
Detecting Switches Against Non-Stationary Opponents

(JAAMAS Extended Abstract)
Pablo Hernandez-Leal

Centrum Wiskunde & Informatica
Amsterdam, The Netherlands
Pablo.Hernandez@cwi.nl

Yusen Zhan
Washington State University
Pullman, Washington, USA
yzhan@eecs.wsu.edu

Matthew E. Taylor
Washington State University
Pullman, Washington, USA
taylorm@eecs.wsu.edu

L. Enrique Sucar
INAOE

Puebla, México
esucar@inaoep.mx

Enrique Munoz de Cote
INAOE & PROWLER.io Ltd.

Puebla, México & Cambridge, UK
jemc@inaoep.mx

ABSTRACT
Interactions in multiagent systems are generally more com-
plicated than single agent ones. Game theory provides solu-
tions on how to act in multiple agent scenarios; however, it
assumes that all agents will act rationally. Moreover, some
works also assume the opponent will use a stationary strat-
egy. These assumptions usually do not hold in real world
scenarios where agents have limited capacities and may de-
viate from a perfect rational response. Our goal is still to act
optimally in this cases by learning the appropriate response
and without any prior policies on how to act. Thus, we fo-
cus on the problem when another agent in the environment
uses different stationary strategies over time. This paper
introduces DriftER, an algorithm that 1) learns a model of
the opponent, 2) uses that to obtain an optimal policy and
then 3) determines when it must re-learn due to an opponent
strategy change. We provide theoretical results showing that
DriftER guarantees to detect switches with high probability.
Also, we provide empirical results in normal form games and
then in a more realistic scenario, the Power TAC simulator.

Keywords
Non-stationary opponents; repeated games; Markov decision
processes

1. INTRODUCTION
When different agents interact in real world scenarios they

may use different behaviors depending on the context they
encounter. For example, in domains such as poker play-
ing agents may use different strategies depending on the
opponent’s behavior, in trading and negotiation scenarios,
opponents use different strategies and change among them.
One example is the Power TAC simulator [5] where com-
peting brokers (agents) are challenged to maximize their
profits by buying energy from a wholesale market and then
offering energy services to customers. A champion agent
from a previous competition was TacTex [6], which uses

Appears in: Proc. of the 16th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2017),

S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),

May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

an approach based on reinforcement learning and predic-
tion methods. Even though TacTex learns to bid efficiently
(in terms of profit), it is not capable of adapting quickly
to non-stationary opponents (that change suddenly to a dif-
ferent strategy). In general, when agents can change among
several stationary strategies, they turn the environment into
a non-stationary one. This is especially problematic for most
learning algorithms which assume a stationary environment
and most algorithms will not to react rapidly to sudden
changes, causing sub-optimal performance.

Works from machine learning have studied detection of
changes mostly in supervised learning settings, this area is
commonly known a concept drift. However, this is only a
partial representation of our problem. In the area of rein-
forcement learning some approaches have studied how agents
should act against non-stationary agents in order to converge
to an equilibrium.

Against this background, this paper’s main contribution
is to introduce DriftER, Drift (based on) Error Rate, which
leverages the idea of concept drift to detect when the oppo-
nent has changed strategies based on a measure on predic-
tive error. In order to learn how to act, DriftER assumes no
prior information of the opponents instead assumes to know
the set of attributes the opponent uses to define its strat-
egy1 and starts with an exploratory policy. DriftER treats
the opponent as part of a stationary environment using a
Markov decision process to model its behavior [1] and keeps
track of the quality of the learned MDP model.

2. DRIFTER
DriftER [4] learns a model of the opponent which is used

to compute a policy to act against it. DriftER’s interaction
with a stationary opponent generates Markovian observa-
tions which can be used to learn an MDP that represents
the opponent’s strategy assuming to know the representa-
tion (attributes) used by the opponent. This is because the
history of interactions define the transition among states
and the learning agent can induce an MDP [1] that models
the opponent strategy and can compute an optimal policy
against it π∗ (assuming the opponent will remain fixed).
In all settings, after interacting with the opponent for w
timesteps, the environment is learned using the R-max ex-
ploration [2] and later we value iteration to solve the MDP.

1These can be, for example, previous actions of the agents.

920



Many learning techniques decrease their exploration rate
over time. However, when facing non-stationary opponents
whose model has been learned, an agent must balance ex-
ploitation (to perform optimally against that strategy) and
exploration (to attempt to detect switches in the opponent).
Opponent strategy switches can be particularly hard to de-
tect producing a “shadowing” effect in the agents percep-
tion and the agent will not detect something has changed
(unless some exploration occurs). DriftER uses “drift ex-
ploration” that solves this shadowing effect by continuously
exploring the state space even after an optimal policy has
been learned [3].

After learning a model of the opponent, DriftER must
decide on each timestep if the model is consistent (the pre-
dictions using that model are correct) or the opponent has
changed to a different strategy (the model has consistently
shown errors). Using the current MDP that represents the
opponent strategy, DriftER predicts the next state of the
MDP (which for example can correspond to the opponent
next action). In the next timestep DriftER compares the
predicted and the experienced true state. This comparison
can be binarized with correct/incorrect values. A Bernoulli
process S1, S2, . . . , ST will be produced, assuming a sequence
of independent identically distributed events where Si ∈
{0, 1} and T is the last timestep. Let p̂i be the estimated
error (probability of observing incorrect) from S1 to Si, i =
1, . . . , T . Then, the 95% confidence interval [flower(p̂i), fupper(p̂i)]
over S1, S2, . . . , Si is calculated for each timestep i using the
Wilson score [7] such that the confidence interval will im-
prove as the amount of data grows, where flower(p̂i) and
fupper(p̂i) denote the lower bound and upper bound of the
confidence interval, respectively.

The estimated error, can increase for two reasons: the
opponent is exploring (or make mistakes) or a switch has
occurred in the opponent’s strategy. To detect the latter,
DriftER tracks the finite difference of the confidence interval
using the upper bound fupper(p̂i) at each timestep i. The
finite difference is defined by

∆i = fupper(p̂i)− fupper(p̂i−1), i = 1, . . . , T.

If ∆i > 0, ∆i−1 > 0,. . . ,∆i−n+1 > 0, (where n = 1, 2, . . .
is a parameter determined by the domain), DriftER detects
the confidence interval is increasing in the last n steps, then
it decides to restart the learning phase.

DriftER provides a theoretical result to justify this method
is capable of detecting opponent switches with high proba-
bility making the following assumptions: (i) The opponent
does not switch strategies while DriftER is in the learning
phase. (ii) The probability of exploration or mistake of the
opponent is at most ε for each timestep.

Theorem 1. Let ε > 0 and δ > 0 be small constants.
If ∆i > 0, ∆i−1 > 0,. . . ,∆i−n+1 > 0 and we set n =
O(log δ/ log ε), then DriftER detects the opponent switch with
probability 1− δ.

We contrast the behavior of DriftER (black thick line)
and a learning agent that does not include a switch detec-
tion mechanism (blue line) against the same non-stationary
opponent in Figure 1 which depicts the upper value of the
confidence over the error (fupper). Initially the opponent
uses a stochastic policy (showing an fupper value close to
0.2). At round 750 (vertical red line) the opponent changes
to a different strategy resulting in suboptimal performance
for the agent without switch detection. In contrast, DriftER

Figure 1: Error probabilities of a learning algorithm

without switch detection and DriftER against an oppo-

nent that changes between two strategies in the middle

of the interaction (vertical bar), small arrows represent

DriftER learning phase after detecting the switch.

detects the switch and starts a learning phase (between ar-
rows) after which DriftER produces a new opponent model,
therefore its error will decrease.

3. CONCLUSIONS
In real world scenarios different agents interact witch each

other, so it is reasonable to expect that they have different
behaviors. We focus on the problem when other agent in the
environment use different stationary strategies over time.
This paper introduced DriftER, an algorithm that models
an opponent as an MDP in order to compute an optimal
policy to behave against it. Then, it uses the learned model
to estimate the opponent’s behavior and tracks its error rate
to detect opponent switches. When the opponent changes
its strategy, the error rate increases and DriftER must learn
a new model. Theoretical results provide a guarantee of
detecting switches with high probability. Empirical results
in repeated games and the Power TAC simulator show that
DriftER can be adapted to more realistic scenarios.

Acknowledgments
This research has received funding through the ERA-Net
Smart Grids Plus project Grid-Friends, with support from
the European Union’s Horizon 2020 research and innovation
programme.

REFERENCES
[1] B. Banerjee and J. Peng. Efficient learning of multi-step best

response. In Proceedings of the 4th AAMAS Conference,
pages 60–66, Utretch, Netherlands, 2005. ACM.

[2] R. I. Brafman and M. Tennenholtz. R-MAX a general
polynomial time algorithm for near-optimal reinforcement
learning. The Journal of Machine Learning Research,
3:213–231, 2003.

[3] P. Hernandez-Leal, Y. Zhan, M. E. Taylor, L. E. Sucar, and
E. Munoz de Cote. An exploration strategy for
non-stationary opponents. Autonomous Agents and
Multi-Agent Systems, Oct. 2016.

[4] P. Hernandez-Leal, Y. Zhan, M. E. Taylor, L. E. Sucar, and
E. Munoz de Cote. Efficiently detecting switches against
non-stationary opponents. Autonomous Agents and
Multi-Agent Systems, Nov. 2016.

[5] W. Ketter, J. Collins, and P. P. Reddy. Power TAC: A
competitive economic simulation of the smart grid. Energy
Economics, 39:262–270, Sept. 2013.

[6] D. Urieli and P. Stone. TacTex’13: A Champion Adaptive
Power Trading Agent. In Twenty-Eighth AAAI Conference,
pages 465–471, Quebec, Canada, May 2014.

[7] E. B. Wilson. Probable Inference, the Law of Succesion, and
Statistical Inference. Journal of the American Statistical
Association, 22(158):209–212, Jan. 1927.

921




