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ABSTRACT
We investigate approximate pure Nash equilibria in digraph
k-coloring games, where we are given an unweighted directed
graph together with a set of k colors. Vertices represent
agents and arcs capture their mutual unidirectional inter-
ests. The strategy set of each agent v consists of the k col-
ors and the payoff of v in a given state or coloring is given
by the number of outgoing neighbors with a color different
from the one of v. Such games form some of the basic payoff
structures in game theory, model lots of real-world scenar-
ios with selfish agents and extend or are related to several
fundamental class of games.
It is known that the problem of understanding whether

the game admits a pure Nash equilibrium is NP-complete.
Therefore we focus on designing polynomial time algorithms
that return approximate Nash equilibria. Informally, we say
that a coloring is a γ-Nash equilibrium (for some γ ≥ 1) if
no agent can strictly improve her payoff by a multiplicative
factor of γ by changing color. We first propose a determinis-
tic polynomial time algorithm that, for any k ≥ 3, returns a
k-coloring that is a ∆o(G)-Nash equilibrium, where ∆o(G)
is the maximum outdegree of the digraph.
We then provide our two main results: i) By exploit-

ing the constructive version of the well known Lovász Lo-
cal Lemma, we show a randomized algorithm with poly-
nomial expected running time that, given any constant
k ≥ 2, computes a constant-Nash equilibrium for a broad
class of digraphs, i.e., for digraphs where, for any v ∈ V ,
δvo (G) = Ω(ln ∆o(G)+ln ∆i(G)) where ∆o(G) (resp. ∆i(G))
is the maximum outgoing (resp. maximum ingoing) degree
of G, and δvo (G) is the outgoing degree of agent v. ii) For
generic digraphs, we show a deterministic polynomial time
algorithm that computes a (1+ ε)-Nash equilibrium, for any
ε > 0, by using O( logn

ε
) colors.

Keywords
Noncooperative games: computation; Game theory for prac-
tical applications.

1. INTRODUCTION
In this paper, we consider anti-coordination games where
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agents need to mutually anti coordinate their strategies in
order to maximize their payoffs. Such games form some of
the basic payoff structures in game theory and indeed they
can model lots of real-world scenarios. For instance, agents
can be miners deciding which land to drill for resources. A
miner maximizes her happiness when the number of other
miners that choose the same land is minimized. Or com-
pany employees trying to learn diverse skills. If an employee
learns a skill that few other employees also learn, she will
have more chance of exploiting it. Moreover, suppose that
companies or countries have to produce some product. Typ-
ically they are interested in maximizing their profit, that
most of the time corresponds to minimize the number of
their trading competitors that produce the same commod-
ity. Another example in a social networks setting could be
the one in which people have to choose an outfit so that a
minimum number of friends wears the same dress. Finally
in a radio setting, radio towers are agents and their goal is
selecting a frequency such that neighbouring radio-towers
have a different one in order to minimize the interference.
In all these scenarios agents have an interest in to mutually
anti coordinate their strategies.
In general, each situation in which agents have to anti-

coordinate their strategies so that the “penalty” (that can
be of any type) on their reward is minimized can be de-
scribed by anti-coordination games. Generally an agent does
not care about all other agents’ decisions, but wants to anti-
coordinate her strategy only with a subset of agents of inter-
est. Moreover, this interest may not be necessarily mutual
but only one-sided.
A way of modeling this kind of setting with selfish agents

is the following graph k-coloring game. There is a graph
where a) agents are vertices, b) edges between agents indi-
cate social connections, namely whether there is a mutual
or unidirectional interest (depending on whether the graph
is undirected or directed, respectively) about an agent’s de-
cision, and c) the set of the possible strategies is given by a
natural number k ≥ 2 representing the number of alternative
available choices. Each agent picks a color (i.e., a number
from 1 to k) and the resulting strategy vector induces a k-
coloring of the nodes. The objective of every agent is to
select the color that maximizes her payoff, which is equal to
the number of neighbours with different color from her own.
In such a setting with selfish agents, a stable solution of

the game is represented by a (pure) Nash equilibrium, that
is a k-coloring where no agent can improve her payoff by
changing color. The Nash equilibrium is one of the most im-
portant concepts in game theory, forming the basis of much
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recent work in multiagent decision making and electronic
marketplaces. As such, efficiently computing Nash equilib-
ria is one of the most important problems in computational
game theory.
When the graph is undirected, the graph k-coloring game

is a potential game [19] and therefore a Nash equilibrium
always exists. Moreover, when the graph is unweighted, the
game converges (i.e., the dynamic where at each step one
agent performs an improving move converges) to a Nash
equilibrium in polynomial time [15, 18].
Unfortunately, in case of directed graphs, for any constant

k ≥ 2, the problem of understanding whether the game ad-
mits a Nash equilibrium is NP-complete [18]. Therefore, like
in a variety of classes of games falling in this class, where
Nash equilibria do not exist or cannot be computed in poly-
nomial time, we focus on the milder form of approximate
Nash equilibria. Namely, a state is called a γ-Nash equilib-
rium (for some γ ≥ 1) if no agent can strictly improve her
payoff by a factor of γ by changing her strategy. These equi-
libria can suitably model the cases in which agents incur a
proportional cost in changing their strategies.
Motivated by the above results, we focus on the prob-

lem of computing γ-Nash equilibria for digraph k-coloring
games. Specifically, we design polynomial time algorithms
that return k-coloring where no agent can strictly improve
her payoff by a factor of γ, for some fixed γ ≥ 1.
We provide some positive results. In particular, we par-

tially answer the following important questions: given a
fixed number of available colors, for which family of digraphs
we are able to compute good approximate Nash equilibria in
polynomial time? Moreover, given a generic digraph, what
is the minimum number of colors such that we are able to
compute good approximate Nash equilibria in polynomial
time?
To the best of our knowledge, this is the first paper provid-

ing polynomial time algorithms that compute approximate
Nash equilibria for the digraph k-coloring game.

1.1 Our results
All our results refer to digraph k-coloring games induced

by a directed graph G with n nodes, m edges and k available
colors.
We first notice that, as proved in Section 2, a pure Nash

equilibrium is not guaranteed to exist for any number of
players n and colors k < n. In fact, even for k = n −
1, it is possible to provide an instance for which no Nash
equilibrium exists, while k = n clearly suffices as it can be
easily achieved by assigning a different color to each node.
Moreover we remark that, for any k ≥ 2, a Nash equilib-

rium (i.e., γ = 1) in bipartite digraphs and directed acyclic
graphs (DAGs) exists and can be found in polynomial time
(see Section 2). However, in general, even for k = 2 a γ-
Nash equilibria might not exist for any bounded value of γ.
In fact, in any 2-coloring of a directed odd cycle (i.e., a cycle
with an odd number of nodes) there is always at least one
node having utility zero. This property does not hold for
k > 2. In fact, in Section 3.1 we first provide a polynomial
time algorithm that, for any k ≥ 3, returns a k-coloring that
is a ∆o(G)-Nash equilibrium, where ∆o(G) (resp. ∆i(G)) is
the maximum outgoing (resp. maximum ingoing) degree of
G.
Our main results are the following:
i) By exploiting the constructive version of the well known

Lovász Local Lemma [20], in Section 3.2 we show a ran-
domized algorithm with polynomial expected running time
that, given any constant k ≥ 2, computes a constant ap-
proximate Nash equilibrium1 for a broad class of directed
unweighted graphs. In particular, our algorithm works for
digraphs G = (V,E) where, for any v ∈ V , the outgoing de-
gree of v is such that δvo (G) = Ω(ln ∆o(G) + ln ∆i(G)). For
instance this holds for digraphs where the minimum outgo-
ing degree is Ω(logn).
ii) Then, for generic digraphs, in Section 3.3 we show

a deterministic polynomial time algorithm that computes
(1 + ε)-Nash equilibria, for any ε > 0, by using O( logn

ε
)

colors. Such a construction works also for a higher num-
ber of colors, showing that (1 + ε)-Nash equilibria exist and
can be computed in polynomial time for k = Ω( logn

ε
). This

contrasts to the fact that, for any k < n, pure Nash equi-
libria are not guaranteed to exist and in general cannot be
computed in polynomial time, unless P = NP .

1.2 Related Work
The graph k-coloring game has been first investigated

in [15, 18], where the authors show that, when the graph
is unweighted and undirected, it is possible to compute a
Nash Equilibrium in polynomial time. When the graph is
weighted undirected, the problem of computing an equilib-
rium is PLS-complete even for k = 2 [27] . In fact, for such
a value of k, it coincides with the classical Max Cut game.
Poljak et al. [25] prove that Nash equilibria can be computed
in polynomial time for the cut game if the maximum degree
of the graph is at most 3. Moreover, for graphs with max-
imum degree d > 3, they notice that it is easy to compute
an approximate d-Nash equilibrium. [5, 9] give an algorithm
that, for any ε > 0, computes in polynomial time a (3 + ε)-
equilibrium for the cut game. All the above results exploit
the potential function method. However, digraph k-coloring
games in general do not admit a potential function. Indeed,
when the graph is unweighted directed, even the problem
of understanding whether they admit a Nash equilibrium is
NP-complete for any fixed k ≥ 2 [18].
Besides cut games, digraph k-coloring games are related to

many other fundamental games considered in the scientific
literature.
One example is given by the graphical games introduced

in [16]. In these games the payoff of each agent depends
only on the strategies of her neighbours in a given social
knowledge graph defined over the set of the agents, where
an arc (i, j) means that j influences i’s payoff. An inter-
esting class of graphical games is the one of the graphical
congestion games [7], where each agent has to choose a set
of resources while taking into account that each resource e
has a latency function fe depending on the number of agents
using e. For the case where each agent can choose only one
of the available resources, also called load balancing, and
the latency function is linear (i.e., fe(x) = x, where x the
number of agents using e), a Nash equilibrium for the arising
digraph k-coloring game corresponds to a Nash equilibrium
for an equivalent instance of the graphical congestion game
and vice versa. In [7] it is shown that each graphical con-
gestion game defined over a directed acyclic graph admits a
Nash equilibrium that can also be found in polynomial time
1The constant depends on different parameters and, for the
sake of readability, its value is not specified here. It can be
found at the end of the analysis in Section 3.2.
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(we describe the related algorithm in Section 2). We are not
aware of papers providing polynomial time algorithms that
compute approximate Nash equilibria in graphical conges-
tion games for generic directed graphs. However, approxi-
mation algorithms are known for many graphical games (see
for example [29], [17]).
The game studied in this paper can also be seen as a

particular hedonic game (see [4] for a nice introduction to
hedonic games) with an upper bound (i.e., k) to the number
of coalitions. Specifically, given a k-coloring, the agents with
the same color can be seen as members of the same coalition
of the hedonic game. In order to get the equivalence among
the two games, the hedonic utility of an agent v can be
defined as the overall number of her neighbors minus the
number of agents of her neighbourhood that are in the same
coalition. Nash equilibria issues in hedonic games have been
largely investigated under several different assumptions [6,
8, 12, 13, 14, 24] (just to cite a few). An interesting recent
study on Nash equilibria for graphical hedonic games can
be found in [23]. To the best of our knowledge, no known
result concerns approximate Nash equilibria.
Another related stream of research considers coordination

games. The idea is that agents are rewarded for choosing
common strategies in order to capture the influences. Apt
et al. [2] propose a coordination game modeled as an undi-
rected graph where vertices are agents and each agent has
a list of allowed colors. Given a coloring, an agent has a
payoff equal to the number of adjacent nodes with her same
color. The authors show that the game converges to a NE
in polynomial time. Apt et al. [3] consider the coordina-
tion game on directed weighted graphs. They prove that
the problem of determining the existence of a Nash equi-
librium on directed graphs is NP-complete. [3, 28] show
that there exist some special digraph topologies for which
Nash equilibria are guaranteed and can be found in poly-
nomial time. Rahn et al. [26] extend the results of [2] by
considering weighted undirected graphs and the problem of
finding α-approximate k-equilibria, namely colorings where
no coalition of at most k agents can deviate such that each
member increases his payoff by at least a factor α. The au-
thors show the existence of α-approximate k-equilibria for
α > 2. Anshelevich et al. [1] propose a coordination game
where agents get incentive for coordinating. They show a
polynomial time algorithm that computes a constant ap-
proximate Nash equilibrium with good social welfare.
Panagopoulou and Spirakis [22] study games where Nash

equilibria are proper vertex coloring in undirected un-
weighted graphs setting. In particular, they consider the
game where each agent v has to choose a color among k
available ones and her payoff is equal to the number of ver-
tices in the graph that have chosen her same color, unless
some neighbour of v has chosen the same color, and in this
case the payoff of v is 0. They prove that this is a potential
game and that a Nash equilibrium can be found in polyno-
mial time.

2. PRELIMINARIES
Given an unweighted directed simple graph (or simple di-

graph) G = (V,E), we suppose that |V | = n and |E| = m.
An arc (v, w) ∈ E is directed from node v to w; w is called
the head and v is called the tail of the arc. An outgoing
arc from node v is any arc (v, w) ∈ E. We denote by
δvo (G) the outgoing degree of node v, that is the number

Figure 1: Instance for which there is no NE even with a
number of colors linear in the number of players. A bold ar-
row means that there is complete incidence from the source
subgraph to the target subgraph.

of outgoing arcs from node v in the graph G. An ingo-
ing arc to node v is any arc (w, v) ∈ E. We denote by
δvi (G) the ingoing degree of node v. Moreover we denote
with do(G) = minv=1,...,nδ

v
o (G) the minimum outgoing de-

gree of G. Let ∆o(G) = maxv=1,...,nδ
v
o (G) be the maximum

outgoing degree of G. Let ∆i(G) be the maximum ingoing
degree of G. We will omit to specify (G) when clear from
the context. Finally we denote with G[V ′], where V ′ ⊆ V ,
the subgraph of G induced by V ′.
In the digraph k-coloring game we are given a directed

unweighted graph G = (V,E) without self loops in which
each node v ∈ V is a selfish agent (in the following we will
use node and agent interchangeably), and a set of k available
colors. Each agent has the same set of actions, which is
the set of the k available colors. A state of the game c =
{c1, . . . , cn} is a k-coloring, where cv is the color (i.e., a
number from 1 to k) chosen by agent v. In a certain coloring
c, the payoff (or the utility) of an agent is the number of
neighbors choosing colors different from her own, where the
neighborhood of an agent v is the set of vertices induced by
all v’s outgoing edges. Formally, for a coloring c, an agent
v’s payoff µc(v) =

∑
(v,w)∈E:cv 6=cw

1.
Let (c−v, c′v) denote the coloring obtained from c by

changing the strategy of agent v from cv to c′v. A color-
ing c is a pure Nash or stable equilibrium, in the following
NE for short, if no agent v can improve her payoff by chang-
ing strategy, i.e., color. Formally c = {c1, . . . , cn} is a NE
if µc(v) ≥ µ(c−v,c′v)(v) for any possible color c′v and for any
v ∈ V .
A NE is not guaranteed to exist even for a large number of

available colors k. In particular, while there is always a NE
with n colors just assigning to each node a different color,
for every k ≤ n− 1 a NE is not guaranteed to exist. In fact,
it is possible to prove the following proposition.

Proposition 1. For arbitrarily large values of n ≥ 3, and
any fixed k such that 1 < k ≤ n− 1, there exist instances of
the digraph k-coloring game with n nodes not admitting any
NE.

Proof. Consider the following instance of digraph k-coloring
game: there are two nodes x, y, where x has an arc directed
toward y; moreover, there is a complete directed cliqueKk−1
of size k−1, and each node in the clique has an arc directed
toward x; finally, y has arcs directed toward all nodes in the
clique.
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Suppose we have k colors. Assume by contradiction that
a stable coloring exists and let c be the color assigned to
x. By the stability constraint, the nodes in the clique must
have the remaining k − 1 colors, one per vertex. In fact,
if some node in the clique is using the same color as x,
then it could switch to some unused color that increases its
utility. Moreover, also y should have a color different from
the ones in the clique, that is it must have color c. But then
x would have utility 0 and would improve by switching color:
a contradiction to the fact that the coloring was stable.
Notice that in the above construction k = n− 1. In order

to prove the claim for every fixed value of k such that 1 <
k ≤ n − 1, it suffices to add to the above graph of k + 1
nodes n−k−1 additional dummy nodes with an arc directed
toward x. The instance is depicted in Figure 1.

We remark that Proposition 1 is not directly implied by
the NP-completeness of determining the existence of a pure
NE shown in [18], since the proof works only for k � n.
If a digraph is bipartite, a NE with k ≥ 2 colors always

exists and it can be easily found in polynomial time. In
fact, given a digraph, it is well known that it is possible in
polynomial time to test whether the graph is bipartite or
not and, in the affirmative case, return a proper 2-coloring
of it (i.e., if the set of nodes v is partitioned in to the sets
V1 and V2, then all the nodes in V1 are colored with color
1 and all the nodes in V2 are colored with color 2. Clearly
such a coloring maximizes the utility of all the agents.
It is also easy to see that, if a digraph is without cycles

(i.e., it is a DAG), then a NE with k ≥ 2 colors always exists
and it can be easily found in polynomial time. In fact, given
a digraph, it is well known that it is possible in polynomial
time to test whether the graph is a DAG or not and, in
the affirmative case, to return a topological sorting of the
vertices, i.e., a linear ordering of its vertices such that for
every directed arc (v, w) from vertex v to vertex w, v comes
before w in the ordering. Then it is enough to consider
vertices in the reverse order and color each node with its
best response, that is choosing the color that maximizes her
payoff given the choices made by the previous agents.
Unfortunately, for general directed graphs, the problem of

determining whether the digraph k-coloring game admits a
NE is NP-Hard, for all k ≥ 2 [18]. For this reason, we con-
sider the notion of approximate Nash equilibrium. A color-
ing c is a γ-Nash equilibrium (γ-NE or γ-stable for short),
for some γ ≥ 1, if no agent can strictly improve her payoff
by a multiplicative factor of γ by changing color. Formally a
coloring c = {c1, . . . , cn} is a γ-NE if γµc(v) ≥ µ(c−v,c′v)(v)
for any possible color c′v and for any v ∈ V .
The notion of approximate NE has been considered in

many settings (see [21]). Typically, impossibility results (as
in our case), together with the fact that in many real-life
applications it may be the case that agents incur a propor-
tional cost for changing their strategies, have naturally led
researchers to consider this relaxed notion of Nash equilib-
rium.

3. APPROXIMATE-NE
In this section we show our polynomial time algorithms

that compute approximate NE for digraph k-coloring games.
In order to get familiar with the model and before pre-

senting our main results, we first show a polynomial time
algorithm that for any k ≥ 3 returns a k-coloring such that

agents are in a ∆o(G)-NE. This solution is particularly suit-
able for graphs with small ∆o(G).
We notice that when k = 2 any 2-coloring of a direct odd

cycle (i.e., a cycle with an odd number of nodes) is not a
γ-NE for any γ ≥ 1. Indeed it is easy to see that for any
possible coloring there exists a node having payoff zero.

3.1 Warm up: computing ∆o(G)-NE
We present a simple polynomial time algorithm that given

a digraph G returns a k-coloring, for any k ≥ 3 (indeed the
algorithms uses three colors), where every node v such that
δvo (G) ≥ 1 has payoff at least 1. Clearly this corresponds
to a ∆o(G)-NE because ∆o(G) is the maximum payoff that
any agent can achieve. The algorithm is iterative. At each
iteration the algorithm visits the graph induced by the un-
colored nodes and detects a cycle or a path (in the case of
the visiting reaches a node without outgoing edge in the in-
duced subgraph). Then it colors the nodes of the cycle or
the path by alternating three colors (for instance colors 1,2
and 3) in a way that every node gets payoff of at least 1. In
particular if the subgraph is a cycle then the algorithm con-
siders nodes of the cycle in clockwise order and assigns the
colors in such order (starting by any node) by alternating
the three colors. If the subgraph is a path from node v to
node w, then it colors the node w by a different color with
respect to the already colored node u, if the arc (w, u) ∈ E
(otherwise it means that δwo = 0 and we can assign any color
to w), and then alternates colors (in this case two colors are
enough) for the other nodes of the path considered in the re-
verse order starting from w. We notice that if the algorithm
does not detect any odd cycle then two colors are enough. A
formal description of the algorithm is Algorithm Approx1.
The proof of the following theorem is straightforward.

Theorem 2. Given a digraph G, algorithms Approx1 com-
putes in polynomial time a coloring that uses at most three
colors where each node v with δvo ≥ 1 gets utility at least 1,
i.e., Approx1 returns a ∆o(G)-NE.

3.2 Constant approximate NE obtained by ex-
ploiting the Lovász Local Lemma

In this section we design an algorithm that for any con-
stant k ≥ 2, computes a constant approximate NE for
a large class of digraph. In particular, by exploiting the
well known Lovász Local Lemma [11], we first show that if
we color each node with one of the k available colors uni-
formly at random, there is positive probability (i.e., strictly
greater than zero) that such random coloring returns a con-
stant approximate NE for digraph where, for any v ∈ V ,
δvo (G) = Ω(ln ∆o(G) + ln ∆i(G)). For instance this happens
for digraphs where the minimum outgoing degree is Ω(logn).
It implies that constant approximate NE always exist for any
constant value k ≥ 2 in this class of digraphs. We point out
that this result is already interesting, given that the prob-
lem of understanding whether the digraph k-coloring game
admits a NE is NP-complete for any k ≥ 2. Furthermore,
we can use the results of Theorem 1.2 of [20] in order to
get a randomized algorithm whose expected running time is
polynomial, that computes such constant approximate NE
(we will describe the algorithm we get from Theorem 1.2 of
[20] at the end of this section).
The Lovász Local Lemma (LLL) is a powerful tool used for

demonstrating that, given a large set of events with some de-
pendencies among them, the probability that none of these
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Algorithm: Algorithm Approx1
Input: a digraph G = (V,E) and a set 1, . . . , k of colors

1 L← empty list
2 while ∃v ∈ V still not colored do
3 L = [v]
4 x = v
5 while ∃i ∈ V such that {x, i} ∈ E and i is still not

colored do
6 if i ∈ L then
7 let L′ ⊆ L be the sublist of elements of L

starting from node i up to the end
8 if L′ is of even length then
9 color the nodes in L′ by alternating two

colors
10 x = i
11 break
12 else
13 color the nodes in L′\[i] by alternating

two colors
14 color i with a third color
15 x = i
16 break
17 else
18 x = i
19 append i to the end of L

20 if v == x and v is not colored then
21 if deg+(v) > 0 then
22 assign to v the color that maximizes its

payoff
23 else
24 assign to v a random color

25 if v 6= x and x is not colored then
26 if deg+(x) > 0 then
27 assign to x the color that maximizes its

payoff
28 color the nodes in L\{x} from the last node

down to v by alternating a color different
from c(x) and c(x) itself

29 else
30 color the nodes in L by alternating two colors

events happens is strictly greater than 0 if some conditions
are met. We use the following version of the (LLL):

Definition 1. (LLL). Let A1, A2, . . . , An be a set of bad
events, and let Di ⊆ {A1, A2, . . . , An} denote the "depen-
dency set" of Ai (namely Ai is mutually independent of all
the events not in Di). If there exists a set of real numbers
x1, . . . , xn ∈ [0, 1) such that Pr[Ai] ≤ xi

∏
j∈Di

(1− xj) for
all i, then Pr[

∧n

i=1 Āi] ≥
∏n

i=1(1− xi) > 0.

We show that the LLL can be used for proving that, under
certain conditions on the structure of the digraph, there is
positive probability that the Random k-coloring algorithm
returns a constant approximate NE for any values of k ≥ 2.
That is, we show the existence of constant approximate NE
for a broad subclass of digraphs. We define for each v ∈ V
a "bad event" Iv, that is the case in which in a coloring
returned by Algorithm Random k-coloring the node v is not

Algorithm: Random k-coloring
Input: a digraph G = (V,E) and a set 1, . . . , k of colors

1 for i = 1 to n do
2 randomly color node i by color j = 1, . . . , k, with

uniform probability 1
k
.

Figure 2: Graphical representation of all the types of event
that can influence a node’s behaviour

γ-stable for some constant γ (the value of γ will be computed
at the end of the analysis):

Event Iv = “node v is unhappy, i.e., it is not γ-stable.”

In order to apply the LLL we first need to bound the maxi-
mum size of the dependency set of each bad event. A generic
event Iv is dependent on all the bad events that consider at
least one node that regards Iv, namely v’s neighbours and
v itself. Thus, the possible event types in Iv’s dependency
set are shown below together with their maximum possible
multiplicity in brackets:

• The events in which v’s neighbours are involved in
their neighbours’ unhappiness (≤ δvi δvo );

• The events Iw, for any w 6= v where v contributes to
w′s unhappiness, namely there exists a directed edge
(w, v) (≤ δvi )

• The events Iw, for any w 6= v, that make w unhappy,
namely there exists a directed edge (v, w) (≤ δvo ).

This means that a bad event Iv is dependent to at most
δvi δ

v
o + δvi + δvo other bad events. The possible dependencies

are shown graphically in Figure 2.
If we denote by depv the dependency set of Iv, then we

have that:

|depv| ≤ δvo + δvi + δvoδ
v
i ∀v ∈ V (1)

Let ud = ∆o+∆i+∆o∆i be an upper bound to the number
of dependencies of any node, that is depv ≤ ud for any v ∈
V . In the following we suppose that depv ≥ 2. Indeed if
depv = 1 then two cases are possible, that is either δvo = 1
and δvi = 0, or, δvo = 0 and δvi = 1. In the former case we
can color node v at the end of the procedure with a color
different than its unique (outgoing) neighbour. In fact its
color does not affect the payoff of any other node. In the
latter case, node v is always happy because it does not have
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chance to get payoff greater than zero. If dv = 0 then it is
an isolated node and therefore we can forget about it. We
thus consider that ud ≥ 2.
Theorem 3. There exist values xv ∈ [0, 1), for any v =
1, . . . , n, such that, under certain conditions, Pr[Iv] ≤
xv
∏
w∈depv

(1− xw) for all v ∈ V . That is the LLL holds.

Proof. In order to show that the LLL holds, let us define
xv = 1

ud
∀v ∈ V . We want to show that if the following

inequality is true:

Pr[Iv] ≤ 1
ud

(
1− 1

ud

)ud
∀v ∈ V (2)

Then, since ud ≥ |depv| ∀v, and
(

1− 1
ud

)
< 1, it implies:

Pr[Iv] ≤ 1
ud

(
1− 1

ud

)ud
≤ 1
ud

(
1− 1

ud

)|depv|
∀v ∈ V

(3)
namely the LLL holds. In order to prove equation (2)

we use the Chernoff bound [10] that gives a bound on the
deviation of the sum of random variables from their expected
value.

Definition 2. (Chernoff bound). let X1, X2, . . . , Xn be in-
dependent random variables, and let X be their sum and
µ = E[X] the expected value. Then for any β > 0:

Pr[X ≥ (1 + β)µ] ≤ e−
βµ
3 (4)

So, in order to use the Chernoff bound we rewrite every
bad event Iv as:

Iv = “node v has at least (1 + β) δ
v
o

k
neighbours colored

with the same color”

Notice that in the solution returned by Algorithm Ran-
dom k-coloring, δ

v
o
k

is the expected number of nodes w hav-
ing v’s color and such that there exists a directed edge (v, w).
This is true since, with k colors, the probability that a node
has the same color as v is 1

k
and every node v has outdegree

δvo . We remark that we suppose k to be a constant value.
We use the Chernoff bound in equation (2) in the following

way:

Pr[Iv] ≤ e−
βδvo
3k ≤ 1

ud

(
1− 1

ud

)ud
(5)

We want to find for which values of β, δvo and k the above
inequality holds. Since the function (1− 1

ud
)ud is increasing

for any value ud > 1 and moreover we suppose that ud ≥ 2,
we obtain that (1 − 1

ud
)ud ≥ 1

4 . So we get from equation

(5) that, if e−
βδvo
3k ≤ 1

4ud
, then equation 5 holds, namely the

Lovász lemma holds. Therefore we obtain that for each node
v ∈ V :

βδvo
3k ≥ ln (ud4) = ln [(∆o∆i + ∆o + ∆i]4) ≥ ln ∆o∆i + ln 4

It implies that:

δvo ≥
3k
β

(ln ∆o∆i + ln 4) (6)

Therefore, since β and k are constant values, then we
get that when δvo = Ω(ln ∆o + ln ∆i), i.e., when the out-
going degree of each node v is sufficiently large then the
LLL holds. For instance we get that the LLL holds for gen-
eral unweighted digraphs where do = Ω(lnn). Moreover,
with a very similar analysis it is possible to show that if the
digraph is such that δvo = δo for any v ∈ V , i.e, the out-
going degree of all the nodes is the same (this is a broader
class of digraphs than regular ones) then LLL holds when
δo = Ω(ln ∆i). Finally we notice that the greater do is, the
smaller β is required to be.
We now show which is the smallest value of γ such that γ-

NE exists. For doing so, we consider the minimum possible
value β such that the LLL still holds, that is, according to
equation 6, equal to 3k

δvo
((ln ∆o + ln ∆i) + ln 4).

γ = maxv∈V
maximum possible utility
minimum expected utility = δvo

δvo − (1 + β) δ
v
o

k

=

= k

k − (1 + β) = k

k − 1− 3k (ln (∆o∆i) + ln 4)
δvo

= δvo

δvo −
δvo
k
− 3 (ln (∆o∆i) + ln 4)

=

=
δvo −

k

k − 13 (ln (∆o∆i) + ln 4) + k

k − 13 (ln (∆o∆i) + ln 4)

k − 1
k

δvo − 3 (ln (∆o∆i) + ln 4)
=

=
δvo −

k

k − 13 (ln (∆o∆i) + ln 4) + k

k − 13 (ln (∆o∆i) + ln 4)

k − 1
k

(
δvo −

k

k − 13 (ln (∆o∆i) + ln 4)
) =

= k

k − 1 +

k

k − 13 (ln (∆o∆i) + ln 4)

k − 1
k

δvo − 3 (ln (∆o∆i) + ln 4)
≈

≈ k

k − 1 +
(

k

k − 1

)2
O

 1

r − k

k − 1


Where r = δvo

ln (∆o∆i)
.

It is easy to see that when δvo = Ω(ln ∆o∆i) the above
value of γ is constant.

By summarizing we have proved that, under certain con-
ditions, according to the LLL, Algorithm Random k-coloring
returns a constant approximate NE with probability greater
than zero.
Moreover, by Theorem 1.2 of [20] we know that there ex-

ists a simple randomized algorithm that returns a stable col-
oring. The algorithm is very simple: start from a random
coloring (not necessarily stable) and, if exists, we arbitrarily
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pick an unhappy node v (i.e. the bad event Iv holds) and
we randomly assign a new color to all the nodes in the de-
pendency set depv (this is called a resampling of the event
Iv). We continue resampling violated events until the algo-
rithm reaches a coloring that is a γ-NE (i.e, the values of γ
we get in the above analysis). If the conditions of the LLL
are satisfied, then [20] proofs that the algorithm terminates
computing a γ-NE and the expected number of times an
event is resampled is polynomial.
We point out that the question of whether the algorithm

can be derandomized is an interesting issue. Unfortunately,
the results of [20], Theorem 1.4, allow to obtain a deter-
ministic algorithm with a running time that depends ex-
ponentially on the maximum number of dependencies per
random variable. As a consequence, if the input graph is
such that the in- and out-degree of each vertex are bounded
by a constant, the conditions of Theorem 1.4 are satisfied
and we directly obtain a deterministic polynomial time al-
gorithm. However, for such a case, the simple polynomial
time construction provided in Section 3.1 already gives a
constant Nash equilibria with 3 colors. For general graphs,
understanding whether the algorithm can be derandomized
is a hard question, since it is directly connected to the more
general question of improving the existing construction re-
sults of LLL.

3.3 Approximate NE for general digraphs
with a logarithmic number of colors

In this section we present a polynomial time algorithm
that, for any digraph G and ε > 0, computes a (1 + ε)-NE
by using O

( logn
ε

)
colors. The algorithm is iterative. At the

beginning all the nodes are not colored. In each iteration
the algorithm colors a subset of nodes as described below.
Let V ′ be the current set of uncolored nodes (at the be-

ginning V ′ = V ). In each iteration i, we consider the subdi-
graph G′ = (V ′, E′) of G induced by V ′, and k′ = d 3(1+ε)

ε
e

new colors cik′−k′+1, . . . , cik′ not used in the previous itera-
tions. We then define the undirected graph G′′ = (V ′, E′′)
such that an undirected edge {v, w} is in E′′ if at least one
between (v, w) and (w, v) is in E′. Let δv be the number of
neighbors of v in G′′.
Next, we use the algorithm described in Section 3 of [18]

that computes a stable coloring for the unweighted undi-
rected graph k′-coloring game (from now on we call this
algorithm UndirectColoring). The underlying idea of the
algorithm is the following: it starts from any arbitrary col-
oring and one node changes color if, by doing so, it strictly
improves its utility (i.e. the number of neighbors with differ-
ent color increases). The algorithm stops when it is no more
possible to perform such moves. The solution is computed
in polynomial time and it is a NE. Let V1, V2, . . . , Vk′ be the
coloring of V ′ induced by UndirectColoring, namely v ∈ Vj
means that v is colored cik′−k′+j .
For each node v ∈ V ′, if its outgoing degree in G′ is at

least d δv3 e then v is colored as in the equilibrium computed
by UndirectColoring, namely v is colored cik′−k′+j if v ∈ Vj .
The algorithm updates the set of the uncolored nodes and
iterates until all nodes are colored. A formal description of
the algorithm is Algorithm Approx3.
We now show the performance and correctness of Algo-

rithm Approx3.

Theorem 4. Given any digraph G = (V,E) and ε > 0,

Algorithm: Approx3
Input: a digraph G = (V,E), k′ = d 3(1+ε)

ε
e.

Output: a coloring of G such that all nodes are in a
(1 + ε)-NE, for any ε > 0.

1 i = 1
2 V ′ = V
3 while V ′ 6= ∅ do
4 cik′−k′+1, . . . , cik′ ← k′ new colors
5 G′ = (V ′, E′)← digraph such that

E′ := {(v, w) : v, w ∈ V ′}
6 G′′ = (V ′, E′′)← undirected graph such that

E′′ := {{v, w} : (v, w) ∈ E′ ∨ (w, v) ∈ E′}
7 δv ← |{y ∈ V ′ : {v, y} ∈ E′′}| ∀v ∈ V ′
8 apply UndirectColoring to G′′ and let V1, V2, . . . Vk′

be the partition of V induced by the coloring
9 for every node v ∈ V ′ do
10 if δvo (G′) ≥ dδv/3e then
11 color v cik′−k′+j , where v ∈ Vj
12 V ′ = V ′\{v}

13 i = i+1

algorithm Approx3 returns in polynomial time a (1 + ε)-NE
by using at most 6(1+ε)

ε
logn = O( logn

ε
) colors.

Proof. Consider an iteration i. If the coloring returned by
UndirectColoring induces a partition V1, V2, . . . Vk′ of V ′ in
iteration i, then for each v ∈ V ′ let δvVj be the number of
neighbors that v has in subset Vj . We have:

δvVj ≥ δ
v
Vc for all v ∈ Vc, and for all Vj , j 6= c (7)

because otherwise v could improve its utility by changing
its color, thus violating the fact that the solution returned
is stable. Consider then a node v ∈ Vc. According to the
coloring returned by UndirectColoring, its utility is:∑

Vj :j 6=c

δvVj ≥
(
k′ − 1

)
δvVc (8)

This means that, since the degree of v in G′′ is δv, the
number of neighbors in the same cluster as v is at most:

δvVc ≤
δv

k′
= δv

d 3(1+ε)
ε
e
≤ δvε

3 (1 + ε) (9)

Let us assume that v is colored at the end of iteration i.
Then, by the construction of Approx3, δvo (G′) ≥ d δv3 e, so
that the approximation factor γv of node v is

γv ≤
maximum utility of v

utility of v ≤ δvo (G′)

δvo (G′)− δvε

3 (1 + ε)

≤

≤

δv

3
δv

3 −
δvε

3 (1 + ε)

= 1
1− ε

(1 + ε)
= 1 + ε.

Thus, v is (1 + ε)-stable, and since every node is colored
during some iteration, Approx3 finally returns a (1 + ε)-
stable coloring.
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We now show that Approx3 ends in a polynomial number of
iterations by proving that we reduce the number of edges in
G′′ by a constant multiplicative factor in each iteration, un-
til the algorithm ends. Consider again a generic iteration i.
Let A be the set of nodes v such that δvo (G′) ≥ d δv3 e (namely
they are colored) and let B be the remaining nodes. If Ei is
the set of edges when iteration i starts and Ei+1 is the set
of edges remaining after iteration i, then:

|Ei+1| ≤
∑
v∈B

δvo (G′) ≤

∑
v∈B

δvi (G′)

2 ≤ |Ei|2 (10)

This is true because the first inequality holds by defini-
tion (we keep only arcs between uncolored nodes) and if the
second inequality is not true, then there is some node in
B that has been colored at the end of iteration i, namely
it should be in set A. Thus, the maximum number of it-
erations is log|E| ≤ 2 logn. Since we use k′ new colors in
each iteration, the overall number of used colors is at most
2k′ logn ≤ 6 (1 + ε)

ε
logn = O( logn

ε
).

We remark that the coloring returned by the algorithm
remains stable even if we increase the number of colors, so
that a (1 + ε)-approximate NE exist for any k = Ω

( logn
ε

)
.

4. CONCLUSIONS AND FUTURE WORK
In this paper we considered the digraph k-coloring games,

that are able to model lots of real-world scenarios with selfish
agents and are related to some of the most fundamental
classes of games investigated in the scientific literature.
We focused on Nash stability and, motivated by the fact

that NE might not exist for every number of colors k < n and
that in general their determination is a NP-hard problem,
we focused on the design of polynomial time algorithms that
return approximate Nash Equilibria for various values of k.
Clearly such results are stronger than mere existential ones,
since they imply directly the existence and the fact that such
equilibria can be suitably reached in practical scenarios.
Our paper should be seen as opening this research direc-

tion. In fact, we provided the first non trivial results for
unweighted digraphs. However there are many open prob-
lems suggested by our work.
On one hand, it is important to understand what is the

best approximate NE that can be computed in polynomial
time for every k = O(logn). On the other hand, even if it
turns out that it is computationally hard to determine good
approximate Nash equilibria, for such values of k it would
be nice also to prove that good approximate Nash equilibria
always exist. In particular, what is the minimum value of γ
guaranteeing the existence of a γ-approximate equilibria?
Moreover, a further step is that of considering weighted

digraphs. Even if we did not treat this case explicitly, we
emphasize that our result for k = Ω

( logn
ε

)
colors can be

generalized to show the existence of an equilibria with the
same approximation ratio for k = Ω

( logW
ε

)
, where W is

the overall sum of the edge weights. However, its deter-
mination in polynomial time remains open. In this word-
ing, it is also worth remarking that, even when the graph
is weighted undirected (we recall that in such a case pure
Nash equilibria always exists since we have a potential game,

however the problem of computing pure Nash Equilibria is
PLS-complete), efficient algorithms that compute constant
approximate Nash equilibria only exist for the case when
k = 2, that is for the cut game, with γ = 3 + ε. More-
over, even for such a particular setting, there is no evidence
that the current proposed solutions are the best approxi-
mate Nash equilibria that can be computed in polynomial
time, i.e., that the known results are tight.
In general, we believe that questions related to the compu-

tational complexity of approximate Nash equilibria for the
digraph k-coloring games deserve further investigation.
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