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ABSTRACT
Extensive-form games with imperfect recall are an impor-
tant model of dynamic games where the players are allowed
to forget previously known information. Often, imperfect
recall games are the result of an abstraction algorithm that
simplifies a large game with perfect recall. Unfortunately,
solving an imperfect recall game has fundamental problems
since a Nash equilibrium does not have to exist. Alterna-
tively, we can seek maxmin strategies that guarantee an
expected outcome. The only existing algorithm comput-
ing maxmin strategies in two-player imperfect recall games
without absentmindedness, however, requires approximating
a bilinear mathematical program that is proportional to the
size of the whole game and thus has a limited scalability. We
propose a novel algorithm for computing maxmin strategies
in this class of games that combines this approximate al-
gorithm with an incremental strategy-generation technique
designed previously for extensive-form games with perfect
recall. Experimental evaluation shows that the novel algo-
rithm builds only a fraction of the game tree and improves
the scalability by several orders of magnitude. Finally, we
demonstrate that our algorithm can solve an abstracted vari-
ant of a large game faster compared to the algorithms oper-
ating on the unabstracted perfect-recall variant.
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INTRODUCTION
Dynamic games with a finite number of moves can be

modeled as extensive-form games (EFGs) that are general
enough to model scenarios with stochastic events and imper-
fect information. EFGs can model games such as Poker as
well as many real-world scenarios where players have sequen-
tial strategies and are able to react to information about the
opponent. EFGs are visualized as game trees, where nodes
correspond to states of the game and edges to actions per-
formed by players. Imperfect information is modeled by
grouping indistinguishable states into information sets.

Recent advancements in scalability of algorithms for solv-
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ing EFGs has been primarily driven by the research around
the Annual Computer Poker Competition1 and has led to
solving heads-up limit texas hold’em poker [3]. Most of the
algorithms for solving EFGs assume that players remember
all the information gained during the course of the game [20,
22, 6] – a property denoted as a perfect recall. The size of
a strategy (a randomized selection of an action to play in
each information set) grows exponentially with the num-
ber of moves in the game due to the perfect memory. One
approach for solving large perfect recall EFGs is thus to
create a small abstracted game where certain information
sets are merged together, solve this abstracted game, and
translate the strategy into the original game (e.g., see [4,
13, 14]). However, to achieve sufficient space reductions the
assumption of perfect recall might need to be violated in the
abstracted game resulting in imperfect recall.

There are fundamental difficulties when solving imperfect
recall games. The best known game-theoretic solution con-
cept, a Nash equilibrium (NE), does not have to exist even in
zero-sum games [21]. As a consequence, standard algorithms
(e.g., a Counterfactual Regret Minimization (CFR) [22])
can converge to exploitable strategies (see Example 1). Ex-
isting approaches avoid this issue by creating very specific
abstracted games so that perfect recall algorithms are still
applicable: e.g., in (skew) well-formed games [16, 14] and
normal-form games with sequential strategies [17]. The re-
strictions posed by these classes are rather strict, however,
and can prevent us from creating sufficiently small abstracted
games and thus fully exploit the possibilities of abstractions
and compact representation of dynamic games.

An alternative to finding NE is to compute a strategy
that guarantees the best worst-case expected outcome for a
player – a maxmin strategy. However, computing a maxmin
strategy is NP-hard in imperfect recall games and it may
require irrational numbers even when the input uses only
rational numbers [9]. The first algorithm approximating
maxmin strategies in two-player imperfect recall games with-
out absentmindedness, where the minimizing player has a
restricted type of imperfect recall denoted as A-loss recall,
uses a mixed-integer linear program (MILP) and a branch-
and-bound search over linear relaxations of this MILP (de-
noted as BnB) [1]. The main disadvantage of BnB is that
it requires to repeatedly solve a linear program proportional
to the size of the game, resulting in a limited scalability.

We propose a novel algorithm for finding maxmin strate-
gies in imperfect recall games, that extends the BnB algo-

1http://www.computerpokercompetition.org/
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rithm by employing incremental strategy generation. While
such techniques exist for perfect recall games [2], transfer-
ring the ideas to imperfect recall games presents a number
of challenges that we address in this paper. We define the
restricted EFG that is a subset of the original EFG and de-
scribe how the restricted game is solved via the BnB search.
Finally, we ensure the correct expansion of the restricted
EFG so that our algorithm preserves guarantees for approx-
imating maxmin strategies. The experimental evaluation
shows that our algorithm improves the scalability of BnB
by at least an order of magnitude. Moreover, we show that
we can use our algorithm to solve an abstracted imperfect-
recall variant of Phantom Tic-Tac-Toe faster compared to
solving the original perfect-recall variant of the game.

EXTENSIVE-FORM GAMES WITH IMPER-
FECT RECALL

A two-player extensive-form game (EFG, see Figure 1) is
a tuple G = (N ,H,Z,A, u, C, I). N = {1, 2} is a set of
players, by i we refer to one of the players, and by −i to his
opponent. A denotes the set of all actions. H is a finite set
of histories of actions taken by all players and the chance
player from the root of the game. Each history corresponds
to a node in the game tree; hence, we use the terms history
and node interchangeably. Z ⊆ H is the set of all terminal
states of the game. An ordered list of all actions of player i
from root to node h is referred to as a sequence, σi = seqi(h),
Σi is a set of all sequences of player i. For each z ∈ Z we
define a utility function u1 : Z → R. The player 1 maxi-
mizes u1, while player 2 minimizes it. Chance player selects
actions based on a fixed probability distribution known to
all players. Function C : H → [0, 1] is the probability of
reaching h due to chance. Imperfect observation of player
i is modeled via information sets Ii that form a partition
over h ∈ H where i takes action. Player i cannot distin-
guish between nodes in any Ii ∈ Ii. A(Ii) denotes actions
available in each h ∈ Ii. The action a uniquely identifies the
information set where it is available. We use seqi(Ii) as a
set of all sequences of player i leading to Ii. Finally, we use
infi(σi) to be a set of all information sets to which sequence
σi leads.

A behavioral strategy βi ∈ Bi is a probability distribution
over actions in each information set I ∈ Ii. We use u1(β) =
u1(βi, β−i) for the expected outcome of the game when play-
ers follow β. A best response of player 1 against β2 is a strat-
egy βBR1 ∈ BR1(β2), where u1(βBR1 , β2) ≥ u1(β′1, β2) for all
β′1 ∈ B1 (BR1(β2) denotes a set of all best responses to β2).
Best response of player 2 is defined analogously. βi(I, a) is
the probability of playing a in I.

A maxmin strategy β∗1 is defined as β∗1 = arg maxβ1∈B1
minβ2∈B2 u1(β1, β2). When a Nash equilibrium in behavioral
strategies exists in a two-player zero-sum imperfect recall
game then β∗1 is a Nash equilibrium strategy for player 1.

Perfect, Imperfect, and A-loss Recall.
In perfect recall games all players remember the history

of their own actions and all information gained during the
course of the game. As a consequence, all nodes in any
information set Ii have the same sequence for player i. If
the assumption of perfect recall does not hold in an EFG, we
talk about games with imperfect recall. In imperfect recall
games, mixed and behavioral strategies are not comparable.

In games where one information set can be reached more
than once during one playthrough (game with absentmind-
edness), the best response of a player might need randomiza-
tion. We restrict to games with no absentmindedness where
it is sufficient to consider pure strategy best responses (see,
e.g., [19]). Finding a best response in perfect recall games
can be done by selecting the best action to play in each in-
formation set. This type of response, termed time consistent
strategy [8], does not have to be an ex-ante best response in
general imperfect recall games (see [19] for an example). A
class of imperfect recall games where it is sufficient to con-
sider only time consistent strategies when computing best
responses was termed as A-loss recall games [7, 8].

Definition 1. Player i has A-loss recall if and only if
for every I ∈ Ii and nodes h, h′ ∈ I it holds either (1)
seqi(h) = seqi(h

′), or (2) ∃I ′ ∈ Ii and two distinct actions
a, a′ ∈ Ai(I ′), a 6= a′ such that a ∈ seqi(h) ∧ a′ ∈ seqi(h

′).

Condition (1) says that if player i has perfect recall then she
also has A-loss recall. Condition (2) requires that each loss
of memory of A-loss recall player can be traced back to a loss
of memory of the player’s own actions. The equivalence be-
tween time consistent strategies and ex-ante best responses
simplifies the computation of the best responses of player 2
in case she has A-loss recall. It is sufficient to consider best
responses that correspond to the best response in a coarsest
perfect-recall refinement of the imperfect recall game for a
player with A-loss recall. By a coarsest perfect recall refine-
ment of an imperfect recall game G we define a perfect recall
game G′ where we split the imperfect recall information sets
to biggest subsets satisfying the perfect recall assumption.
Finally, we assume that there is a mapping between actions
from the coarsest perfect recall refinement A′ and actions in
the original game A so that we can identify to which actions
from A′ an original action a ∈ A maps. We assume this
mapping to be implicit since it is clear from the context.

Lemma 1. Let G be an imperfect recall game where player
2 has A-loss recall and β1 a strategy of player 1. Let G′ be the
coarsest perfect recall refinement of G for player 2. Let β′2 be
a pure best response in G′ to β1 and let β2 be a realization
equivalent behavioral strategy in G, then β2 is a pure best
response to β1 in G.

Proof. Being able to connect any loss of memory to for-
getting his own action allows the player 2 to reconstruct all
the information lost due to his imperfect recall by condi-
tioning his behavior on his previous choices (see [1] for more
detailed proof).

The NP-hardness proof of computing maxmin strategies
due to Koller [9] still applies since the reduction provided by
Koller is a special case of the setting assumed in our paper.

Finally let us discuss the CFR in imperfect recall games.
The no-regret learning cannot work in general in imperfect
recall games, since the loss function lt(bi) = ui(b

t
i, b

t
−i) −

ui(bi, b
t
−i) used in computation of external regret (see, e.g.,

[22]) can be non-convex over the probability simplex of be-
havioral strategies (the loss function must be convex for a
no-regret learning to have convergence guarantees [5]).

Example 1: Assume we are in the step T of a no-regret
learning algorithm solving the game from Figure 1, and we
evaluate the loss of some strategy β1 in step t < T . Let
βt1(a) = βt1(g) = 0.5 and βt2(d) = βt2(e) = 1. Let β1(a) =
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Figure 1: An imperfect recall game where CFR can
reach a non-optimal strategy.

β1(g) = 1, β′1(b) = β′1(h) = 1, and β′′1 (a) = β′′1 (g) = 0.5.
The losses of these strategies are lt(β1) = −x, lt(β′1) = −x,
lt(β′′1 ) = 0. Since β′′1 is a convex combination of β1 and β′1
with uniform weights, it follows that the loss function is non-
convex, hence the convergence guarantees used in CFR due
to Gordon [5] no longer apply. This is not the case in perfect
recall games since the behavior of i after any a, a′ ∈ A(Ii) is
independent ∀I ∈ Ii. Furthermore, the guarantee of conver-
gence of CFR to (ε-)optimal strategies in (skew) well-formed
games [14] is based on bounding the non-convexity of the loss
function. By increasing x > 2 in the game from Figure 1,
the CFR can find a strategy for player 1 with exploitabil-
ity arbitrarily worse than the maxmin value -1, since mixing
between actions a and b can yield the expected value strictly
worse than the expected value reached by deterministic sam-
ples containing a and b if player 2 plays d and e with positive
probability. The game has A-loss recall and has 2 NE, play-
ing (a, g) or (b, h) deterministically for player 1 and (c, f) for
player 2 (no mix between these two NE strategies for player
1 is a NE). We demonstrate the exploitability of strategies
the CFR converges to in the experiments section.

MAXMIN BNB ALGORITHM
We base our method on the branch-and-bound algorithm

(denoted BnB) from [1]. BnB algorithm is based on approx-
imating the following bilinear program. We assume WLOG
that player 1 is the maximizing player.

max
x,r,v

v(root, ∅) (1a)

s.t. r(∅) = 1 (1b)

0 ≤ r(σ) ≤ 1 ∀σ ∈ Σ1 (1c)∑
a∈A(I)

r(σa) = r(σ) ∀σ ∈ Σ1, ∀I ∈ inf1(σ1) (1d)

∑
a∈A(I)

x(a) = 1 ∀I ∈ IIR1 (1e)

0 ≤ x(a) ≤ 1 ∀I ∈ IIR1 , ∀a ∈ A(I) (1f)

r(σ) · x(a) = r(σa) ∀I ∈ IIR1 , ∀a ∈ A(I),

∀σ ∈ seq1(I) (1g)∑
σ1∈Σ1

g(σ1, σ2a)r1(σ1) +
∑

I′∈inf2(σ2a)

v(I′, σ2a) ≥ v(I, σ2)

∀I ∈ I2,∀σ2 ∈ seq2(I), ∀a ∈ A(I) (1h)

Constraints (1a)–(1h) represent a bilinear reformulation of
the sequence-form LP due to [20] applied to the information
set structure of an imperfect recall game G where player 2

has A-loss recall. The objective of player 1 is to find a strat-
egy that maximizes the expected utility against the best
responding opponent in G. The strategy is represented by
variables r that assign the probability to a sequence: r(σ1)
is the probability that σ1 ∈ Σ1 will be played assuming
that information sets, in which actions of the sequence σ1

are applicable, are reached due to player 2. Probabilities r
must satisfy so-called network flow Constraints (1b)–(1d).
Finally, a strategy of player 1 is constrained by the best-
responding opponent that selects an action minimizing the
expected value in each I ∈ I2 and for each σ2 ∈ seq2(I) that
was used to reach I (Constraint (1h)). These constraints
ensure that the opponent plays the best response in the
coarsest perfect recall refinement of G and thus also in G
by Lemma 1. The expected utility for each action is a sum
of the expected utility values from immediately reachable in-
formation sets I ′ and from immediately reachable leafs. For
the later we use generalized utility function g : Σ1×Σ2 → R
defined as g(σ1, σ2) =

∑
z∈Z|seq1(z)=σ1∧seq2(z)=σ2

u1(z)C(z).
In imperfect recall games multiple σi can lead to some im-
perfect recall information set Ii ∈ IIRi ⊆ Ii; hence, realiza-
tion plans over sequences do not have to induce the same
behavioral strategy for Ii. Therefore, for each Ii ∈ IIRi we
define behavioral strategy x(a) for each a ∈ A(Ii) (Con-
straints (1e)–(1f)). To ensure that the realization proba-
bilities induce the same behavioral strategy in Ii, we add
bilinear constraint r(σia) = x(a) · r(σi) (Constraint (1g)).

Approximating Bilinear Terms
We use Multiparametric Disaggregation Technique (MDT)

[12] for approximation of the bilinear Constraint (1g). The
main idea of the approximation is to use a digit-wise dis-
cretization of one of the variables from a bilinear term. Let
a = bc be a bilinear term. MDT discretizes variable b and
introduces new binary variables wk,l that indicate whether
the digit on `-th position is k.

9∑
k=0

wk,` = 1 ` ∈ Z (2a)

wk,` ∈{0, 1} (2b)∑
`∈Z

9∑
k=0

10` · k · wk,` = b (2c)

cL · wk,` ≤ ĉk,` ≤ cU · wk,` ∀` ∈ Z, ∀k ∈ {0..9} (2d)

9∑
k=0

ĉk,` = c ∀` ∈ Z (2e)∑
`∈Z

9∑
k=0

10` · k · ĉk,` = a (2f)

Constraint (2a) ensures that for each position ` there is
exactly one digit chosen. All digits must sum to b (Con-
straint (2c)). Next, we introduce variables ĉk,` that are
equal to c for such k and ` where wk,l = 1, and ĉk,` = 0
otherwise. cL and cU are bounds on the value of variable
c. The value of a is given by Constraint (2f). This is an
exact formulation that requires infinite sums and an infi-
nite number of constraints. However, by restricting the set
of all possible positions ` to a finite set {PL, . . . , PU} we
get a lower bound approximation. Following the approach
in [12] we can extend the lower bound formulation to com-
pute an upper bound where ∆b is assigned to every dis-
cretized variable b allowing it to take the value between two
discretization points created due to the minimal value of `
(Constraints (3a)–(3b)).
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Constraints (2a), (2d), (2e)∑
`∈{PL,...,PU}

9∑
k=0

10` · k · wk,` + ∆b = b (3a)

0 ≤ ∆b ≤ 10PL (3b)∑
`∈{PL,...,PU}

9∑
k=0

10` · k · ĉk,` + ∆a = a (3c)

cL ·∆b ≤ ∆a ≤ cU ·∆b (3d)(
c− cU

)
· 10PL + cU ·∆b ≤ ∆a (3e)(

c− cL
)
· 10PL + cL ·∆b ≥ ∆a (3f)

Similarly, we allow the product variable a to be increased
with variable ∆a = ∆b · c. To approximate the product of
the delta variables, we use the McCormick envelope defined
by Constraints (3d)–(3f).

Upper Bound MILP Approximation
By applying MDT to Constraint (1g) we represent every

variable x(a) using a finite number of digits. Binary vari-

ables wI1,ak,` correspond to wk,` variables from the example
shown in previous subsection and are used for the digit-wise
discretization of x(a). r̂(σ1)ak,` correspond to ĉk,` variables
used to discretize the bilinear term r(σ1a). In order to allow
variable x(a) to attain an arbitrary value from [0, 1] interval
using a finite number of digits of precision, we add a real vari-
able 0 ≤ ∆x(a) ≤ 10−P that can span the gap between two
adjacent discretization points. Constraints (4d) and (4e)
describe this loosening. Variables ∆x(a) also have to be
propagated to bilinear terms r(σ1) ·x(a) involving x(a). We
cannot represent the product ∆r(σ1a) = r(σ1) · ∆x(a) ex-
actly and therefore we give bounds based on the McCormick
envelope (Constraints (4i)–(4j)).

max
x,r,v

v(root, ∅) (4a)

s.t. Constraints (1b) - (1f) , (1h)

wI,ak,` ∈ {0, 1} ∀I ∈ IIR1 ,∀a ∈ A(I),

∀k ∈ {0..9}, ∀` ∈ {−P..0} (4b)
9∑
k=0

wI,ak,` = 1 ∀I ∈ IIR1 ,∀a ∈ A(I),

∀` ∈ {−P..0} (4c)
0∑

`=−P

9∑
k=0

10` · k · wI,ak,` + ∆x(a) = x(a)

∀I ∈ IIR1 ,∀a ∈ A(I) (4d)

0 ≤ ∆x(a) ≤ 10−P ∀I ∈ IIR1 ,∀a ∈ A(I) (4e)

0 ≤ r̂(σ)ak,` ≤ w
I,a
k,` ∀I ∈ IIR1 ,∀a ∈ A(I), (4f)

∀σ ∈ seq1(I), ∀` ∈ {−P..0}
9∑
k=0

r̂(σ)ak,` = r(σ) ∀I ∈ IIR1 ,∀σ ∈ seq1(I)

∀` ∈ {−P..0} (4g)
0∑

`=−P

9∑
k=0

10` · k · r̂(σ)ak,` + ∆r(σa) = r(σa)

∀I ∈ IIR1 ,∀a ∈ A(I),

∀σ ∈ seq1(I) (4h)

(r(σ)− 1) · 10−P + ∆x(a) ≤ ∆r(σa) ≤ 10−P · r(σ)

∀I ∈ IIR1 ,∀a ∈ A(I),

∀σ ∈ seq1(I) (4i)

0 ≤ ∆r(σa) ≤ ∆x(a) ∀I ∈ IIR1 ,∀σ ∈ seq1(I),

∀a ∈ A(I) (4j)

Due to this loose representation of ∆r(σ1a), the reformu-
lation of bilinear terms is no longer exact and this MILP
therefore yields an upper bound of the bilinear sequence
form program (1). Note that the MILP has both the num-
ber of variables and the number of constraints bounded by
O(|I| · |Σ| · P ), where |Σ| is the number of sequences of
both players. The number of binary variables is equal to
10 · |IIR1 | · Amax1 · P , where Amax1 = maxI∈I1 |A1(I)|.

The BNB Algorithm
The BnB algorithm works on the linear relaxation of the

Upper Bound MILP and searches the BnB tree in the best
first search manner. In every node n of the BnB tree, the
algorithm solves the relaxed LP corresponding to node n,
heuristically selects the information set I and action a con-
tributing to the current approximation error the most, and
creates successors of n by restricting the probability β1(I, a)
that a is played in I. The algorithm adds new constraints
to the LP depending on the value of β1(I, a) by constrain-

ing (and/or introducing new) variables wI1,ak,l and creating

successors of the node in the BnB tree. Note that wI1,ak,l

variables correspond to binary variables in the MILP for-
mulation. This way, the algorithm simultaneously searches
for the optimal approximation of bilinear terms as well as
the assignment to binary variables. The algorithm termi-
nates when ε-optimal strategy is found.

Algorithm 1: BnB algorithm

input : Initial LP relaxation LP0 of Upper Bound
MILP

output : ε-optimal strategy for a maximizing player
parameters: Bound on maximum error ε, bound Pmax for

bilinear term precision approximation

1 fringe← (LP0,−∞,∞)
2 opt← (LP0,−∞,∞)
3 while fringe 6= ∅ do
4 (LP, lb, ub)← arg maxn∈fringe n.ub

5 fringe← fringe \ (LP, lb, ub)
6 if opt.lb ≥ ub then
7 return ReconstructStrategy(opt)
8 if opt.lb < lb then
9 opt← (LP, lb, ub)

10 if ub− lb ≤ ε then
11 return ReconstructStrategy(opt)
12 (I1, a)← SelectAction(LP)
13 AddSuccessors(LP , I1, a, Pmax)
14 return ReconstructStrategy(opt)

More formally, the BnB algorithm (depicted in Algorithm
1) maintains the fringe of nodes. Each node corresponds to
an LP with each bilinear term approximated to some level
of precision (i.e., some number of decimal points). Among
relaxed binary variables, all but the ones corresponding to
the last level of precision are fixed to some value. The algo-
rithm always solves the node with the highest upper bound
(line 4). It keeps track of the current best solution with
the highest lower bound, representing the highest guaran-
teed value for maximizing player (line 9). In each node, the
algorithm checks the current bounds. If the bounds differ
by more than the desired approximation ε, the algorithm
generates new nodes by selecting bilinear term correspond-
ing to some action and increases its precision (line 12), adds
new variables and constraints into the LP that further re-
strict the maxmin strategy, and adds them to the fringe (line
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13). The algorithm calculates an upper bound by solving
the relaxed LP and a lower bound by constructing an im-
perfect recall strategy from the current LP and computing
a best response against it. For more detailed description of
the heuristics that can be used for ReconstructStrategy
and SelectAction see [1].

In the experimental evaluation BnB often outperforms the
IBM CPLEX MILP solver. There are two reasons for this:
(1) BnB algorithm can compute a valid lower-bound candi-
date in each node of the search tree (while this is typically
possible only in leaves in standard MILP search), (2) BnB
algorithm can incrementally improve the precision of ap-
proximation of bilinear terms (thus improving the expected
outcome of a maxmin strategy) and at the same time fix the
values of binary variables.

The main disadvantage of BnB is that the LP is linear
in the size of the game and thus the algorithm can refine
bilinear terms in parts of the game that may not be relevant
for the final solution. To overcome this disadvantage, an in-
cremental strategy-generation technique can be employed.

DOUBLE ORACLE FOR PERFECT RECALL
EFGS

The double oracle algorithm solving perfect recall EFGs
(DOEFG, [2]) is the adaptation of column/constraint gen-
eration techniques for EFGs. The main idea of DOEFG is
to create a restricted game where only a subset of actions is
allowed to be played by the players and then incrementally
expand this restricted game by allowing new actions. The
restricted game is solved as a standard zero-sum extensive-
form game using the sequence-form linear program [10, 20].
Afterward, best response algorithms search the original un-
restricted game to find new sequences to add to the re-
stricted game for each player. The algorithm terminates
when the best response calculated on the unrestricted game
provides no improvement to the solution of the restricted
game for either of the players.

DOEFG uses two ideas in order to guarantee a linear num-
ber of iterations in the size of the game tree: (1) the algo-
rithm assumes that players play some pure default strategy
outside the restricted game (e.g., playing the first action in
each information set given some orderings), (2) temporary
utility values are assigned to leafs in the restricted game
that correspond to an inner node in the original unrestricted
game (so-called temporary leaf), which form an upper bound
on the expected utility.

DOUBLE ORACLE BNB FOR IMPERFECT
RECALL EFGS

In this section, we introduce our main algorithm, denoted
as DOBnB, combining ideas of BnB and DOEFG. Adapt-
ing the ideas of DOEFG for games with imperfect recall
poses several challenges that we need to solve. First, to solve
the restricted game means to compute maxmin strategy for
player 1. However, solving the restricted game does not pro-
vide us with a valid upper bound needed in the BnB. Sec-
ond, solving the restricted game requires calling BnB search
that iteratively refines the approximation of bilinear terms
instead of solving a single (or a pair of) LPs in DOEFG for
perfect recall games. Our algorithm thus makes an integra-
tion of two iterative methods and decides when to expand

the restricted game and when to refine the approximation
of bilinear terms already in the restricted game.

We first provide the pseudocode of the algorithm with a
description, followed by formal definitions of all the neces-
sary components of the algorithm.

Algorithm 2: DOBnB algorithm

input : Initial LP relaxation LP0 of Upper Bound
MILP, Initial restricted game G

output : ε-optimal strategy for the maximizing player
parameters: Bound on maximum error ε, bound Pmax for

bilinear term precision approximation

1 fringe← (LP0,−∞,∞)
2 opt← (LP0,−∞,∞)
3 while fringe 6= ∅ do
4 (LP, lb, ub)← arg maxn∈fringe n.ub

5 fringe← fringe \ (LP, lb, ub)
6 if opt.lb ≥ ub then
7 return ReconstructStrategy(opt)
8 if opt.lb < lb then
9 opt← (LP, lb, ub)

10 if ub− lb ≤ ε then
11 return ReconstructStrategy(opt)
12 if FromSmallerG(n, G) then
13 (LP, lb, ub)← Resolve((LP, lb, ub), G)
14 Add((LP, lb, ub), G)

15 else if CanBeExpanded(G, LP) then
16 G← Expand(G, LP)
17 (LP, lb, ub)← Resolve((LP, lb, ub), G)
18 Add((LP, lb, ub), G)

19 else
20 (I1, a)← SelectAction(n)
21 AddSuccessors(n, I1, a, Pmax, G)

22 function Add((LP, lb, ub), G)
23 while PendingToAdd(G, LP) do
24 G← AddPending(G, LP)
25 (LP, lb, ub)← Resolve((LP, lb, ub), G)

26 fringe← (LP, lb, ub)

In Algorithm 2 we present the extension of the DOBnB
algorithm. The algorithm starts with the empty restricted
game G. Lines 1 to 11 are the same as in the BnB algorithm.
There are two differences: (1) all the nodes use the current
restricted game G, and (2) before we add any node to the
fringe, we need to make sure that all the potential deviations
of the maximizing player are in G using function Add (lines
22 to 26, see Updating the Restricted Game for details).

In every iteration of the DOBnB, we first check whether
the bounds of the current node were computed in some
smaller restricted game than the current G (line 12). If yes
we recompute the bounds on the current restricted game
(line 13) to make sure that the bounds are as precise as pos-
sible and return the node to the fringe (line 14). Else, if
bounds come from the same game as the current restricted
game, the algorithm checks whether G can be expanded (line
15, see Updating the Restricted Game). If yes, we expand
G, resolve and return the node to the fringe (lines 16 to 18).
Otherwise, if G cannot be expanded, the algorithm contin-
ues in the same way as BnB. It generates new nodes by
selecting bilinear terms corresponding to some action from
the current restricted game G (line 20), increases their pre-
cision and adds new variables and constraints into the LP
that further restrict the maxmin strategy. Next, it adds the
resulting nodes to the fringe (line 21) in the same way as
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in BnB (note that we add the nodes to the fringe using the
Add function (lines 22 to 26)).

The Restricted Game
This section formally defines the restricted game G′ =

(N ,H′,Z ′,A′, p, uUB , C, I′) as a subset of the original un-
restricted game G = (N ,H,Z,A, p, u, C, I).

The restricted game is limited by a set of allowed se-
quences Φ′ ⊆ Σ, that are returned by the oracle algorithms.
An allowed sequence σi ∈ Φ′ might not be playable to the
full length due to missing compatible sequences of the op-
ponent. Therefore, the restricted game is defined using the
maximal compatible set of sequences Σ′ ⊆ Φ′. Formally

Σ′i = {σi ∈ Φ′i|∃σ−i ∈ Φ′−i ∃h ∈ H
∀j ∈ N : seqj(h) = σj}, ∀i ∈ N . (5)

The sets H′, A′ and I′ are the subsets of H, A and I
reachable when playing sequences from Σ′. The set of leaves
in G′ is a union of leaf nodes of G present in G′ and inner
nodes from G that do not have a valid continuation in Σ′

Z′ = (Z ∩H′) ∪ {h ∈ H′ \ Z : A′(h) = ∅}. (6)

We refer to the members of the set Z ′ \ Z as temporary
leaves and define a modified utility value uUB1 such that
the maxmin value of the restricted game is higher than the
maxmin value of the original game. Formally,

uUB1 (z) = max
β2∈BLP

2 ∪βBR
2

uz1(BRz(β2), β2), ∀z ∈ Z′ \ Z, (7)

where βBR2 is a best response of player 2 in G to be added
in this iteration of the algorithm; BRz1(β2) is a set of the
best responses of player 12, when starting in z against β2;
uz1(β1, β2) is the expected value, when playing according to
β1 and β2 and starting in z. Finally, BLP2 is the set of all
possible best responses of player 2 taken from the current
LP by finding actions corresponding to active Constraint
(1h). Notice that the uUB1 might differ in every iteration
of the algorithm. This provides guarantees that uUB1 is an
upper bound against all possible reactions of the minimizing
player. Additionally, ∀z ∈ Z ∩ Z ′uUB1 (z) = u1(z).

Note that if not stated otherwise, when we operate with a
strategy from the restricted game in the whole unrestricted
game, we automatically assume that it is extended by a
default strategy as in DOEFG.

Updating the Restricted Game.
In this section we dicuss the oracles used in the DOBnB

and the way their results are used to expand the restricted
game (lines 16 and 24 in Algorithm 2).

Player 1 oracle. By solving the restricted game we com-
pute a non-exploitable strategy for player 1. Therefore, we
can use a best response algorithm as an oracle for player 2.
In every iteration we compute βBR2 ∈ BR2(β1) in G, where
β1 is the strategy of player 1 computed by DOBnB in the

2Since the maximizing player does not have to have A-loss
recall, we compute the best response in the coarsest perfect
recall refinement of the solved unrestricted game for player 1.
This allows us to efficiently obtain an upper bound on the
correct value (uUB1 (h) is, therefore still an upper bound on
the value obtainable in h).

current node. We extend Φ2 by all the valid continuations
of σ2 ∈ Φ2 by actions in βBR2 and update Σ′ accordingly.

Player 2 oracle. The restricted game does not produce
a non-exploitable strategy of player 2. This poses the most
significant challenge in devising the oracle for the maximiz-
ing player since we cannot use a best response algorithm
for adding sequences for player 1. Instead, we use a set of
pending states

Hp = {h ∈ H \ H′|∃h′ ∈ H′1∃a ∈ A(h′) : h′a = h}, (8)

as a set of possible extensions of the restricted game by
taking actions in states of the maximizing player 1. We
take a subset H′p ⊆ Hp such that all h ∈ H′p are reachable

by some β′2 ∈ BLP2 ∪ βBR2 , where βBR2 ∈ BR2(β1) is the
best response suggested by the minimizing player oracle for
the current restricted game. By H∗p we denote a subset of

H′p, where for all h ∈ H∗p holds that uUB1 (h) ≥ uLB1 (h′) for

uLB1 (h′) = minβ′
2∈B

LP
2

uh
′

1 (β1, β
′
2), where h′ is the parent of

h. When expanding, we add to the restricted game all the
sequences leading to all h ∈ H∗p.

The function PendingToAdd returns true if H∗p is non-
empty, false otherwise. AddPending adds all the sequences
suggested by the oracle for the maximizing player to the re-
stricted game. CanBeExpanded checks whether the oracle
of any player suggests any sequence to be added to the re-
stricted game. Finally Expand adds all the sequences sug-
gested by both oracles.

Theoretical Properties
Lemma 2. uUB1 (z) forms an upper bound on the expected

value player 1 can guarantee in all the z ∈ Z ′ in the original

game against all the BLP
′

obtained when solving the LP cor-
responding to the restricted game after the next expansion.

Proof. uUB1 (z) in all z ∈ Z ′ considers all the best re-
sponses from the current LP BLP and the βBR2 obtained
from the minimizing player oracle, hence we are sure that

uUB1 (z) ≥ maxβ′
2∈BLP ′ uz1(BRz(β′2), β′2), where BLP

′
are all

the possible best responses occuring in the LP solved after
the restricted game expansion. This holds since the best
responses can only be replaced by the βBR2 or removed.

Lemma 3. All the nodes in the fringe in Algorithm 2 have
a valid lower and upper bound on the solution with corre-
sponding precision restrictions in the original game.

Proof. The lower bound is valid, since it is computed
as u1(β1, β2), where β1 is the current solution of the cor-
responding LP applied to the current restricted game G′,
extended by the default strategy and β2 ∈ BR2(β1) in the
whole game. If β1 is not optimal given the current restric-
tions, this value is smaller than optimum, if β1 is optimal,
it is equal to the optimum with given precision restrictions.

To show that the upper bound is valid, first, notice that
we make sure that we add a node to the fringe in Algorithm
2 only when we are sure that player 1 cannot increase his
value by deviating outside of the restricted game. This is
done in the function Add by adding h ∈ H∗p and resolving
the LP, until H∗p is empty. Finally, since for all the z ∈ Z ′

holds that uUB1 (z) is the upper bound on the expected value
the maximizing player can get in z (Lemma 2), we are sure
that the upper bound obtained in this setting is higher or
equal to the upper bound obtained in the whole game with
the same precision restrictions.
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Theorem 1. If the BnB algorithm is guaranteed to re-
turn ε-optimal solution for some precision parameters, the
DOBnB returns ε-optimal solution for the same precision
parameters.

Proof. When the upper and lower bound are at most ε
distant, we are sure that we have found an ε-optimal solu-
tion (Lemma 3). We are guaranteed to reach such node in
the space of precision restrictions since we never prune it
away (again from Lemma 3). When we reach the precision
restrictions guaranteeing an ε-optimal solution in the full
game, we might have an upper bound which is higher due to
the fact that we reach temporary leafs with overestimated
upper bounds in the restricted game. In this situation, how-
ever, we are guaranteed to continue expanding the game and
therefore increasing the precision of the upper bound, until
the upper bound reaches the ε distance from the lower bound
(condition on line 15 in Algorithm 2). This must happen af-
ter a finite number of steps since the algorithm only expands
the restricted game and reaching ε distance is guaranteed by
the correctness of BnB [1] when the restricted game is equal
to the original game.

EXPERIMENTS
In this section, we provide an experimental evaluation of

the DOBnB against the BnB algorithm and the baseline
MILP (Base) implementation which iteratively solves the
MILP resulting from the bilinear program approximation
and iteratively increases the approximation precision. The
main experiments are conducted on a set of Random games,
however, we also report results on an imperfect recall search
game and an imperfect recall variant of Tic-Tac-Toe. All
algorithms were implemented in Java, each algorithm uses
a single thread, 8 GB memory limit and we use IBM ILOG
CPLEX 12.6.2 to solve all LPs/MILPs.

Random Games. Since there is no standardized collec-
tion of benchmark EFGs, we use randomly generated games
in order to obtain statistically significant results. We ran-
domly generate a perfect recall game with varying branching
factor and fixed depth of 6. To control the information set
structure, we use observations assigned to every action – for
player i, nodes h with the same observations generated by
all actions in history belong to the same information set.
In order to obtain imperfect recall games with a non-trivial
information set structure, we run a random abstraction algo-
rithm which merges information sets according to parameter
p (p = 0 means no merges, p = 1 means that all information
sets with the same action count, which do not cause absent-
mindedness are merged). We generate a set of experimental
instances by varying the branching factor and the parameter
p. Such games are rather difficult to solve since (1) informa-
tion sets can span multiple levels of the game tree (i.e., the
nodes in an information set often have histories with differ-
ing sizes) and (2) actions can easily lead to leafs with very
differing utility values. The abstraction always has A-loss
recall for the minimizing player.

Search Game. Our second domain is an instance of
search (or pursuit-evasion) games, which are commonly used
for evaluating incremental algorithms [18]. The game is
played on a directed graph between attacker and defender.
The attacker tries to cross from a starting node to his desti-
nation. The defender operates two units, each moving only
in a restricted part of the graph, trying to intercept the
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Figure 2: The exploitability of the average strat-
egy computed by the CFR with outcome sampling
(y-axis) with increasing number of iterations (loga-
rithmic x-axis) for 5 different seeds.

evader by capturing him in a node. The players move simul-
taneously. The only information available to the defender is
the position of both of his units without remembering the
history of moves leading there. The evader knows only the
sequence of his actions in the past. It is a zero-sum game,
where the attacker obtains utility 1 for reaching his desti-
nation and defender obtains utility 1 for intercepting the
attacker. If a given number of moves is depleted without ei-
ther of the events happening, the game is considered a draw
and both obtain utility 0. We assume the defender to be the
maximizing player.

Phantom Tic-Tac-Toe. The last domain is a blind vari-
ant of the Tic-Tac-Toe (e.g., used in [2]). The game is played
on a 3× 3 board, with standard rules except that the play-
ers observe only a partial state of the board and do not
remember the history of actions. Players do not observe the
position of opponent’s stones. If a player tries to place his
stone on a position that is occupied by opponent’s stone the
player learns this information and plays again. This game
has A-loss recall for both players since the players forget
only information about their own moves in the past.

Results
The ε in all the experiments was set to 10−4 ·umax, where

umax is the maximal utility of the solved game.
CFR. We first empirically demonstrate the performance

of the outcome-sampling version of CFR [15] on the example
game from Figure 1. Figure 2 depicts the expected utility
of the average strategy computed by the CFR against its
best response (i.e., the exploitability of the average strat-
egy; logarithmic x-axis shows the number of iterations, the
y-axis shows the exploitability for player 1, every line rep-
resents one run for a given seed). The algorithm does not
converge to any fixed strategy, moreover, the exploitability
differs significantly from the maxmin value of -1 for player 1.
Therefore, we focus only on the comparison of the algorithms
that guarantee the convergence to the maxmin strategies in
the experiments on larger games. Note that vanilla CFR
(see, e.g. [15] page 22) does not work either, since for exam-
ple when initialized to uniform strategy, player 1 will never
change this strategy since the expected values after his ac-
tions are always equal.

Random Games. In Figure 3 we present the runtime
results in seconds obtained on random games. Every graph
depicts the cumulative relative number of instances (y-axis)
solved under a given time limit (logarithmic x-axis). The
columns contain results for random games with varying p,
the first row for branching factor 3, second for branching fac-
tor 4. The runtime of the algorithms was limited to 2 hours
on every instance, the relative number of instances termi-
nated after this limit is reported in the bars labeled cutoff.
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Figure 3: Results showing the relative cumulative number of instances (y-axis) solved under a given time
limit (x-axis) and the relative amount of instances terminated due to the exceeded runtime in bars labeled
cutoff. Rows contain results for branching factor 3 and 4, columns show results for p = 0.3, p = 0.6, p = 0.9.

Table 1: Average relative amount of sequences
for maximizing and minimizing player respectively,
added to the restricted game by DOBnB.

b.f. \ p 0.3 0.6 0.9
3 0.468, 0.231 0.598, 0.247 0.689, 0.248
4 0.585, 0.165 0.731, 0.163 0.780, 0.192

The results show that the DOBnB outperforms the other
two algorithms across all the settings and achieves on aver-
age at least an order of magnitude better performance than
the second best BnB algorithm, e.g., in case of branching
factor 4 and p = 0.3 the average runtime on the instances
solved by all the algorithms was 425s±218s, 337s±181s and
24s ± 12s for Base, BnB and DOBnB, respectively. This
is due to the fact that the DOBnB limits adjustments to
approximation precision to the relevant parts of the game
tree present in the restricted game while keeping the un-
derlying LP smaller. Additionally, we can see a significant
decrease in the number of instances not solved in a given
2 hour limit, compared to Base and BnB. Note that the
random games form an unfavorable scenario for all the pre-
sented algorithms since the construction of the abstraction
is completely random, which makes conflicting behavior in
merged information sets common. As we can see, however,
even in these scenarios the DOBnB is capable of solving the
majority of instances with branching factor 4 which have ∼
3000 nodes in under 2 hours.

In Table 1 we present the average relative amount of se-
quences for each player needed by DOBnB to solve the
random games for each setting. The relative amount of
sequences needed by the minimizing player is consistently
smaller because the restricted game is build to compute
maximizing player’s robust strategy, while the minimizing
player only plays best responses during the computation.
Even though the size of the restricted game remains similar
across all values of p, we observe an increase in the relative
size, since the number of sequences decreases as p increases.

Search game. In case of Search game, the DOBnB was
able to solve a game with 6 moves allowed for each player
(with 863126 states, 949 sequences for the attacker and 19291
sequences for the defender) using 19.5% of sequences for the
defender and 9.7% sequences for the attacker in 5 minutes,
while the rest of the algorithms did not finish in 48 hours.

Phantom Tic-Tac-Toe. The DOBnB was capable of
solving the Phantom Tic-Tac-Toe in under 3 hours while
building only 0.6% and 0.05% of sequences for the first and
second player respectively (it has ∼ 109 states, ∼ 1.3 · 106

and ∼ 4.4 · 106 sequences for the first and second player).
The rest of the algorithms needs to build the whole game
tree, which is not feasible for this game. This result shows
that DOBnB is capable of outperforming the current state-
of-the-art algorithms assuming perfect recall since the most
successful of these algorithms is capable of solving the Phan-
tom Tic-Tac-Toe in 4.88 hours [2].

CONCLUSION
We describe the first scalable algorithm for approximating

maxmin strategies in imperfect recall games. Our approach
is a novel combination of two iterative algorithms: an incre-
mental strategy generation and a branch-and-bound search.
The experimental evaluation shows that our algorithm can
solve difficult randomly generated games and, more impor-
tantly, our algorithm can solve an abstracted variant of a
large game faster than the algorithms operating on the un-
abstracted perfect-recall variant.

Our algorithm allows new directions of research on im-
perfect recall abstractions in EFGs and thus can be very
valuable in understanding compact representations of se-
quential games. The algorithm can be modified to find the
best imperfect recall abstractions in EFGs. Similarly, it can
be adapted to operate on existing compact representations
(e.g., Multi-Agent Influence Diagrams [11]) to further im-
prove the scalability and allow real-world applications. Fi-
nally, it provides the baseline for evaluation of the quality of
strategies produced by CFR in abstracted imperfect recall
games that we plan to evaluate in the future work.
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[17] V. Lisý, T. Davis, and M. Bowling. Counterfactual
Regret Minimization in Sequential Security Games. In
Proceedings of AAAI Conference on Artificial
Intelligence, 2016.

[18] H. B. McMahan, G. J. Gordon, and A. Blum.
Planning in the Presence of Cost Functions Controlled
by an Adversary. In Proceedings of the International
Conference on Machine Learning, pages 536–543,
2003.

[19] J. Čermák and B. Bošanský. Towards Solving
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