, a first-order Markov
Model computes the probability of a sequence as:

P (R) = P (R1)
∏

i∈2,...,|R|

P (Ri|Ri−1)

where P (R1) is a distribution over the value of the first variable in
the sequence, and P (Ri|Ri−1) is the probability of the next vari-
able in the sequence taking on valueRi given that it had valueRi−1

in the previous step.
The relationships between elements of the sequence in a Markov

Model can be presented pictorially using the standard notation for
Bayesian Networks. Figure 1 shows several examples of such fig-
ures for different values of k, the number of previous steps on
which future steps depend. All of the models are over sequences
of length exactly four, and the four nodes shown correspond to the
value of the variables in the sequence at each of four steps. Edges
show dependencies between the nodes. A probability distribution is
needed at each node, showing the probability for the value of the se-
quence at this step, given the node’s parents,P (Ri|Ri−j , ..., Ri−1).
The grey nodes in each model all share a probability distribution,
since they all have the same number of parents. The assumption that
all nodes beyond the jth share a probability distribution is called
the Markovian assumption.

A Markov Tree is a particular way of storing, representing, and
utilizing the probability distributions that are contained in a Markov
Model. In a Markov Tree, the root stores the probability distribution
over values of the initial variable R1, much like the first node in a
Markov Model. Both the root of a Markov Tree, and the first node
of a Markov Model store the probability distribution P (R1). The
root of a Markov Tree has one child for each possible value that the
variable could take initially. For example, in a second-order Markov
Tree, each node at the second level of the tree stores the probabil-
ity distribution for R2 given that R1 took on a specific value in
the previous step (i.e. P (R2|R1 = x) for some x), and likewise
has a child for each possible value that R2 could take on. Collec-
tively, all the nodes at the second level of the tree store the informa-
tion contained in P (R2|R1), which is the probability distribution
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R1 R2 R3 R4

R1 R2 R3 R4

Figure 1: A graphical representation of first and second order
Markov Models for a sequence of length four. Each node cor-
responds to the state of a random variable at the correspond-
ing step in the sequence. An edge from Ri to Rj shows that
the probability distribution for Rj depends on the value of Ri.
Gray shaded nodes within the same model have identical prob-
ability distributions (by the Markov assumption).

stored at the second node in a Markov Model. Similarly, subsequent
non-leaf levels of the tree will collectively store the distributions
of subsequent nodes in a Markov Model. For instance, in a third-
order Markov Tree, the third level of the tree collectively stores
P (R3|R1, R2). Each node will store P (R3|R1 = x,R2 = y) for
some specific values x and y. The leaves of the tree are special, and
correspond to the entire set of grey nodes shown in Figure 1. In a
Markov Tree of order k (i.e. a tree modelling a distribution where
the ith preference depends on the preceding k preferences), each
leaf of the tree stores a distribution P (Ri|Ri−k, ..., Ri−1 = S)
where S is a sequence of length k and i > k, meaning the leaves1

collectively store the distribution P (Ri|Ri−k, ..., Ri−1). Figure 2
shows a Markov Tree that encodes all the information required to
represent a first-order Markov Model assuming that the variables
can take on only 3 distinct values at each step, denoted {c1, c2, c3}.
Markov Trees are used in this paper to represent Markov Models,
because a special restriction must be applied to a Markov Model in
order to represent distributions over ballots, and this restriction is
more easily encoded into a Markov Tree. These restricted Markov
Trees are discussed formally and at length in the next section.

In this section, we describe the proposed model for learning pref-
erence distributions using kth -order Markov trees. The intuitive
idea behind the model is that in some domains, ranked alternatives
can be thought of as embedded in a (often small) feature space. For
example, when ranking political alternatives, the candidates might
be accurately representable on the left-right axis, or on the slightly
less well known two-dimensional model (liberal/conservative eco-
nomic policies and liberal/conservative social policies). Once the
candidates are embedded in such a space, a ranking can be thought
of as a trajectory through the space. Insofar as some trajectories
are more common or popular than others, we can infer the relative
quality of different rankings of the candidates.

From a generative prospective, this models the idea that ranked
data are generated based on the candidates an agent has thought
about in the recent past. This would be applicable to domains where
humans are confronted with excessive amounts of choice, like or-
dering the set of all possible films, or all possible meals. In practice,
1Because of the Markov assumption, the distribution stored at each
of the leaf nodes is identical, and so only needs to be recorded once
in a generic form, and can be reused when reasoning about all val-
ues of Ri for i > k.

P (R1)

P (Ri+1|Ri = c1) P (Ri+1|Ri = c2) P (Ri+1|Ri = c3)

Figure 2: A graphical representation of a first order Markov
Tree. The internal node of the tree (the root) stores information
about the distribution of values for R1, while the leaves store
information about the distribution of Ri given the values of the
preceding k = 1 members of R, which are identical for every
i > k by the Markovian Assumption.

such an agent probably does not construct a full ranking of the al-
ternatives. Instead, the agent will first rank a few options that come
to mind immediately. Thinking of these options will suggest certain
successors, which in turn will suggest other successors. More for-
mally, we assume an agent’s seed ranking, of size k, is a top order
drawn from a distribution over the set of top-k rankings. Following
that, an agent’s next most preferred alternative is drawn from a dis-
tribution that depends only on the immediately preceding k items.
The process is then repeated, with some probability of stopping at
each step, to yield a top-order over some (potentially large) set of
candidates.

A Markov tree of order k is nearly (though not quite) sufficient
to represent the process described above, and can be efficiently
learned from a sample of ranked data. Since a Markov tree is fairly
compact, provided that k is small, and has a readily interpretable
representation, we believe it may be a useful and informative alter-
native to more complex existing models for learning user prefer-
ences, at least in domains with fairly homogenous preference tra-
jectories. Interestingly, we can also show that the new model can
efficiently learn the overall rankings of several existing families of
voting models, including both random utility models and Mallows
models.

3.1 Formal Description of the Model
Formally, the proposed model is to use a restricted Markov Tree,

in which an agent’s jth most preferred alternative is modelled as a
discrete random variableRj with domain equal to the set of alterna-
tives that are to be ranked, C. Rj is distributed according to a cate-
gorical distribution with parameters dependent on k preceding vari-
ables Ri for j − k ≤ i < j, and conditionally independent of the
rankings of any other agent given the parameters of the model itself
(i.e. rankings are drawn i.i.d.). As mentioned above, a Markov tree
is not quite capable of modelling the generative process that was
described. This is because each candidate can be ranked only once,
whereas in a true Markov tree of order k, the k+2nd candidate can-
not depend on the first. To address this, the following constraints
are imposed: P (Rj = c|Ry = c ∧ y 6= j) = 0, and also P (Rj =
c|{Ry | y < j ∧ Ry 6= c}) = P (Rj = c|{Ry | j − k ≤ y < j})
where k is said to be the order of the restricted tree. The result-
ing model is a Markov Tree of order k, but with mutual exclusivity
constraints encoded. Such a model can be compactly represented
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as an ordinary Markov tree of order k. When reasoning about Rj ,
one only needs to restrict the domain of Rj to those elements of
C that did not appear previously in the ranking, renormalizing the
probabilities of the remaining elements of C in accordance with
Luce’s axiom [14], which supposes that an agent’s distribution of
preferences over candidates a and b ought not to be affected by the
addition or removal of some third candidate c from C.

The parameters of the model are encoded in several sets. The
first set corresponds to the leaves of the tree, and are used to im-
pute the k + 1st candidate given a list of k candidates that are
ranked already. For a given sub-sequence S of k candidates drawn
from C, θS,c,k+1 denotes the value of the parameter correspond-
ing to P (Rj = c|{Ry = Sy−(j−k)+1 | j − k ≤ y < j}),
for any j > k. P (θS,c,k+1) is then the prior probability distri-
bution over values of θS,c,k+1 in the model, and the complete set
of parameters corresponding to multinomial distribution over val-
ues of Rj given the observation of each possible sub-sequence
S is denoted with ΘC,k+1 = {θS,c,k+1 | S ∈ ρ(C, k) ∧ c ∈
C}, where ρ(C, k) is the set of all permutations of k elements
of C. Additionally, the model will have k − 1 further sets of pa-
rameters for the initial levels of nodes in the Markov tree, corre-
sponding collectively to the joint distribution over the first k candi-
dates ranked, which naturally cannot be predicted by a distribution
that requires k prior rankings. These parameters are denoted with
ΘC,y = {θS,c,y | S ∈ ρ(C, y) ∧ c ∈ C}, and are defined for
every 1 ≤ y ≤ k. Each of the parameters θS,c,y corresponds to
P (Rj = c|{Rx = Sx−(j−y)+1 | j − y ≤ x < j}), predicting
the yth candidate on the basis of the preceding y − 1. Thus, for
example, a first order tree has two sets of parameters, ΘC,2, stored
in the leaves, and ΘC,1, stored in the root node. In a slight abuse of
notation, the set of all parameters for a complete kth order model
is denoted with ΘC,~k. Throughout, there are occasional abuses of
notation by treating S as though it were a set. S is always a sub-
sequence rather than a set, but S \ s may be used to indicate the
sequence with its last element (s) truncated. Similarly, |S| may de-
note the length of S.

Consider for example a first order model (i.e. k = 1) describing
the distribution over a set of four candidates C = {c1, c2, c3, c4}.
The model will have four parameters in ΘC,1, and 16 in ΘC,2 (4 in
each of the 4 leaf distributions). Example values for the parameters
are summarized in Table 1, which provides some intuition about the
notation used in the model. The left hand table shows the distribu-
tion over initial elements of the sequence, in this case, over agents’
most preferred candidates. The right hand table shows the distribu-
tion of an agent’s second preference, conditioned on their first. An
agent’s third preference will obey an identical distribution, condi-
tioned on their second, but re-normalized to remove their first pref-
erence from consideration. For example, suppose that an agent’s
first preference is c2, and second preference is c3. Looking in the
right hand table, the probability of selecting c1 as the agent’s third
preference is 0.1, given by θc3,c1,2. Likewise, the probability of
selecting c4 as the agent’s third preference is 0.8, as indicated by
θc3,c4,2. Since c2 has been assigned as the agent’s first preference,
these probabilities do not sum to 1. By applying Luce’s Axiom, the
probabilities are renormalized, reflecting the idea that, apart from
the mutual exclusivity constraint, the distribution depends only on
the immediately preceding preference. Therefore, c4 will be se-
lected as the next preference with probability 0.8

0.1+0.8
≈ 0.89 and

c1 will be selected with probability 0.1
0.1+0.8

≈ 0.11.
Having described the model, it now remains to describe how its

parameters should be learnt. Learning the parameterization of ΘC,k

is the most difficult. This requires a set of contiguous partial rank-
ings over the subsets of k candidates in C. A contiguous ranking

c θS,c,1 Value
c1 θ∅,c1,1 0.1
c2 θ∅,c2,1 0.4
c3 θ∅,c3,1 0.4
c4 θ∅,c4,1 0.1

S c θS,c,2 Value
c1 c1 θc1,c1,2 0

c2 θc1,c2,2 0.4
c3 θc1,c3,2 0.3
c4 θc1,c4,2 0.3

c2 c1 θc2,c1,2 0.8
c2 θc2,c2,2 0
c3 θc2,c3,2 0.2
c4 θc2,c4,2 0

c3 c1 θc3,c1,2 0.1
c2 θc3,c2,2 0.1
c3 θc3,c3,2 0
c4 θc3,c4,2 0.8

c4 c1 θc4,c1,2 0.2
c2 θc4,c2,2 0.5
c3 θc4,c3,2 0.3
c4 θc4,c4,2 0

Table 1: Tables showing an example of the probability distribu-
tions used in a first-order Markov Tree. The distribution over
initial statesR1 is shown on the left, while the transition proba-
bilities (i.e. the distribution of Ri given Ri−1) are shown in the
table on the right. The red numbers correspond to the proba-
bilities that are re-normalized and used to determine an agent’s
third preference, given that their first preference was c2, and
their second was c3.

over a set C is defined by a successor function �contig such that
∀ a, b ∈ C, a �contig b ⇐⇒ rank(b) ≤ rank(a) ∧ 6 ∃ c ∈
C s.t. rank(b) ≤ rank(c) ≤ rank(a), where rank(x) is the number
of candidates that are preceded by x in the ranking. That is, it is
a partial ordering where certain pairs (those where a �contig b is
defined) are known to be contiguous in the ranking, independent of
the fact that certain other candidates may be unranked. Although
the same symbol (�) is used, this should not be confused with the
more general ideas of a partial or total order. This restriction at first
appears substantial, but any total order over the candidate set can be
represented with a contiguous ranking, and so can any top-k orders,
and partial orders in which relatively few pairs of candidates are in-
comparable (e.g. a � b � c � (d ∼ e) is a contiguous ranking
where a, b, and c appear contiguously in the first three positions,
ahead of d and e, but the relative order of d and e is undetermined).

Given a single total ordering of the candidates �, learning pro-
ceeds by splitting the ordered list corresponding to � into a series
of sub-sequences, used as observations to adjust the parameters of
ΘC,~k. The candidate ranked first S1 is an observation forR1 = S1,
which consequently influences the posterior distribution of θ∅,R1,1.
Similarly, the first j ranked candidates serve as an observation of
Rj = Sj |{Ri = Si, i < j} for each j < k, which influences the
posterior distribution of θS1..j−1,Sj ,j . After the first k candidates
ranked in�, each subsequent ranked candidate defines an observa-
tion of Rj = Sj |{Ri = Si, j − k ≤ i < j}. Given a contiguous
ranking that is not total, a similar process is followed. All contigu-
ous subsequences of length k + 1 can be extracted and used as
observations of Rj = Sj |{Ri = Si, j − k ≤ i < j}, and any
top-order of length j < k can also be used to provide observations
for the other model parameters. Collectively, these sequences con-
stitute the training data. To estimate the parameters from the train-
ing data, standard statistical estimation techniques are adopted. In
particular, given a set of ballots that all begin with the same sub-
sequence S and rank at least one more candidate ci following S,
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the parameters in {θS,ci,|S| | ci ∈ C \ S} can be learned via the
Maximum Aposteriori estimate for a categorical distribution:

θ̂S,ci,|S| =
αi +NS,ci,|S|∑

cj∈C\S(αj +NS,cj ,|S|)

where NS,ci,|S| is the number of observations which contain se-
quence S followed by ci, and αi is the number of prior observa-
tions of ci following S (i.e. α collectively parameterize a Dirichlet
prior for the categorical distribution defined by θS,ci,|S| for every
ci ∈ C \ S; this allows the incorporation of prior information).

It is easy to see that a tree of this class, properly parameterized,
can generate any sequence of alternatives. The full distribution over
the first k candidates is represented fully, and with proper param-
eterizations, it can generate any initial sequence. The remainder of
the sequence will be sampled from the k + 1th node, which will
initially assign probabilities to each previously unranked candidate.
After selecting a candidate, the distribution conditional on the sec-
ond through k + 1th candidate will be renormalized by restricting
all k + 1 candidates thus far selected. This will proceed until the
final candidate is selected, provided that all candidates have non-
zero probabilities of appearing in all conditionings of the k + 1th

node. The distribution as represented is not proper, because the rep-
resentation is compact. If the tree were expanded out fully, so that
each node beyond the kth corresponds to a particular restriction of
the kth node, then a proper probability distribution (i.e. where the
sum of the probability of all events is 1) could be obtained. As it
is, if the compact distribution is sampled from with appropriate re-
strictions, then the product of the renormalized parameters used at
each sampling step will yield a proper probability, even if multiply-
ing the raw parameter values would not. Note that normalization is
not required during training, because we only train on the contigu-
ous subsequences of length k or less. Note also that, if Laplacian
smoothing is not used, re-normalization may be impossible.

Once a model has been learned, it is straightforward to impute
a ballot. A top-order S can be extended by sampling a candidate
from C \ S from the appropriate learned categorical distribution.

3.2 Convergence Rates and Consistency
Suppose a set of rankings are generated from a restricted Markov

Tree of order k with unknown parameter values. It is reasonable to
suppose that another restricted Markov Tree of order k could be
constructed, and that by observing the rankings generated from the
first tree, could be trained to have parameter estimates that would
converge to those of the original tree as more data was observed.
A bound on the amount of data required to learn the parameters
of the above model to within a given tolerance ε would be useful
however. For simplicity, the learning process analyzed to develop
a bound is maximum likelihood estimation rather than maximum
aposterori estimation.

THEOREM 1. Given a set of candidatesC and a restricted Markov
Tree T of order k describing a distribution over candidate sequences
ofC, the error in a learned estimate θ̂S,c,|S| of a parameter θS,c,|S|
in a second restricted Markov Tree T ′ for a given sequence S ∈ Ck
and c ∈ C is in O(θS,c,|S|

√
ε) with probability at least (1 −

α)k after observingN = − ln((α/|C|)2)
θS,c,|S|

∏
0<j<k(θS1,j−1,Sj ,j(1−

4
√
ε)−1) sequences drawn from T .

The gist of the proof is that for parameters in the top level of
the tree (e.g. θ∅,c,1), Quesenberry and Hurst’s bound for the dis-
tribution of a multinomial proportion [20] can be used to guar-
antee that θ̂S,c,|S| lies within an interval centred at θS,c,|S| with

probability (1 − α). The interval can be expressed using Alzer’s
inequality [1] for the χ2 cumulative density function in a closed
form depending only on the values of ε, θS,c,|S| and N . Some al-
gebra then yields the desired bound. For parameters lying deeper
in the tree, the same approach is used, but only the subset of the
rankings drawn that begin with sequence S can be used to learn
the value of deeper parameter θS,c,|S|. This results in a blowup of∏

0<j<k(θS1,j−1,Sj ,j(1 − 4
√
ε)−1) in the amount of data needed

to produce the same bound as in the data for the parameters at the
top level, and this is shown inductively.

PROOF. Suppose that N data points (i.e. total orderings) are
sampled from a restricted Markov Tree T of order k as described
above, parameterized with ΘC,~k. Let Nc,1 be a random variable
representing the number of rankings sampled from T that rank can-
didate c highest. Let θ∅,c,1 be the parameter in T corresponding to
the true probability of generating a sequence that starts with c. Now,
Nc,1/N = θ̂∅,c,1 is effectively distributed as a multinomial propor-
tion. By Quesenberry and Hurst’s (conservative) bound on the dis-
tribution of of a multinomial proportion [20], with probability 1−α,
Nc,1
N
∈

2θ∅,c,1N+χ2
1,α/|C|±

√
γ

2(N+χ2
1,α/|C|)

where γ = χ2
1,α/|C|(χ

2
1,α/|C| +

4Nθ∅,c,1(1− θ∅,c,1)) and where χ2
1,α/|C| is the value at which the

probability mass in the right tail of a χ2 distribution with 1 degree
of freedom is exactly α/|C|. It follows that:

Nc,1
N
∈
θ∅,c,1 +

χ2
1,α/|C|

2N
±

√
γ/(4N2)

1 +
χ2
1,α/|C|

2N

.
Alzer’s inequality [1], states that χ2

1,α/|C| < −2 ln((α/|C|)2).

Let β = − ln((α/|C|)2)
N

. Then, with probability (1 − α): Nc,1
N
∈

θ∅,c,1+β±
√
γ/(4N2)

1+β
, from which it is easy to show that: |Nc,1

N
−

θ∅,c,1| < β +
√
γ/(4N2)

Now, assume that β < εθ∅,c,1, which will be true for some
0 < ε < 1 for large enough N . Then one can derive |Nc,1

N
−

θ∅,c,1| < 4θ∅,c,1
√
ε, which shows the desired bound for the case of

the P (Ri, 1).
The general case is now proven inductively. Suppose that the

desired bound holds for a parameter θS\s,s,k−1. The goal is to
show that it also holds for a parameter θS,c,k, where c ∈ C \ S
is some other candidate. Let NS be the total number of rankings
drawn that begin with sequence S. By the inductive hypothesis,
|θS\s,s,k−1 − NS

NS\s
| < 4θS\s,s,k−1

√
ε with probability at least

(1 − α)k−1, for some − ln((α/|C|)2)
NS\sθS\s,s,k−1

< ε. It follows that NS >

NS\sθS\s,s,k−1(1− 4
√
ε) with probability (1− α)k−1 also. Fol-

lowing the argument for the basecase above, if it is allowed that
β < εθS,c,k, then |θS,c,k− NS∪c

NS
| < 4θS,c,k

√
ε with probability at

least (1− α)k. Since NS > NS\sθS\s,s,k−1(1− 4
√
ε) it follows

thatN (the total number of sequences sampled) must also be larger
by a factor of at least 1

θS\s,s,k−1(1−4
√
ε)

than was required for the
bound to hold for θS\s,s,k−1.

In more concrete terms, this result indicates that the total number
of samples that must be drawn to accurately infer the true param-
eters of T grows exponentially in the depth of k, but linearly in
the total number of parameters (i.e. in |ΘC,~k|). Further, errors will
be concentrated in the least common sequences, which are unim-
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portant for many applications. It may be helpful to see an exam-
ple that illustrates the orders of magnitude for the data require-
ments. Suppose a second order Markov Tree is to be trained on
ballots for an election with 10 candidates. It is expected a priori
that all candidates have at least a 5% chance of following any two
other candidates in a given ranking, and that ballots were generated
by a second order Markov Tree or a similar process. If the error
in the estimate of any parameter’s value is desired to be at most
1% with probability 95%, then data requirements would be N =

− ln(0.0052)

(0.05)2(1−4
√

0.01)−1 , or about 7, 000 example sequences of length
k + 1. This corresponds to about 875 complete rankings drawn
from T , because a complete ranking of 10 candidates contains 8
subsequences of length 3. However, if some of the sequences are
much more likely than others, these more likely sequences could
be learned with far less data (since those sequences will appear dis-
proportionately often in the data).

The runtime for parameter estimation is linear in the amount of
data given (i.e. the number of contiguous subsequences provided),
but there may be an enormous number of parameters in a deep
model, such that simply enumerating the parameters requires more
time than a pass through the data. To avoid this, the implementa-
tion renders training time independent of the total size of the tree
being represented via the use of lazy evaluation and hash maps.
The Markov Tree is represented as a nested data structure. The root
holds a hashmap from C to the values of θ∅,ci,1 for all ci ∈ C.
Additionally, it holds a map from C to instances of the data struc-
ture that store distributions for the second candidate in sequence.
Each of those nested data structures holds a mapping to distribu-
tions over the third candidate selected, and so on up to the kth.
However, vitally, the nested structures are only constructed if ac-
tual data is observed that necessitates their construction. Otherwise,
they can be left un-constructed, and during inference and genera-
tion, an interchangable uniform distribution can be substituted any-
where that an undefined value is used. Since constructing a new
node is a constant-time operation, even in the worst case, the total
time required to construct and learn a model is linear in the num-
ber of observations (i.e. O(kn) if n subsequences of length k are
available for training).

3.2.1 Consistency
The results of the previous section also show consistency in the

limit between a learned restricted Markov Tree T of order k, and
a distribution from the same family. Although there are reasons to
suppose at least some natural processes generate rankings in this
manner, we can also show eventual consistency between the most
probable sequence in a learned restricted Markov Tree and two
common families of ranking models, the Mallows Family and the
RUM Family with identical variances across utility distributions.

First, we define the most probable alternative at a given node of
T at depth j (reached by traversing the tree with sequence S) to be
ĉS = arg maxc∈C θS,c,j , and the most probable sequence (MPS )
for T at depth j to be MPS j(T ) = MPS j−1(T ), ĉMPSj−1(T ),
with MPS1(T ) = ĉ∅.

THEOREM 2. Let M be a Mallows model with centroid µ =
µ1, ..., µ|C| and dispersion parameter φ. As the number of total or-
ders sampled from M goes to infinity, the most probable sequence
MPS |C|(T ) of a restricted Markov Tree T of order k trained on
the drawn rankings converges to µ, provided 0 ≤ e−φ < 1

The proof is omitted for space reasons, but can be found in the
associated technical report, available on the authors’ website.

THEOREM 3. LetM be a Random Utility Model where the util-
ity of candidate ci is distributed as a Gaussian with mean ηi ∈ ~η,
and standard deviation σ, subject to the constraint that ηi 6= ηj for
all candidates ci 6= cj . The set of means ~η induce a ranking over
the candidates µ = µ1, ..., µ|C|, such that if µi = cj and µl = ck,
and i < l, then ηj > ηk. As the number of sample rankings drawn
from M goes to infinity, the most probable sequence MPS |C|(T )
of a restricted Markov Tree T of order k trained on the drawn rank-
ings converges to µ.

PROOF. The proof proceeds by induction. First, consider the
distribution of first preferences among rankings drawn from M .
For any µl 6= µ1, the amount by which the subjective utility of µ1

exceeds the subjective utility of µl during the generation of a par-
ticular ranking is a random variable distributed as N (η1 − ηl, 2σ).
Since, by definition, η1 > ηl, this amount is always positive in
expectation, so MPS1(T ) will converge to η1 with infinite data.

Now, suppose that MPS j(T ) = µj∀0 < j < j + 1. It will
be shown that MPS j+1(T ) = µj+1. All µl 6= µj+1 that have
not yet been fixed in MPS j(T ) have the property ηl < ηj+1. If
j + 1 < k, then the amount by which the subjective utility of
µj+1 exceeds the subjective utility of µl during the generation of
a particular ranking is a random variable distributed as N (ηj+1 −
ηl, 2σ), always positive in expectation.

An interesting implication of both results is that a Markov Tree
of any order k > 1 will eventually converge so that its most prob-
able sequence matches the centroid of a Mallows or the induced
ranking of a RUM, although potentially large amounts of data will
be required if there are many candidates involved because the proofs
assume infinite data. This is significant because it demonstrates the
ability of the Markov Tree model to accurately infer the parameters
of other simpler models.

4. EVALUATION
To evaluate the proposed model, we implemented an algorithm

for learning restricted Markov Trees. The system learns from top-t
rankings using a sliding window of size k. The first k − 1 prefer-
ences of the ranking are used to explicitly learn the parameters of
the first k − 1 nodes of the tree, while the kth preference of the
each window is used to learn the parameter θS,c,k, where S is the
first k − 1 parameters of the window, and c is the kth.

Figure 3 shows the convergence results for Mallows distributions
with 5 candidates 2, and e−φ = 0.5, or 0.8. Each graph shows the
convergence for four different values of k (1,2,3, and 4), starting
with just 10 sequences drawn, and ending with a thousand or more
after all or most of the models have fully converged. The figures
are best viewed in colour. Figure 3 (left) show a very rapid conver-
gence for all of the models when ballots are drawn from a fairly
homogeneous population with a small number of candidates. Sim-
pler models perform less well when there is insufficient data, but
converge faster (likely because they have fewer parameters, and
because they are able to extract more information per ballot). Fig-
ure 3 (right) shows a similar trend when the ballots are less homo-
geneous, though more data is required for convergence, and sim-
pler models do not converge as quickly as before. However, a clear
trend toward convergence is present even in the simplest (i.e. first
and second) order models, bearing out the findings in Theorem 2.
Similar results were produced when the experiments were repeated
with various RUMs in place of the Mallows models.

2Similar results are readily obtained for 10 and 20 candidates also,
but are not shown here for lack of space.
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Figure 3: Convergence of MPS |C|(T ) of Markov Trees of different
depths to the centroid of a Mallows distribution with |C| = 5 and
e−Φ = 0.5 (top) and e−Φ = 0.8 (bottom) as more data is drawn from
the Mallows.

In addition, we evaluated the performance of the model on 10
data sets from the preflib.org repository of ranked data [16]. Seven
sets are ranked ballots from elections of the leader Debian Project,
a popular open source operating system. An eighth contains ranked
ballots used to decide the project’s logo. The remaining 3 sets were
ranked ballots from the 2002 Irish National Election, from the Dublin
North, Dublin West, and Meath districts. All sets consist of top-t
rankings, with between 100 and 4000 usable ground truth rankings
per set, and between 4 and 14 alternatives. We set k = 3 through-
out, based on the results observed in the preceding experiments.

The sets do not contain a ground truth, since the winning ranking
depends on the electoral system used and the treatment of missing
preferences. As such, we evaluated our system by discarding all but
the subset of the ballots which ranked all |C| candidates. These bal-
lots were then ablated in a way consistent with the original data (i.e.
if x% of rankings in the original dataset ranked at least j candidates,
then in the ablated version of the subset of complete rankings, x%
of rankings also ranked at least j candidates, for every j), following
the experiment design suggested by Doucette et al. [9]. The model
was then trained on the ablated ballots, and used to impute them by
generating the MPS completion of the top-t sequence starting with
the ordering given by each ballot. The ranking of the candidates
produced by applying particular electoral rules to the original, non-
ablated, subset of complete data, was then compared to the ranking
produced using the imputed rankings.

We compared performance under four popular social choice func-
tions (Borda, k

2
-Approval, Copeland, and Veto). Performance was

measured both in terms of the Kendall correlation (i.e. a correlation
proportionate to the Kendall-Tau Distance) between the ground-
truth ranking and aggregate ranking produced by each model us-
ing the ablated ballots, and distance of the winning candidate in
the ground truth from the top position in the aggregate rankings
produced by each model. Comparisons are provided for the per-
formance of a worst-case baseline and logistic regression approach
(reproduced from [9]), and the Minimax Regret approach [13]. An
approach based on the Maximum Likelihood Approach to voting [22]
was also considered. We used an existing implementation [9] which
samples possible completions under the assumption that (apriori)
all completions are equally probable. This approach is denoted “ran-
dom” in the results. Results are summarized for the Borda 3 social
choice function in Figure 4, which shows mean error in the pre-
dicted position of the winner (top), and the overall Kendall cor-
relation with the ground truth (bottom) for each of the 4 compet-

3Results on other rules omitted for space reasons. Relative perfor-
mance of the Markov Tree was slightly better than on Borda under
Copeland and Veto, and slightly worse under K/2-approval.

ing methods and the proposed Markov Tree approach. The Markov
Tree performs best overall when the goal is to recover the true win-
ning alternative, and as well as the other strong approaches when
the goal is to recover the complete ranking of the candidates.

Figure 4: Summary of performance for the Markov Tree
Learner compared with three competitors and the worst case
model. (Top): Single Winner Error (inverse scale). Higher val-
ues indicate better performance, 0 is the best possible. (Bot-
tom): Kendall Correlation. Higher values indicate better per-
formance, 1 is the best possible.

As a final validation, we demonstrate a specific, simulated, agent
society in which the newly proposed model offers a compelling
advantage over existing approaches.

In many situations, the candidates an agent prefers may be in-
timately linked to the agent’s general knowledge about the candi-
dates, especially in applications like multiagent coordination. As
a concrete example, we propose a scenario in which a swarm of
robotic agents must collectively select a site to extract resources
from. Mining sites and the headquarters of various mining com-
panies were distributed on a two-dimensional grid. The companies
wanted to mine resources from the sites, but are required to coordi-
nate, and to operate their robots as a heterogeneous team or swarm.
It is riskier to operate one’s robots further from one’s headquarters,
but each company values the risk differently. Companies have dif-
ferent information about the quality of different sites. Suppose that
viable mining sites are modelled as points distributed on the grid
according to a two-dimensional Gaussian, centered at the origin,
but that mining companies’ headquarters are distributed uniformly
at random throughout the space. Each site has an expected profit
that will be received from mining it. The probability that a company
knows enough about the site to estimate its expected profit is pro-
portionate to the true value of the site, divided by distance between
the company’s headquarters and the site4. This creates a scenario
where companies with headquarters near the origin will have lots
of information, but companies further away will have much less. In

4This corresponds to the notion that information about more valu-
able sites will spread further, all else being equal.
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Figure 5: Improvement in Kendall Correlation from using the
our approach in the coordination example problem under the
K-Approval voting rule. Box plots show the distribution of ad-
vantage over 100 problem instances for different numbers of
companies. Notches indicate a 95% confidence interval for the
median.

this scenario, there is a strong correlation between the candidates
agents prefer and the number of candidates agents are able to rank.

In our implementation, a space consisting of real-valued num-
bers between (−5, 5)× (−5, 5) was used for the grid. Mining sites
were sampled from a Gaussian distribution with mean (0, 0), and
standard deviation of 1.5 along each major axis, with no covari-
ance. If two sampled sites were within a Euclidean distance of 0.1
units of each other, one of the sites was re-sampled. The locations
of company headquarters were sampled uniformly at random, with
the constraint that no company could have headquarters within a
Euclidean distance of 0.1 units of a mining site, or of any other
company’s headquarters. Each company had a utility function that
placed the expected value of mining a site at 1

rδ
, where r was the

company’s risk parameter, sampled from an exponential distribu-
tion with parameter λ = 0.5, and δ was the Euclidean distance
between the company’s headquarters and the mining site. A com-
pany knows the (correct) quality of the closest mining site with
certainty. Given that a company knows the quality of the k clos-
est sites already, it knows the quality of the next nearest site with
probability 2

1+eδ
. For simplicity, no company knows the quality of

more distant sites without also knowing the quality of less distant
ones, and operates only 1 robot. A company’s ballot ranks a mining
site only if its quality is known. Candidates are ranked according
to the company’s utility function. A third order Markov Tree was
used to impute the ballots. The K-Approval voting rule was used
to decide the election. There were 15 mining sites, and the num-
ber of companies varied between 100 and 6400, with 100 problem
instances being generated for each parameterization. The method-
ology from [9] was adopted to allow the Markov Tree to first learn
a model of preferences, and then suggest an imputation, and then a
winner. Results were also collected for MMR and the random ap-
proach. Figure 5 shows the advantage in Kendall Correlation for
our approach over each competitor under K

2
-Approval. The ad-

vantage is the Kendall Correlation between the outcome using the
imputation approach and the ground truth, less the Kendall Corre-
lation between the outcome using each competitor and the ground
truth, on each of the 100 problems for each parameter setting. Val-
ues greater than 0 indicate advantage for our approach.

The advantage of using the Markov Tree approach is very pro-
nounced in this example application, and for the 6,400 company
case, begins to approach the distance between the correct outcome
and an outcome sampled uniformly at random. Indeed, examin-
ing the raw results, the competing methods are often selecting out-

comes that are worse than randomly selected ones. The reason for
this is that the problem domain produces (by design) ballots with
very extreme and asymmetric missingness. Most ballots will rank
only one or two of the 15 candidates. The exception to this is for
agents located near the centre of the grid, who will be close to many
candidates, and so will rank many candidates. In the case of MMR,
the extreme missingness gives wide latitude to make nearly any
candidate win the election. This problem is not helped by having
a larger number of ballots to work with, since these ballots are
also highly incomplete, and while any candidates they order pro-
vide MMR with some information to constrain its selection of the
winner, this is outweighed by the unconstrained choices for the or-
dering of the remaining candidates these extra ballots do not order.
In essence, additional ballots add more degrees of freedom than
they subtract, and MMR is picking a winner by solving a nearly un-
constrained optimization problem. The random approach also fares
rather poorly for this reason. There is a lot of noise in the relative
positions of the candidates using only the given preferences. In con-
trast, our approach makes very efficient use of features in the given
ballots to determine how agents would have voted. If two agents
rank the same candidate highly, they must be close to one another
in the grid, and so will have correlated opinions about more dis-
tant candidates. Effectively, each ballot improves the quality of the
machine learning model, without increasing the complexity of the
imputation task significantly. Given enough data, the Markov Tree
will be able to predict an agent’s preferences with a great deal of
accuracy, given only their first few preferences. The example illus-
trates the great strength of our approach in domains where agents’
preferences truly do exhibit structure of this kind.

5. CONCLUSION AND FUTURE WORK
In this paper we proposed a new model for learning preferences

based on the notion of learning a distribution of sequences as a
Markov model. This model is useful because it can both learn the
most common sequences of preferences (allowing it to facilitate
analysis of a preference distribution to make a social choice on its
own), or generate completions of missing data elements (allowing
it to be used in an imputation-based approach like [9], or to facili-
tate individual choices or recommendations). We provide a rigorous
bound on the generalization error of the model when learning pref-
erences that are drawn from a Markov model of similar depth, and
proofs of eventual consistency with two common families of pref-
erence distributions. Our model is shown to recover the parameters
of distributions of artificial data, and also to perform well when
used to impute real world datasets for Social Choice. A simulation
of a multiagent coordination problem also served to demonstrate a
problem domain in which our model’s advantages are highly pro-
nounced. Our model is efficient and compact, allowing it to be
learned quickly, and to be interpreted readily. In future, we plan
to extend the model to include proofs of convergence to mixtures
of Mallows distributions; and to automatically parametrize its own
depth in response to the detected heterogeneity of rankings. We
also plan to study the axiomatic properties of the model as a social
choice function in its own right.
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