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ABSTRACT
Meta-heuristics are algorithms which are applied to solve
problems when conventional algorithms can not find good
solutions in reasonable time; evolutionary algorithms are
perhaps the most well-known examples of meta-heuristics.
As there are many possible meta-heuristics, finding the most
suitable meta-heuristic for a given problem is not a trivial
task. In order to make this choice, one can design hyper-
heuristics. In the literature, one can find some agent-based
research whose focus is to propose a framework where meta-
heuristics are considered as agents, that solve a given prob-
lem in a collaborative or competitive way. Most of these
works focus on mono-objective meta-heuristics. Other works
focus on how to select multi-objective meta-heuristics, but
not using an agent-based approach. We present in this work
an agent-based hyper-heuristic for choosing the most suit-
able evolutionary meta-heuristic for a given problem. Our
approach performs a cooperative Copeland voting proce-
dure, considering five different metrics, to define which one
of three competitive evolutionary meta-heuristics should ex-
ecute during a certain processing time. We use the Walking
Fish Problem (WFG) suite with two and three objectives to
analyse the proposed approach performance. The obtained
results showed that in all cases our strategy found the most
indicated evolutionary algorithm and gets competitive re-
sults against the state of art.
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1. INTRODUCTION
Heuristics are basic approximate algorithms that search

the solution space to find a good solution [5]. Meta-heuristics
are algorithms used to solve problems when there isn’t any
problem-specific algorithm that gives a satisfactory solution.
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Thus, usually, heuristics are specialized in solving problems
for one particular domain, while meta-heuristics are more
generic and adaptive in several domains.

Because of meta-heuristics generality, this kind of algo-
rithm is widely used to solve complex problems in industry
and services, in areas ranging from finance to production
management and engineering [6].

Evolutionary algorithms are meta-heuristics which employ
Darwin’s theory of the survival of the fittest as their inspi-
ration. This kind of algorithms generates solutions using
the crossover and mutation heuristic operators and applies
a fitness function to choose which solution will compose the
next population.

There are many different evolutionary algorithms avail-
able in the literature, and they can be divided into two
classes: single-objective evolutionary algorithms, such as
Genetic Algorithm (GA) [18], and multi-objective evolution-
ary algorithms (MOEA), like Non-Dominated Sorting Ge-
netic Algorithm II (NSGA-II) [14], Strength Pareto Evolu-
tionary Algorithm 2 (SPEA2) [38] and Indicator-Based Evo-
lutionary Algorithm (IBEA) [37].

However, different evolutionary algorithms produce differ-
ent results when applied to different problems. Therefore,
techniques able to choose the most suitable evolutionary al-
gorithm for a given problem can solve this difficult task from
the user, thus diminishing part of his tuning effort.

Hyper-heuristics are meta-algorithms that can be used to
reduce the difficulty of selecting the most suitable meta-
heuristic for a given problem. According to Burke et al. [8],
hyper-heuristics are considered both as (i) meta-heuristic se-
lection methodologies (they help to choose meta-heuristics)
and (ii) meta-heuristic generation methodologies (they can
generate new meta-heuristics from a given set of compo-
nents). Some works in the domain focus on selecting the
most suitable (meta-)heuristic. However, the majority of re-
search in this area has been limited to treat single-objective
optimization problems [24].

This present work proposes the MOABHH (Multi-
Objective Agent-Based Hyper-Heuristic) framework, a
multi-agent-based hyper-heuristic focused on finding the
best evolutionary algorithm among a set of algorithms. In
our model, there are three kinds of agents: Multi-objective
Evolutionary Algorithm (MOEA) agents, responsible for
finding solutions for the optimization problem; (Indicator
voter) agents, who perform a Copeland election and are
responsible for evaluating the performance of each MOEA
agent, according to their own particular quality indicator;
and a hyper-heuristic agent, which decides the share of the
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population that should be treated by each MOEA agent.
In our approach, no additional population or archive is em-
ployed. Thus, there is only one population shared among
all evolutionary algorithms. This choice makes it easier to
compare our approach with pure evolutionary algorithms.

The remainder of this text is organized as follows: Sec-
tion 2 presents an overview of evolutionary algorithms,
multi-objective evolutionary algorithms (MOEAs) and in-
dicators. In Section 3, we give a brief explanation about
Copeland voting method. Our approach is detailed in Sec-
tion 4. In Section 5, we explain our experiments, and their
results are shown in Section 6, when we compare our ap-
proach with single evolutionary algorithms. Related work is
discussed in Section 7. Finally, in Section 8 we present our
conclusions and further work.

2. EVOLUTIONARY ALGORITHMS
Evolutionary algorithms can be classified, according to

the number of fitness values, as mono-objective evolutionary
algorithms or multi-objective evolutionary algorithms.

Mono-objective evolutionary algorithms use one value fit-
ness functions to represent a solution quality. Applications
of this kind can be seen in finding the minimal (or max-
imal) value for a mathematical function with one output.
Instead, Multi-objective Evolutionary Algorithms (MOEAs)
employ a set of objective values. An example of application
is to provide solutions for choosing a car to buy, considering
simultaneously max speed, fuel consumption, and average
market price.

Multi-objective Evolutionary Algorithms usually employ
Pareto Dominance [27] to find solutions for multi-objective
optimization problems. Differently from mono-objective ap-
proaches, where there is just one final solution, in a multi-
objective approach there are a set of solutions, which do not
dominate one another. Thus, the user can choose from the
set the solution that he finds most suitable.

In Pareto dominance, a certain solution A in the decision
space of a multi-objective problem is superior to another
solution B if and only if fitness(A) is at least as good as fit-
ness(B) in terms of all the objectives and strictly better than
fitness(B) in terms of at least a single objective. Solution A
is also said to strictly dominate solution B [3].

In the experiment described in Section 5, we use the well
known Walking Fish Group (WFG) [20] benchmark, aimed
to test multi-objective optimization algorithms, for problems
with two and three objectives.

We selected as MOEA agents the algorithms NSGAII,
SPEA2, and IBEA. As quality indicators for the Indicator
voters, we choose the Hypervolume [39], IGD [40], GD [31],
Spread [31] and RNI indicators [33]. These evolutionary
algorithms and quality indicators are described in the se-
quence.

2.1 Multi-objective Evolutionary Algorithms
We present next three different MOEAs. All of them em-

ploy Pareto dominance, crossover, and mutation, but they
differ in the way they choose the solutions for the new pop-
ulation:

NSGA-II The Non-Dominated Sorting Genetic Algo-
rithm II [14] builds a population of competing solu-
tions, ranks and sorts each solution according to non-
domination level, applies evolutionary operations to

create a new pool of offspring, and then combines the
parents and offspring before partitioning the new com-
bined pool into fronts [9]. The new combined pool is
employed to generate a new main population. This is
possible by calculating the Crowding Distance. The
Crowding Distance value of solution x is calculated by
the Euclidean distance between x and its neighbors.
This metric privileges more spread solutions for more
space exploration.

SPEA2 Strength Pareto Evolutionary Algorithm 2 [38] is
an algorithm which uses the Strength value for select-
ing new solutions for the new population. This algo-
rithm also employs the use of an additional population
called external archive, to store non-dominated solu-
tions found along the execution. This algorithm in-
corporates a fine-grained fitness assignment strategy,
which considers for each solution the number of solu-
tions that it dominates and that it is dominated by. It
uses a nearest neighbor density estimation technique
in order to increase the efficiency of the search [24].
This fitness function is named as solution Strength.

IBEA The Indicator-Based Evolutionary Algorithm [37]
is an algorithm which focuses on maximizing the pop-
ulation quality according to a previously determined
indicator. This indicator is used to calculate a contri-
bution of a solution; this means how much the qual-
ity increases if this solution is kept in the population.
Thus, the algorithm can compare different contribu-
tions to add to the new population the solutions which
contribute more. One of most known indicators used
together IBEA is the Hypervolume [39], as explained
next.

2.2 Quality Indicators
MOEAs usually returns a set of solutions (S) when the ex-

ecution is finished. Different indicators may be used to eval-
uate the quality of the outcome population; some of them
are presented next:

RNI The ratio of non-dominated solutions [33] evaluates
the percent of non-dominated solutions in the popula-
tion, as shown in Equation 1. Higher RNI values are
better than lower ones.

RNI(S) =
|NonDominated(S)|

|S| (1)

Hypervolume The hypervolume [39] of a non-dominated
solution set S is the size of the part of objective space
that is dominated collectively by the solutions in S [35].
Thus, the hypervolume indicator computes the area
(or volume when more than two objectives are em-
ployed) in the search space [39]. Equation 2 presents
how to calculate this indicator, where vi is the volume.
Higher hypervolumes are preferred to lower ones.

HV (S) = volume(∪|S|i=1vi) (2)

GD The Generational Distance [31] corresponds to the sum
of the Euclidean distances between the outcome popu-
lation of solutions S and the solutions in Pareto Front
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P . In general, it is impossible to find all solutions on a
continuous Pareto Front [21]; in this case, the Pareto
Front is previously known. Equation 3 presents how
to calculate the GD indicator, where q = 2 and d is
the Euclidean distance from i ∈ S to q ∈ P . Lower
GD values are better than higher ones.

GD(S, P ) =
(
∑|S|

i=1 d
q
i )

1
q

|S| (3)

IGD The Inverted Generational Distance [40] is very sim-
ilar to the GD. Instead calculating the Euclidean dis-
tance from S to P , as GD does, this indicator calcu-
lates the Euclidean distance from P to S. Equation 4
presents how to calculate the IGD indicator, where we
have also q = 2. Similarly to the GD indicator, lower
values are preferred to higher ones.

IGD(S, P ) =
(
∑|P |

i=1 d
q
i )

1
q

|P | (4)

Spread The Spread [31], or ∆ metric, evaluates the dis-
tribution of non-dominated solutions over the Pareto
Front [24]. Equation 5 presents how to calculate the
Spread indicator, where di is the Euclidean distance
between solutions in sequence, d is the distance mean
of df , dl are the minimum Euclidean distances from
solutions in S to the extreme (bounding) solutions of
P [21]. Higher spreads are preferred to lower ones.

∆(S, P ) =
df + dl +

∑|S|−1
i=1 |di − d|

df + dl + (|S| − 1)d
(5)

3. COPELAND VOTING METHOD
The Copeland Voting method [10] is a Condorcet method.

Condorcet’s principle says that should a candidate defeat
every other candidate in pairwise comparisons (a Condorcet
winner), it must be elected [26]. In order to follow this prin-
ciple, Copeland’s method ranks the alternatives according to
their score in the sum of rows in the antisymmetric matrix
of the Condorcet relation [28].

To perform a Copeland voting, first we create a pairwise
competition between candidates. Considering two candi-
dates ci and cj , the pairwise is calculated according to Equa-
tion 6.

S(i, j) =

 1 if ci is better than cj
−1 se ci is worse than cj
0 otherwise

 (6)

After calculating all pairwise comparisons, for each ci we
find its Copeland score according to Equation 7.

CS(i) =
∑
i6=k

S(i, k) (7)

Posteriorly, all Copeland scores can be sorted from higher
to lower in order to generate a ranking. The selected candi-
date is the top ranked candidate.

4. MOABHH FRAMEWORK
MOABHH (Multi-Objective Agent-Based Hyper-

Heuristic) is an agent-based hyper-heuristic framework
focused on automatically selecting the most suitable evolu-
tionary algorithm for a given multi-objective optimization
problem. In this approach, there are three kinds of agents,
who share four kinds of artifacts [30].

Figure 1 shows the interaction between MOABHH agents
and artifacts, where solid arrows mean writing permission
and dotted lines mean reading permission.

Figure 1: MOABHH modules interaction. Problem
manager agent can write on System variables and
Population artifact. MOEA agents can read Popu-
lation and System Variables artifacts and write on
Population Artifact. Indicator Voters can read pop-
ulation artifact and write on Copeland Artifact. HH
Agent can read all artifacts and write on Population
Share.

4.1 Artifacts
Artifacts are non-autonomous, function-oriented, stateful

entities, designed by MAS programmers, which are control-
lable and observable, and that are used to model the tools
and resources used by agents [30].

The System variables artifact keeps the description of
the optimization problem, composed of its fitness function,
and the number of variables. This artifact also holds the
MOABHH parameters: (i) how many generations to spend
during the initialization (δ), (ii) how many generations to
process until the Copeland voting happens (γ), and (iii)
the decreasing percent of the population size that should
be given to the best evolutionary algorithms agent after
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Copeland voting (β). This artifact is readable by all MOEA
agents and the HH agent, but the Problem Manager Agent
is the only one that can write in it.

There are two solutions related Artifacts. The first one,
named Population artifact, keeps the main current popula-
tion of solutions. This artifact is used by Indicator voters.
When MOABHH starts, the Problem Manager agent ran-
domly generates the first population, and then assigns it to
this artifact.

The second artifact, named Population artifact, contains
which solutions will be used by each evolutionary algorithm
during the next generation. This is necessary because no
MOEA agent can execute the whole population unless it
proves clearly that it has the best evolutionary algorithm.
The Population artifact is updated by the HH Agent using
information from the Copeland Artifact.

The Copeland artifact keeps all the necessary rankings
to generate the final rank. This artifact is used by the HH
Agent, who defines how many solutions generations each
meta-heuristic agent can perform.

4.2 Agents
The Problem Manager agent is responsible for receiving

MOABHparameters, instantiating the problem and setting
all global parameters in the System Variables artifact.

The MOEA agent contain a particular multi-objective
evolutionary algorithm instance. This agent receives a share
of the current population, creates a new generation of solu-
tions, selects which solution will compose the new popula-
tion (with the same size of the received share), and replaces
the received population share in the Population Artifact. All
generated solutions are associated with their respective gen-
erator agent. Thus, it is possible to evaluate the agents’
performance considering the solutions that were generated
by them.

The Indicator Voter agent contains an instance of a sin-
gle multi-objective quality indicator metric. This agent is
also capable of generating the Copeland final rank, used by
the Hyper-heuristic agent. However, just the last Indicator
Voter is allowed to perform this task. Figure 2 shows the
whole voting method. First (Step 1), each Indicator Voter
reads the current population; splits it into subpopulations,
where MOEA agents are associated to a subpopulation filled
with their generated solutions; and evaluate each subpopu-
lation following the instanced quality indicator. Thus, all
MOEA agents have an associated quality value that is used
to generate a ranking from the best to worse value. This
ranking is then added to the Copeland artifact. So, as we
can see in Figure 2 (part 1), the Copeland Artifact will have
n ranks.

Finally, the Indicator Voter who generated its ranking at
last reads all the indicators ranks existing in Copeland Ar-
tifact, performs the pairwise comparisons (one-on-one con-
test) (Step 2), generates the win-loss table, and sorts the
table in ascending order according to final rank values (Step
3). This final rank values are accessible to all other agents,
since it is available in the Copeland Artifact.

The Hyper-heuristic agent defines how many solutions,
i.e., which population share, each MOEA agent will receive.
For this purpose, this agent uses information provided by
the Copeland Artifact to determine which MOEA deserves
a bigger share of the population. First, in the initializa-

Figure 2: Voting method. In step 1 all Indicator
voter agents rank MOEA agents based on their re-
sults. In step 2 the Copeland voting is performed.
In step 3 the Copeland ranking is generated.

tion, all MOEA agents receive the same proportion of the
population, and no Copeland voting happens. This strategy
gives more time to MOEA agents to find solutions before
measuring the qualities of the provided solutions. In every
generation, the population is split into shares. Each share is
filled with randomly selected solutions from the main pop-
ulation, obtained from the population Artifact. When the
number of training generations (δ) is reached, at every γ
generations, the Copeland voting procedure happens. In
this way, the HH Agent uses updated information from the
Copeland Artifact to define which MOEA will receive a big-
ger share, and which MOEA will receive a lower share. The
best-ranked agent takes β% solutions from the worse ranked
agent in the final Copeland Rank. This allows MOABHH
to explore more the most suitable evolutionary algorithm
rather than the other evolutionary algorithms.

4.3 MOABHH Execution Flow
Algorithm 1 shows the interactions between Agents and

Artifacts during MOABHH execution. First, all component
(agents and artifacts) are initialized (Line 3), system param-
eters are defined (Line 4) and the first population is ran-
domly generated and added to Population Artifact (Line 6).
In the sequence, MOABHH performs its initialization shar-
ing (N/numOfMHAgents) solutions for each MOEA agent
(Line 10); this happens until a δ number of generations is not
reach (Line 8). In thsi way, all MOEA agents can perform
one generation and allocate the resulting solutions on the
Population Share Artifact (Line 11 and Line 12). Finally,
the HH Agent can use existing solutions in Population Share
Artifact to set in Population Artifact. During this initial-
ization process, there is no voting procedure.

After the initialization, MOABHH execution flow is per-
formed while there remains evaluations to perform (Line 16).
After each γ generations, the Copeland voting is performed
(Lines 18 and 19). If there are more than two MHAgents
(Line 20), the last voted losses β% of its population share,
the most voted receives more β ∗0.75% and the second most
voted receives β∗0.25%. In the case of having just two MHA-
gents,the winner receives the whole β% of the last voted
population share.

After voting, each MHAgent generates more solutions us-
ing the current solutions from the Population Share Artifact
and replaces them by the new generated solutions (Line 27
and Line 28). Finnaly the HH agent uses existing solutions
in Population Share Artifact to set in Population Artifact
(Line 29).

975



Algorithm 1: MOABHH Pseudocode.

1 Input: Problem, γ - generations before voting, δ -
generations during initialization, β - decreasing
percent, N population size, maxGen - max
number of generations

2 begin
3 Start all agents and artifacts;
4 Set MOABHH parameters to Problem Manager;
5 Problem manager sets parameters to System

Variables Artifact;
6 Problem Manager randomly generates a population

of solutions, then adds the generated population to
Population Artifact;

7 gen = 0;
8 while gen < δ do
9 //perform the initialization;

10 HH Agents sets (N/numOfMHAgents)
solutions for each MH Agent in Population
Share Artifact;

11 Each MHAgent generates new solutions using its
population share;

12 Each MHAgent replaces current solutions in
Population Share Artifact by their new
generated solutions;

13 HH Agent takes solutions from Population Share
Artifact and sets in Population Artifact;

14 gen+ +;

15 end
16 while gen < maxGen do
17 if gen%γ = 0 then
18 Indicator Voter Agents votes considering

solutions provided by Population Artifact;
19 The last voter generates the final Copeland

Ranking and assign it to Copeland Artifact;
20 if There is more than two MHAgents active

then
21 HH Agent assigns more β ∗ 0.75 percent

of the population share for the election
winner, more β ∗ 0.25 for second place
winner and removes β percent from the
last voted;

22 end
23 else
24 HH Agent assigns more β percent of the

population share for the election winner
and removes β percent of the
population share from the less voted;

25 end

26 end
27 Each MHAgent generates new solutions using its

population share;
28 Each MHAgent replaces current solutions in

Population Share Artifact by their new
generated solutions;

29 HH Agent takes solutions from Population Share
Artifact and sets in Population Artifact;

30 gen+ +;

31 end

32 end

5. EXPERIMENTAL SETTINGS
In our experiments, we used three independent evolution-

ary algorithms as MOEAs: NSGA-II, SPEA2, and IBEA,
described in section 2.1. These three algorithms have been
extensively applied in several multi-objective optimization
problems, so they are suitable for our approach.

We then compared the performance of each of these indi-
vidual algorithms with two MOABHH instances:

• MOABHHrnd, which does not apply any voting
method. It just randomly selects an order of evolu-
tionary algorithms and set it on the Copeland arti-
fact. Thus, this instance shows how MOABHH be-
haves without Indicator voters;

• MOABHHcpl, uses Indicator voters and performs the
Copeland method. We set five Indicator voters agents,
each of them using one of the indicators detailed in
section 2.2: RNI, Hypervolume, GD, IGD or Spread.
Before calculating the indicator quality, we perform
a normalization for each objective values, within the
[0,1] range using the maximum and minimum values
for each objective. We set both MOABHHrnd and
MOABHHcpl parameters as δ = 112, γ = 12 and
β = 3.

All the evolutionary algorithms were set according to [13],
using as heuristics SBX Crossover (with distribution 30 and
rate 1.0) and Polynomial Mutation (with distribution 20 and
rate de 1/n, where n =number of problems variables). The
population size was defined as 100.

As a benchmark, we have employed the well-known Walk-
ing Fish Group (WFG) [20] (WFG1 to WFG9) multi-
objective benchmark. The WFG is a flexible and scalable
suite which contains different kinds of optimization prob-
lems, showed in Table 1, with different Pareto optimal ge-
ometry, bias, separability (if a Pareto front is disconnected
or not) and modality.

The experiments were performed using two and three ob-
jectives (m = {2, 3}) for all problems, totalizing 18 different
experiments. The WFG suite problems have two param-
eters: number of distance-related and number of position-
related. We set them according to to [7], where the number
of distance-related variables was set l = 20, and the number
of the position-related variables was set to 4.

Table 1: WFG characteristics, extracted from [20].
Problem Separability Modality Bias Geometry

WFG1 separable uni polynominal, flat convex, mixed

WFG2 non-separable uni - convex, disconnected

WFG3 non-separable uni - linear, degenerate

WFG4 separable multi - concave

WFG5 separable deceptive - concave

WFG6 non-separable uni - concave

WFG7 separable uni parameter dependent concave

WFG8 non-separable uni parameter dependent concave

WFG9 non-separable multi, deceptive parameter dependent concave

All experiment were executed 40 times, during 750 genera-
tions, according to [7]. In the end, each algorithm execution
generated a population of solutions. So, the population qual-
ity was calculated using all metrics showed in Section 2.2.

For Hypervolume, IGD, GD and Spread indicators we
used the Pareto Fronts available in jMetal Framework as
the reference. For RNI calculation, we joined all experiment
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population, for each problem, to create an approximated
Pareto Front to be used as the reference Front.

Posteriorly, all indicator averages values for each problem
were taken and statistically compared using Kruskal-Wallis
test with 5% of significance.

Regarding our implementation, we developed MOABHH
in Java JDK7, using the Cartago framework [29] to code
the artifacts, and jMetal framework [15] for evolutionary
algorithms and WFG problem instances.

6. RESULTS
In this section, we present the indicator averages for all

tested algorithms, applied to all WFG’s problems. The best
and statistically tied averages are highlighted in the follow-
ing figures.

Figure 3 shows hypervolume average values. This figure
shows that MOABHHcpl at least tied with the best results
in all problems. In some of them, MOABHHcpl got even
better averages than any other algorithm: this is the case
for problems WFG1, WFG3, WFG6 for two objectives and
WFG2, WFG3 for three objectives. On the other hand,
MOABHHrnd just got competitive results in two problems:
WFG1 and WFG2 for two objectives, and has got a worse
result in all other problems.

Figure 4 shows IGD average values. It shows
MOABHHcpl as the best algorithm, considering the sta-
tistical difference, to solve WFG3 with two objectives. This
algorithm also got better results, statistically tied, in WFG1,
WFG2, and WFG6 with two objectives and WFG3 with
three objectives. However, MOABHHcpl got its worst re-
sults in WFG4 and WFG5 for two objectives and WFG7 for
three objectives, whereMOABHHrdn overcome all other al-
gorithms. In most problems, IBEA evolutionary algorithm
got better results than NSGA-II and SPEA2. However, it
was overcome by these algorithms in two objectives WFG4
and WFG5, problems where MOABHHcpl was also over-
come.

Figure 5 shows RNI averages values. This figure shows
MOABHHcpl competitive in most problems. There were
some problems whereMOABHHcpl got worse averages than
the individual evolutionary algorithm IBEA. This happened
in WFG1, WFG7 and WFG8 for three objectives. However,
this does not mean a worse quality, but fewer non-dominated
solutions. In most of the problems (4/18). MOABHHrdn

did not find adequately a set of non-dominated solutions.
Figure 6 shows GD averages values. MOABHHcpl has

a similar performance compared to IBEA, tied with the
best algorithm in 10/18 problems. On the other hand,
MOABHHrdn performed well in just 6/18 problems. For
this indicator, SPEA2 got the best results.

Finally, Figure 7 shows Spread averages values. It shows
a worse performance of MOABHHcpl when compared to
MOABHHrdn. This happens because this indicator fo-
cuses on how much spread solutions are present in the search
space. This doesn’t guarantee that these solutions can be
considered as good ones, as Hypervolume and IGD indica-
tors tell us. Obviously, MOABHHrdn finds more spread
solutions because of its random evolutionary algorithm se-
lection, which allows a larger exploration of the search space.
We can also see in this figure that SPEA2 was the worst al-
gorithm according to this Indicator.

Our results may be better explained considering the main
characteristics of each of the quality indicators. According

Figure 3: Hypervolume results for two and three
objectives.

Figure 4: IGD results for two and three objectives.
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Figure 5: RNI results for two and three objectives.

Figure 6: GD results for two and three objectives.

Figure 7: Spread results for two and three objec-
tives.

to [21], the GD indicator measures the convergence perfor-
mance, while the Spread indicator measures the diversity
considering distribution and spread. Hypervolume and IGD
measure both convergence and diversity. Our results show
that MOABHHcpl has better averages on hypervolume and
IGD indicators, competitive results on RNI and Spread in-
dicators, but got its worse results considering the GD in-
dicator. This happens due to the fact that this indicator
is the only one which considers just convergence. In our
experiments, we can see that the GD indicator voter tends
to choose SPEA2 instead of IBEA, which is the preferred
MOEA by most other indicator voters. IBEA is clearly supe-
rior to SPEA2 and NSGA-II considering Hypervolume and
IGD, but according to the GD indicator it does not find
good quality solutions in some problems.

Considering MOABHHrdn, we can see that it is bet-
ter according to the Spread indicator, but worse than
MOABHHcpl with respect to Hypervolume, IGD, GD and
RNI indicators. This happens because MOABHHrdn does
not prioritize any indicator, and as a consequence it shares
the population more uniformly. This allows MOABHHrdn

to find more different solutions, although not necessarily
non-dominated solutions.

7. RELATED WORK
In the literature, hyper-heuristics that were proposed to

solve multi-objective optimization problems didn’t apply
agent-based techniques. Maashi et al. [24] proposed a evo-
lutionary algorithm selection method, based on the Choice
Function [12], which aimed to select, one at a time, during a
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given number of generations, an evolutionary algorithm from
a set of three evolutionary algorithms, composed by NSGA-
II, SPEA2, and MOGA [16]. For this purpose, they used a
choice function based on a two ranking system. This ranking
system employed the metric indicators Hypervolume, RNI,
Spread and Computational time.

Vázquez-Rodŕıguez and Petrovic [34] combined a genetic
algorithm with a mixture experiment to create a hyper-
heuristic. Mixture experiment is a design of experiments
technique that allows to efficiently exploit accumulated
knowledge and to express it as a probability [11]. This
hyper-heuristic selects solutions to compose the main pop-
ulation applying four different selection criteria. Each cri-
terion was used considering an associated probability based
on its performance, calculated during the search. This work
employed NSGA-II, SPEA2, and IBEA evolutionary algo-
rithms.

On the other hand, some researchers used agent-based ap-
proaches and reduced the difficulty of selecting the most suit-
able evolutionary algorithm: however, most of these works
focused on solving single-objective optimization problems.
Aydin and Fogarty [4] proposed use mono-objective evolu-
tionary algorithms, such as Genetic Algorithm, Simulated
Annealing [1] and Tabu Search [17], to solve the Job Shop
Scheduling problem. In their approach, each agent can take
a solution from the population and improve it. Milano and
Roli [25] aimed to solve the MAXSAT problem using as
agents GRASP, ACO, ILS, and MA mono-objective evo-
lutionary algorithms. Talbi and Bachelet [32] used Tabu
Search, Genetic Algorithms and a kick operator as agents
that tried to solve the QaP problem; in their approach, GA
explored the search space, the kick operator intensified these
solutions, and Tabu Search was used to improve the solu-
tions’ quality.

Recently, Acan and Lotfi [2] proposed a multi-objective
agent-based approach to solve the CEC2009 multi-objective
optimization benchmark. Their work keeps a set of MOEA
agents who act on a share of the main population, and se-
lected the population following a cyclic or round-robin or-
der. They keep a main archive of non-dominated solutions,
and also each of the MOEA agents keeps an own archive as
well. However, this makes this approach harder to compare
against pure evolutionary algorithms (not agent-based), due
to the use of many populations. Evolutionary algorithms
employ just one or two populations, with a fixed maximal
size (maxSize parameter), to keep found solutions. When
an approach employs multiple populations, one for each of
N agents, it creates a much bigger pool to save solutions,
with size N ∗maxSize. This increases the number of saved
solutions, helping this approach to explore more the search
space than a simple evolutionary algorithm with a single
population.

8. CONCLUSIONS
In this work, we proposed the MOABHH (Multi-Objective

Agent-Based Hyper-Heuristic) framework, a multi-agent
hyper-heuristic focused on finding automatically the best
evolutionary algorithm among a set of evolutionary algo-
rithms. This selection is performed by a Copeland voting
procedure among agents who employ different quality indi-
cators values as a vote. Thus, the population of solutions is
shared among MOEA agents by the hyper-heuristic agent.
MOEA agents then generate new solutions, apply their ac-

ceptance criteria and return their updated population share.
Finally, Indicator voters can evaluate MOEAs performance
and perform the Copeland voting.

We conducted a set of experiments using the WFG bench-
mark suite with two and three objectives, following the liter-
ature recommendations. The obtained results showed that
MOABHH can find the most suitable algorithm for these
problems, and in the majority of cases gets results compati-
ble with each individual evolutionary algorithm. Moreover,
in some problems, MOABHH outperformed these individual
algorithms.

Regarding future research, we intend to use different
meta-heuristics such as MOEA/D-DRA [36], MOEA/D-
DD [23] and MOMBI-II [19] to solve many-objectives prob-
lems, scaling up to ten objectives. We also intend to apply
MOABHH to different benchmarks such as mQAP [22].
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