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ABSTRACT
Demand-side management (DSM) in the smart grid allows
customers to make autonomous decisions on their energy
consumption, helping energy providers to reduce the energy
peaks in load demand. The automated scheduling of smart
devices in residential and commercial buildings plays a key
role in DSM. Due to data privacy and user autonomy, such
an approach is best implemented through distributed multi-
agent systems. This paper makes the following contribu-
tions: (i) It introduces the Smart Home Device Scheduling
(SHDS) problem, which formalizes the device scheduling
and coordination problem across multiple smart homes as
a multi-agent system; (ii) It describes a mapping of this
problem to a distributed constraint optimization problem;
(iii) It proposes a distributed algorithm for the SHDS prob-
lem; and (iv) It presents empirical results from a physically
distributed system of Raspberry Pis, each capable of con-
trolling smart devices through hardware interfaces, as well
as larger scale synthetic experiments.
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1. INTRODUCTION
Demand-side management (DSM) in the smart grid allows
customers to make autonomous decisions on their energy
consumption, helping the energy providers to reduce the
peaks in energy load demand. Typical approaches for DSM
focus on enforcing grid users’ decisions to reduce consump-
tions by either (i) storing energy during off-peak hours and
using the stored energy when the grid load demand is high,
or (ii) scheduling shiftable loads in off-pick hours [26, 11, 3].
The former approach requires that homeowners own storage
devices, in the form of batteries or electric vehicles. The
availability of these resources, in the current and near fu-
ture smart grid scenarios, is, however, limited. Thus, the
latter approach is more appealing for the current smart grid
scenario but requires producers to control a portion of the
consumers’ electrical appliances, which strongly affects pri-
vacy and users’ autonomy.

On the other hand, residential and commercial buildings
are progressively being partially automated through the in-
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troduction of smart devices (e.g., smart thermostats, circu-
lator heating, washing machines). In addition, a variety of
smart plugs, that allow users to intelligently control devices
by remotely switching them on and off, are now commer-
cially available. Device scheduling can, therefore, be exe-
cuted by users, without the control of a centralized author-
ity. This schema can, thus, be used for demand-side man-
agement. However, uncoordinated scheduling may be detri-
mental to DSM performance without reducing peak load
demands [23]. For an effective DSM, a coordinated device
scheduling within a neighborhood of buildings is necessary.
Yet, privacy concerns arise when users share resources or
cooperate to find suitable schedules.

Motivated by these issues, in this paper, we provide the
following contributions: (i) We introduce the Smart Home
Device Scheduling (SHDS) problem, which formalizes the
problem of coordinating smart devices schedules across mul-
tiple smart homes as a multi-agent system (MAS); (ii) We
propose a modeling of the SHDS problem as a distributed
constraint optimization problem, where the agents are as-
sumed to be cooperative; (iii) We propose a simple effective
coordination scheme to solve this problem in a distributed
manner; and (iv) We evaluate this distributed algorithm
on a physically distributed system of Raspberry Pis, each
capable of controlling a number of smart devices through
hardware interfaces, such as Z-Wave dongles, as well as on
larger scale synthetic experiments.

2. BACKGROUND AND RELATED WORK
The problem of scheduling devices in smart homes has re-
cently attracted large interest within the AI and smart grid
communities. Georgievski et al. [4] proposed a system to
monitor and control electrical appliances in a home with the
objective of reducing the energy consumption costs. Scott
et al. [18] also studied a centralized online stochastic opti-
mization approach for (single) home automation systems as
a DSM mechanism, where future prices, occupant behavior,
and environmental conditions are uncertain. Sou et al. [20]
proposed a Mixed Integer Linear Program (MILP) to ad-
dress smart appliances scheduling problem in single homes
using a fine granularity for the technical specification of the
smart appliances (e.g., they distinguish the different energy
phases expressed by a dishwasher or a washing machine cy-
cle). Due to the high complexity of the problem, the authors
suggest adopting suboptimal solutions to reduce the overall
resolution time. Another proposal to enhance the resolution
time of a MILP formulation for scheduling smart devices has
been presented by Tsui and Chan [21] through a convex re-

981



 a2 x3 x4

 a3 x5 x6

 a1 x1 x2 x1

x2

x3

x4

x5

x6

for i < j

xi xj Costs
0 0 20
0 1 8
1 0 10
1 1 3

(a) Constraint Graph (b) Constraint Cost Table

Figure 1: Example DCOP

A solution � is a value assignment to a set of variables
X� ✓ X that is consistent with the variables’ domains. The
cost function FP(�) =

P
f2F,xf✓X�

f(�) is the sum of the
costs of all the applicable constraints in �. A solution is said
to be complete if X� = X is the value assignment for all
variables. The goal is to find an optimal complete solution
x⇤ = argminx FP(x).

Following Fioretto et al. [2016b], we introduce the follow-
ing definitions:

Definition 1 For each agent ai2A, Li ={xj 2 X |↵(xj)=
ai} is the set of its local variables. Ii = {xj 2 Li | 9xk 2
X ^ 9fs2F : ↵(xk) 6= ai ^ {xj , xk}✓xfs} is the set of its
interface variables.

Definition 2 For each agent ai2A, its local constraint graph
Gi = (Li, EFi) is a subgraph of the constraint graph, where
Fi ={fj 2F | xfj ✓Li}.

Figure 1(a) shows the constraint graph of a sample DCOP
with 3 agents a1, a2, and a3, where L1 = {x1, x2}, L2 =
{x3, x4}, L3 = {x5, x6}, I1 = {x2}, I2 = {x4}, and
I3 = {x6}. The domains are D1 = · · · = D6 = {0, 1}.
Figure 1(b) shows the constraint cost tables (all constraints
have the same cost table for simplicity).

3 Scheduling of Devices in Smart Buildings
Through the proliferation of smart devices (e.g., smart ther-
mostats, smart lightbulbs, smart washers, etc.) in our homes
and offices, building automation within the larger smart grid
is becoming inevitable. Building automation is the automated
control of the building’s devices with the objective of im-
proved comfort of the occupants, improved energy efficiency,
and reduced operational costs. In this paper, we are interested
in the scheduling devices in smart buildings in a decentral-
ized way, where each user is responsible for the schedule of
the devices in her building, under the assumption that each
user cooperate to ensure that the total energy consumption of
the neighborhood is always within some maximum threshold
that is defined by the energy provider such as a energy utility
company.

We now provide a description of the Smart Building De-
vices Scheduling (SBDS) problem. We describe related so-
lution approaches in Section 6. An SBDS problem is com-
posed of a neighborhood H of smart buildings hi 2 H that
are able to communicate with one another and whose energy
demands are served by an energy provider. We assume that

the provider sets energy prices according to a real-time pric-
ing schema specified at regular intervals t within a finite time
horizon H . We use T = {1, . . . , H} to denote the set of time
intervals and ✓ : T ! R+ to represent the price function
associated with the pricing schema adopted, which expresses
the cost per kWh of energy consumed by a consumer.

Within each smart building hi, there is a set of (smart)
electric devices Zi networked together and controlled by a
home automation system. All the devices are uninterruptible
(i.e., they cannot be stopped once they are started) and we use
szj

and �zj
to denote the start time and duration (expressed

in exact multiples of time intervals), respectively, of device
zj 2 Zi.

The energy consumption of each device zj is ⇢zj kWh for
each hour that it is on. It will not consume any energy if it
is off-the-shelf. We use the indicator function �t

zj
to indicate

the state of the device zj at time step t, and whose value is 1
exclusively when the device zj is on at time step t:

�t
zj

=

⇢
1 if szj

 t ^ szj
+ �zj

� t
0 otherwise

Additionally, the execution of device zj is characterized
by a cost and a discomfort value. The cost represents the
monetary expense for the user to schedule zj at a given time,
and we use Ct

i to denote the aggregated cost of the building
hi at time step t, expressed as:

Ct
i = P t

i · ✓(t), (1)

where
P t

i =
X

zj2Zi

�t
zj

· ⇢zj
(2)

is the aggregate power consumed by building hi at time step
t. The discomfort value µt

zj
2 R describes the degree of

dissatisfaction for the user to schedule the device zj at a given
time step t. Additionally, we use U t

i to denote the aggregated
discomfort associated to the user in building hi at time step t:

U t
i =

X

zj2Zi

�t
zj

· µzj
(t). (3)

The SBDS problem is the problem of scheduling the de-
vices of each building in the neighborhood in a coordinated
fashion so as to minimize the monetary costs and, at the same
time, minimize the discomfort of users. While this is a multi-
objective optimization problem, we combine the two objec-
tives into a single objective through the use of a weighted
sum:

minimize
X

t2T

X

hi2H
↵c · Ct

i + ↵u · U t
i (4)

where ↵c and ↵u are weights in the open interval (0, 1) ✓ R
such that ↵c + ↵u = 1. The SBDS problem is also subject to
the following constraints:

1  szj
 T � �zj

8hi 2 H, zj 2 Zi (5)
X

t2T

�t
zj

= �zj 8hi 2 H, zj 2 Zi (6)

X

hi2H
P t

i  `t 8t 2 T (7)

Zi

Figure 1: Illustration of a Neighborhood of Smart Homes

laxation for the automatic load management of appliances
in a smart home. Such an approach, however, provides no
guarantees on the solution quality with respect to the orig-
inal problem. Unlike our approach, these proposals focus
on single-home problems and/or are inherently centralized.
In contrast, we focus on a distributed approach applied to
multiple homes.

Researchers have also used distributed constraint opti-
mization problem (DCOP) algorithms to solve resource allo-
cation problems in the smart grid. For example, DCOP so-
lutions to electric vehicle charging problems have been pro-
posed in [10, 12], and Rust et al. [16] recently proposed a
DCOP-based approach for coordinating the states of home
appliances in a smart environment. Different from such ap-
proaches, in our proposal, we use a DCOP framework to
schedule smart devices in smart homes as a proxy to coordi-
nate the energy consumption of multiple smart homes with
the goal of minimizing user costs and energy consumption
peaks.

3. SCHEDULING IN SMART HOMES
A Smart Home Device Scheduling (SHDS) problem is de-
fined by the tuple 〈H,Z,L,PH ,PZ , H, θ〉, where:

• H = {h1, h2, . . .} is a neighborhood of smart homes, ca-
pable of communicating with one another.

• Z = ∪hi∈HZi is a set of smart devices, where Zi is the
set of devices in the smart home hi (e.g., vacuum cleaning
robot, smart thermostat).

• L = ∪hi∈HLi is a set of locations, where Li is the set of
locations in the smart home hi (e.g., living room, kitchen).

• PH is the set of the state properties of the smart homes
(e.g., cleanliness, temperature).

• PZ is the set of the devices state properties (e.g., battery
charge for a vacuum cleaning robot).

• H is the planning horizon of the problem. We denote with
T = {1, . . . , H} the set of time points.

• θ : T → R+ represents the real-time pricing schema
adopted by the energy utility company, which expresses
the cost per kWh of energy consumed by consumers.

Finally, we use Ωp to denote the set of all possible states
for state property p ∈ PH ∪PZ (e.g., all the different levels
of cleanliness for the cleanliness property). Figure 1 shows
an illustration of a neighborhood of smart homes with each
home controlling a set of smart devices.

3.1 Smart Devices
For each home hi ∈ H, the set of smart devices Zi is par-
titioned into a set of actuators Ai and a set of sensors Si.
Actuators can affect the states of the home (e.g., heaters and
ovens can affect the temperature in the home) and possibly

1400 1500 1600 1700 1800

0

15

30

45

60

75

C
le

an
lin

es
s 

(%
)

0

15

30

45

60

75

B
attery C

harge (%
)

Time

Goal

Deadline

40

15

R

15

30

R

35

30

C

55

30

C

30

45

R

5

60

R

25

60

C

0

75

R

65

0

S Device Schedule

Cleanliness (%)

Battery Charge (%)

Figure 2: Smart Home Device Scheduling Example

their own states (e.g., vacuum cleaning robots drain their
battery power when running). On the other hand, sensors
monitor the states of the home.

Each device z ∈ Zi of a home hi is defined by a tuple
〈`z, Az, γHz , γZz 〉, where `z ∈ Li denotes the relevant location
in the home that it can act or sense, Az is the set of actions
that it can perform, and γHz : Az → 2PH and γZz : Az → 2PZ

map the actions of the device to the relevant state properties
of the home and to those of the device, respectively.

We use the following example throughout this paper.

Example 1. Consider a vacuum cleaning robot zv with lo-
cation `zv = living room. The set of possible actions is
Azv = {run, charge, stop} and the mappings are:

γHzv :run → {cleanliness};
charge→ ∅;
stop → ∅.

γZzv :run → {battery charge};
charge→ {battery charge};
stop → ∅,

where ∅ represents a null state property.

3.2 Device Schedules
To control the energy profile of a smart home, we need to de-
scribe the behavior of the smart devices acting in the smart
home during the time horizon. We formalize this concept
with the notion of device schedules.

We use ξtz ∈ Az to denote the action of device z at time
step t, and ξtX = {ξtz | z ∈ X} to denote the set of actions of
the devices in X ⊆ Z at time step t.

Definition 1 (Schedule). A schedule ξ
[ta→tb]
X =

〈ξtaX , . . . , ξ
tb
X 〉 is a sequence of actions for the devices

in X ⊆ Z within the time interval from ta to tb.

Consider the illustration of Figure 2. The top row of Fig-
ure 2 shows a possible schedule 〈R,R,C,C,R,R,C,R〉 for a
vacuum cleaning robot starting at time 1400 hrs, where each
time step is 30 minutes. The robot’s actions at each time
step are shown in the colored boxes with letters in them:
red with ‘S’ for stop, green with ‘R’ for run, and blue with
‘C’ for charge.

At a high level, the goal of the SHDS problem is to find
a schedule for each of the devices in every smart home that
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achieve some user-defined objectives (e.g., the home is at a
particular temperature within a time window, the home is
at a certain cleanliness level by some deadline) that may be
personalized for each home. We refer to these objectives as
scheduling rules.

3.3 Scheduling Rules
We introduce two types of scheduling rules:

• Active scheduling rules (ASRs) that define user-defined
objectives on a desired state of the home (e.g., the living
room is cleaned by 1800 hrs).

• Passive scheduling rules (PSRs) that define implicit con-
straints on devices that must hold at all times (e.g., the
battery charge on a vacuum cleaning robot is always be-
tween 0% and 100%).

The following syntax is used to express scheduling rules:1

〈location〉 〈state property〉 〈relation〉 〈state〉 〈time〉.

Example 2. The scheduling rule (1) describes an ASR
defining a goal state where the living room floor is at least
75% clean (i.e., at least 75% of the floor is cleaned by a
vacuum cleaning robot) by 1800 hrs:

living_room cleanliness≥ 75 before 1800 (1)

and scheduling rules (2) and (3) describe PSRs stating that
the battery charge of the vacuum cleaning robot zv needs to
be between 0% and 100% of its full charge at all the times:

zv battery_charge ≥ 0 always (2)

zv battery_charge ≤ 100 always (3)

We denote with R
[ta→tb]
p a scheduling rule over a state prop-

erty p ∈ PH ∪PZ and time interval [ta, tb].

Each scheduling rule indicates a goal state at a home lo-
cation or on a device `Rp ∈ Li ∪ Zi of a particular state
property p that must hold over the time interval [ta, tb] ⊆ T.
The scheduling rule’s goal state is either the desired state of
a home if it is an ASR (e.g., the cleanliness level of the room
floor) or a required state of a device or a home if it is a PSR
(e.g., the battery charge of the vacuum cleaning robot).

Each rule is associated with a set of actuators Φp ⊆ Ai

that can be used to reach the goal state. For instance, in our
Example (2), Φp correspond to the vacuum cleaning robot
zv, which can operate on the living room floor. Additionally,
a rule is associated with a sensor sp ∈ Si capable of sensing
the state property p. Finally, in a PSR, the device can also
sense its own internal states. More formally,

Φp = {z∈Ai | `z=`Rp ∧ ∃a ∈ Az : p∈γHz (a)} (4)

Φp = {z∈Ai | z=`Rp∨`z=`Rp∧∃a∈Az : p∈γHz (a)} (5)

where the former is associated to an ASR and the latter to
a PSR. The ASR of Equation (1) is illustrated in Figure 2
by dotted red lines on the graph. The PSRs are not shown
as they must hold for all time steps.

3.4 Feasibility of Schedules
To ensure that a goal state can be achieved across the de-
sired time window, the system uses a predictive model of the
various state properties. This predictive model captures the

1A complete and formal description of the grammar for the
scheduling rules is provided in [9].

evolution of a state property over time and how this state
property is affected by a given joint action of the relevant
actuators.

Definition 2 (Predictive Model). A predictive model
Γp for a state property p (of either the home or a device) is
a function Γp : Ωp × "z∈Φp Az ∪ {⊥} → Ωp ∪ {⊥}, where ⊥
denotes an infeasible state and ⊥+ (·) = ⊥.

In other words, the model describes the transition of state
property p from state ωp ∈ Ωp at time step t to time step
t + 1 when it is affected by a set of actuators Φp running
joint actions ξtΦp :

Γt+1
p (ωp, ξ

t
Φp) = ωp + ∆p(ωp, ξ

t
Φp) (6)

where ∆p(ωp, ξ
t
Φp) is a function describing the effect of the

actuators’ joint action ξtΦp on state property p.
We assume here, without loss of generality, that the state

of properties is numeric—when this is not the case, a map-
ping of the possible states to a numeric representation can
be easily defined.

Example 3. Consider the battery charge state property of
the vacuum cleaning robot zv. Assume it has 65% charge at
time step t and its action is ξtzv at that time step. Thus:

Γt+1
battery charge(65, ξtzv )=65 + ∆battery charge(65, ξtzv ) (7)

∆battery charge(ω, ξ
t
zv ) =

min(20, 100−ω) if ξtzv=charge ∧ ω<100

−25 if ξtzv = run ∧ ω > 25

0 if ξtzv =stop

⊥ otherwise

(8)

In other words, at each time step, the charge of the battery
will increase by 20% if it is charging until it is fully charged,
decrease by 25% if it is running until it has less than 25%
charge, and no change if it is stopped.

The predictive model of the example above models a de-
vice state property. Let us consider a further example where
the predictive model models a home state property.

Example 4. Consider the cleanliness state property of a
room, where the only actuator that can affect that state is
a vacuum cleaning robot zv (i.e., Φcleanliness = {zv}). As-
sume the room is 0% clean at time step t and the action of
robot zv is ξtzv at that time step. Thus:

Γt+1
cleanliness(0, ξ

t
zv ) = 0 + ∆cleanliness(0, ξ

t
zv ) (9)

∆cleanliness(ω, ξ
t
zv )=

{
min(15, 100−ω) if ξtzv = run

0 otherwise
(10)

In other words, at each time step, the cleanliness of the room
will increase by 15% if the robot is running until it is fully
cleaned and no change otherwise.

Notice that a recursive invocation of a predictive model
allows us to predict the trajectory of a state property p for
future time steps, given a schedule of actions of the relevant
actuators Φp. Let us formally define this concept.

Definition 3 (Predicted State Trajectory). Given
a state property p, its current state ωp at time step ta, and
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a schedule ξ
[ta→tb]
Φp

of relevant actuators Φp, the predicted

state trajectory πp(ωp, ξ
[ta→tb]
Φp

) of that state property is

defined as:

πp(ωp, ξ
[ta→tb]
Φp

) =

Γtbp (Γ
tb−1
p ( . . . (Γtap (ωp, ξ

ta
Φp

), . . .), ξ
tb−1

Φp
), ξ

tb
Φp

) (11)

Consider the device scheduling example in Figure 2. The
predicted state trajectories of the battery charge and clean-
liness state properties following Equations (7) and (9) are
shown in the second and third rows of Figure 2. These tra-
jectories are predicted given that the vacuum cleaning robot
will take on the schedule shown in the first row of the fig-
ure. The predicted trajectories of these state properties are
also illustrated in the graph, where the dark gray line shows
the states for the robot’s battery charge and the black line
shows the states for the cleanliness of the room.

Notice that to verify if a schedule satisfies a scheduling
rule it sufficient to check that the predicted state trajectories
are within the set of feasible state trajectories of that rule.
Additionally, notice that each active and passive scheduling
rule defines a set of feasible state trajectories. For example,
the active scheduling rule of Equation (1) allows all possible
state trajectories as long as the state at time step 1800 is
no smaller than 75. We use Rp[t] ⊆ Ωp to denote the set of
states that are feasible according to rule Rp of state property
p at time step t.

More formally, a schedule ξ
[ta→tb]
Φp

satisfies a scheduling

rule R
[ta→tb]
p (written as ξ

[ta→tb]
Φp

|= R
[ta→tb]
p ) iff:

∀t ∈ [ta, tb] : πp(ω
ta
p , ξ

[ta→t]
Φp

) ∈ Rp[t] (12)

where ωtap is the state of state property p at time step ta.

Definition 4 (Feasible Schedule). A schedule is fea-
sible if it satisfies all the passive and active scheduling rules
of each home in the SHDS problem.

In Figure 2, the evaluated schedule is feasible since the
trajectories of both the battery charge and cleanliness states
satisfy both the ASR (1) and the PSRs (2) and (3).

3.5 Cost of Schedules
In addition to finding feasible schedules, the goal in the
SHDS problem is to optimize for the aggregated total cost
of energy consumed.

Each action ξ∈Az of device z∈Zi in home hi∈H has an
associated energy consumption ρz : Az→ R+, expressed in

kWh. The aggregated energy Eti (ξ
[1→H]
Zi

) across all devices

consumed by hi at time step t under trajectory ξ
[1→H]
Zi

is:

Eti (ξ
[1→H]
Zi

) = `ti +
∑
z∈Zi

ρz(ξ
t
z) (13)

where `ti is the home background load produced at time t,
which includes all non-schedulable devices (e.g., TV, refrig-
erator), and sensor devices—which are always active, and

ξtz is the action of device z at time t in the schedule ξ
[1→H]
Zi

.

The cost ci(ξ
[1→H]
Zi

) associated to schedule ξ
[1→H]
Zi

in home
hi is:

ci(ξ
[1→H]
Zi

) =
∑
t∈T

(
Eti (ξ

[1→H]
Zi

)) · θ(t) (14)

where θ(t) is the real-time energy price per kWh at time t.

3.6 Optimization Objective
The objective of an SHDS problem is that of minimizing the
following weighted bi-objective function:

min
ξ
[1→H]
Zi

αc ·Csum + αe ·Epeak (15)

subject to:

∀hi ∈ H, R[ta→tb]
p ∈ Ri : ξ

[ta→tb]
Φp

|= R[ta→tb]
p (16)

where αc, αe∈R are weights,

Csum =
∑
hi∈H

ci(ξ
[1→H]
Zi

)

is the aggregated monetary cost across all homes hi; and

Epeak =
∑
t∈T

∑
Hj∈H

∑
hi∈Hj

(
Eti (ξ

[1→H]
Zi

)
)2

is a quadratic penalty function on the aggregated energy
consumption across all homes hi. Since the SHDS problem
is designed for distributed multi-agent systems, in a cooper-
ative approach optimizing Epeak may require each home to
share its energy profile with each other home. To take into
account data privacy concerns and possible high network
loads, we decompose the set of homes H into neighboring
subsets of homesH, so that Epeak can be optimized indepen-
dently within each subset. One can use coalition formation
algorithms [19, 17, 22, 25] to form such coalitions/subsets
of neighboring homes. These coalitions can be exploited by
a distributed algorithm to (1) parallelize computations be-
tween multiple groups and (2) avoid data exposure over long
distances or sensitive areas.

Finally, constraint (16) defines the valid trajectories for
each scheduling rule r ∈ Ri, where Ri is the set of all
scheduling rules of home hi.

4. SOLUTION APPROACH
We now describe an egalitarian solution approach which
relies on the distributed constraint optimization problem
(DCOP) [14, 15, 27] model, where agents cooperatively seek
to minimize their aggregated costs.

4.1 DCOP Model
A distributed constraint optimization problem (DCOP) is a
tuple P = 〈X ,D,F ,A, α〉, where: X = {x1, . . . , xn} is a
set of variables; D={D1, . . . , Dn} is a set of finite domains
(i.e., Di is the domain of xi); F = {f1, . . . , fe} is a set of
constraints (also called cost tables in this work), where fi :
"xj∈xfi Di → R+

0 ∪ {∞} maps each combination of value

assignments of the variables xfi ⊆ X in the scope of the
function to a non-negative cost; A={a1, . . . , ap} is a set of
agents; and α : X → A is a function that maps each variable
to one agent. We use Nai = {aj ∈ A|∃f ∈ F , ai ∈ xf ∧xj ∈
xf} to denote the neighbors of agent ai.

An assignment σ is a value assignment to a set of variables
Xσ⊆X that is consistent with the variables’ domains. The
cost function FP(σ) =

∑
f∈F,xf⊆Xσ f(σ) is the sum of the

costs of all the applicable constraints in σ. An assignment
is said to be a solution if Xσ = X is the value assignment
for all variables, and no constraint in P is violated (i.e., the
cost of the assignment FP(σ) < ∞). The goal in a DCOP
is to find an optimal solution x∗ = argminx FP(x).
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DCOP Mapping of the SHDS problem: One can map
the SHDS problem to a DCOP as follows:

• Agents: Each agent ai ∈ A in the DCOP is mapped to
a home hi ∈ H.

• Variables and Domains: Each agent ai controls the fol-
lowing set of variables:

• For each actuator z ∈ Ai and each time step t ∈ T, a
variable xti,z whose domain is the set of actions in Az.
The sensors in Si are considered to be always active,
and thus not directly controlled by the agent.

• An auxiliary interface variable x̂tj whose domain is inter-
val [0,

∑
z∈Zi ρ(argmaxa∈Az ρz(a))], which represents

the aggregated energy consumed by all the devices in
the home at each time step t.

• Constraints: There are three types of constraints:

• Local soft constraints (i.e., constraints that involve only
variables controlled by one agent) whose costs corre-
spond to the weighted summation of monetary costs,
as defined in Equation (14).

• Local hard constraints that enforce Constraint (16).
Feasible schedules incur a cost of 0 while infeasible
schedules incur a cost of ∞.

• Global soft constraints (i.e., constraints that involve
variables controlled by different agents) whose costs cor-
respond to the peak energy consumption, as defined in
the second term in Equation (15).

The neighbors Nai of agent ai are defined as all the agents
in the coalition H that contains hi.

4.2 Distributed Algorithm
The SHDS problem requires several homes to solve a com-
plex scheduling subproblem, which involves multiple vari-
ables, and to optimize the resulting energy profiles among
the neighborhood of homes. The problem can be thought of
as each agent solving a local complex subproblem, whose op-
timization is influenced by the energy profiles of the agent’s
neighbors, and by a coordination algorithm that allows
agents to exchange their newly computed energy profiles.
We thus adopt the multiple-variable agent (MVA) decompo-
sition [2] to delegate the resolution of the agent’s local prob-
lem to a centralized solver while managing inter-agent coor-
dination through the message-passing procedure described
next.

Motivated by the complexity of our problem and by suc-
cessful applications of DCOP local search algorithms in real-
world applications [7, 1, 28], we adapt a local search DCOP
algorithms, called Maximum Gain Message (MGM) [13], to
solve the SHDS problem. The resulting algorithm is called
Smart Home MGM (SH-MGM).

SH-MGM is a distributed algorithm that operates in syn-
chronous cycles. Algorithm 1 illustrates its pseudocode. The
algorithm first finds a feasible DCOP solution and then iter-
atively improves it, at each cycle, until convergence or time
out. SH-MGM operates as follows:

• Initialization: Each agent ai starts up and indepen-

dently searches for a solution ξ
[1→H]
Zi

to its local subprob-
lem (i.e., a schedule for all devices that satisfies all the
rules of the home) (line 1) that has the minimal cost

ci(ξ
[1→H]
Zi

) (line 2).

• SH-MGM Cycle: Each agent ai then com-

putes the energy consumption ~Ei(ξ
[1→H]
Zi

) =

Algorithm 1: SH-MGM

/* Initialization */

1 ξ
[1→H]
Zi

← computeLocalSchedule( )

2 Ci ← ci(ξ
[1→H]
Zi

)

/* SH-MGM Cycle */
3 foreach aj ∈ Nai do

4 send Energyai

(
~Ei(ξ

[1→H]
Zi

)
)
to aj

5 foreach aj ∈ Nai do

6 receive Energyaj

(
~Ej(ξ

[1→H]
Zj

)
)
from aj

7 Epeak
i ←

∑
t∈T

∑
aj∈Nai∪{ai}

(
Etj(ξ

[1→H]
Zj

)
)2

8 ξ̂
[1→H]
Zi

← computeLocalSchedule(Ci, E
peak
i )

9 Ĉi ← ci(ξ̂
[1→H]
Zi

)

10 Êpeak
i ←

∑
t∈T

∑
aj∈Nai

(
Etj(ξ

[1→H]
Zj

)
)2

+
∑
t∈T

(
Eti (ξ

[1→H]
Zi

)
)2

11 Gi ←
(
αc · Ci + αe · Epeak

i

)
−
(
αc · Ĉi + αe · Êpeak

i

)
12 foreach aj ∈ Nai do
13 send Gainai (Gi) to aj

14 foreach aj ∈ Nai do
15 receive Gainaj (Gj) from aj

16 if all received gains are 0 then terminate
17 if Gi > maxj∈{Gk|ak∈Nai}

Gj then

18 ξ
[1→H]
Zi

← ξ̂
[1→H]
Zi

19 Ci ← Ĉi

20 Repeat SH-MGM Cycle until termination condition occurs

〈E1
i (ξ

[1→H]
Zi

), . . . , EHi (ξ
[1→H]
Zi

)〉 associated to its schedule
and broadcasts it to all the other agents in its neighboring
coalition through Energy messages (lines 3–4). Next,
the agent waits to receive the energy consumption of
all the other agents in its coalition(s) (lines 5–6). After
receiving this information, it computes the peak energy
consumption Epeak

i (second term in Equation (15))2 of
the coalition with its current solution (line 7), and stores

the weighted cost αc · ci(ξ[1→H]
Zi

) +αe ·Epeak
i of its current

solution.
Then, within a given time limit, it tries to find a new

solution ξ̂
[1→H]
Zi

to its local subproblem that is no worse
(i.e., whose weighted cost is no larger) than its current
solution (lines 8–10). In other words,

αc · ci(ξ̂[1→H]
Zi

) + αe · Êpeak
i ≤ αc · ci(ξ[1→H]

Zi
) + αe · Epeak

i

where Êpeak
i is the new difference in aggregated energy

consumption that takes into account the new schedule of
the agent.3 If no time limit is imposed, it will find an
optimal solution to its local subproblem. It then computes
its gain Gi (improvement in cost):

Gi =
(
αc · ci(ξ[1→H]

Zi
) + αe · Epeak

)
−
(
αc · ci(ξ̂[1→H]

Zi
) + αe · Êpeak

)
(17)

2We use Epeak
i to denote the energy consumption associated

to the coalition(s) containing agent ai.
3It is the sum of the energy consumption of the new agent’s
schedule with that of the other agents’ schedules received at
the start of the cycle.
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between its current solution and new solution (line 11),
and broadcasts this gain to all other agents in its coali-
tion(s) using a Gain message (lines 12–13). Upon receiv-
ing the gains of all agents within its coalition(s) (lines 14–
15), it checks if they are all 0 (line 16), in which case the
algorithm has converged to a local optima and no agent
can unilaterally improve its schedule to improve the global
solution (joint schedule of all agents). Otherwise, if the
agent has the largest gain, then it will change its schedule
to the new schedule. If it does not have the largest gain,
it keeps its old schedule (lines 17–19). Ties are broken
using an order based on the agent IDs. This mechanism
ensures that at most one agent will change its schedule
at each time step and that the new global solution will
continuously improve until convergence.

• The process repeats until convergence or a termination
condition is satisfied (e.g., timeout, a maximum number
of cycles reached) (line 20).

Differences with MGM: There are several key differences
between SH-MGM and (vanilla) MGM, which necessitates
the new extension:

• MGM assumes that all the constraint costs are known a
priori. In contrast, the costs of our global soft constraint
Epeak are not known a priori. Each agent is unaware of
the scheduling rules of the other agents and, thus, their
possible schedules. As such, it is unaware of the set of pos-
sible energy consumption profiles (i.e., the domain of x̂tj)
of neighboring agents and, thus, it does not know about
the possible peak energy consumption a priori. The com-
putation of this cost can only be done lazily on demand
when the energy consumptions of all agents in the coali-
tion are broadcasted.

• MGM assumes that the domains of the variables are dis-
crete. In contrast, the domain of the auxiliary interface
variables x̂tj is continuous; they are the possible aggre-
gated energy consumed by all devices in a home at time
step t.

• Finally, each MGM agent can find a value assignment for
its variable with the smallest local solution cost in linear
time, with respect to the size of the variable’s domain. In
contrast, at each SH-MGM cycle, each agent must solve
an NP-hard subproblem to find a schedule that satisfies all
the constraints associated with the users’ scheduling rules,
and that minimizes the local solution cost. Notice that
the agent’ subproblem size is controlled by the number of
home’s devices and by the horizon time-step discretization
(i.e., the number of local decision variables controlled by
that agent).

5. EMPIRICAL EVALUATIONS
Our empirical evaluations compare the SH-MGM algorithm
against an uncoordinated greedy approach, where each agent
computes a feasible schedule for its home devices without
optimizing over its cost and the aggregated peak energy in-
curred. We ran two types of experiments: (1) Small-scale
experiments on an actual distributed system of Raspberry
Pis, and (2) Large-scale simulations on synthetic microgrid
instances. The fist set of experiments allows us to test
the feasibility of this approach on actual physical hardware,
while the second set allows us to systematically evaluate the
algorithm across different problem parameters.

Figure 3: A Raspberry Pi with Z-Wave Dongle (left); Ex-
ample of Z-wave Compatible Smart Devices (right)

We now describe the experimental setup that is common
to both sets of experiments. In both experiments, each agent
controls 9 smart actuators to schedule—Kenmore oven and
dishwasher, GE clothes washer and dryer, iRobot vacuum
cleaner, Tesla electric vehicle, LG air conditioner, Bryant
heat pump, and American water heater—and 5 sensors. We
selected these devices as they can be available in a typical
(smart) home and they have published statistics (e.g., en-
ergy consumption profiles). The algorithms take as inputs
a list of simulated smart devices to schedule as well as their
associated scheduling rules and the real-time pricing scheme
adopted. Each device has an associated active scheduling
rule that is randomly generated for each agent and a num-
ber of passive rules that must always hold. In order to find
local schedules at each SH-MGM iteration, each agent uses a
Constraint Programming solver4 as a subroutine. The effect
∆p of each device p (see Equation (6)) on the different pos-
sible properties (e.g., how much a room can be cooled by an
air-conditioner) is collated from the literature. An extended
description of the smart device properties, the structural pa-
rameters (i.e., size, material, heat loss) of the homes, and the
predictive models for the homes and devices state proper-
ties is reported in [9]. Finally, we set H = 12 and adopted a
pricing scheme used by the Pacific Gas & Electric Co. for its
customers in parts of California,5 which accounts for 7 tiers
ranging from $0.198 per kWh to $0.849 per kWh. The other
parameters differ for the two experiments and are described
below.

5.1 Physical MAS Experiments
In order to evaluate SH-MGM in as realistic a setting as pos-
sible, we implemented the algorithm on an actual distributed
system of Raspberry Pis. A Raspberry Pi (called “PI” for
short) is a bare-bones single-board computer with limited
computation and storage capabilities. We used Raspberry Pi
2 Model Bs with quadcore 900MHz CPUs and 1GB of RAM.
We implemented the SH-MGM algorithm using the Java
Agenopment (JADE) framework,6 which provides agent ab-
stractions and peer-to-peer agent communication based on
the asynchronous message passing paradigm. Each PI im-
plements the logic for one agent and the agent’s communica-
tion is supported through JADE, and using a wired network
connected through a router.

Figure 3(left) shows an illustration of a PI with a Z-Wave
dongle that can be used to issue commands to smart devices
and receive information from them. Figure 3(right) shows
a sample of smart devices that can be controlled. While
our implementations can be used to schedule actual physical

4We adopt the JaCoP solver (http://www.jacop.eu/)
5
https://goo.gl/vOeNqj/

6
http://jade.tilab.com/
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Figure 4: Physical Experimental Result with PIs (left); Synthetic Experimental Results Varying αc and αe (middle and right)

devices, we decided to use simulated devices as procuring a
large number of commercially-available smart devices is too
costly for the current project.

We set up our experiments with 7 PIs, each controlling the
9 smart actuators and 5 sensors described above. All agents
belong to the same coalition. We set the equal weights αc
and αe of the objective (see Equation (15)) to 0.5. Fig-
ure 4(left) illustrates the results of this experiment, where
we imposed a 60 seconds timeout for the CP solver. As
expected, the SH-MGM solution improves with increasing
number of cycles, providing an economical advantage for
the users as well as peak energy reduction, when compared
to the uncoordinated schema. These results, thus, show the
feasibility of using a local search-based schema implemented
on hardware with limited storage and processing power to
solve a complex problem.

5.2 Large-Scale Synthetic MAS Experiments
In our second set of experiments, we generate synthetic mi-
crogrid instances sampling neighborhoods in three cities in
the United States (Des Moines, IA; Boston, MA; and San
Francisco, CA) and estimate the density of houses in each
city. The average density (in houses per square kilometers)
is 718 in Des Moines, 1357 in Boston, and 3766 in San
Francisco. For each city, we created a 200m×200m grid,
where the distance between intersections is 20m, and ran-
domly placed houses in this grid until the density is the
same as the sampled density. We then divided the city into
k (=|H|) coalitions, where each home can communicate with
all homes in its coalition. In generating our SHDS topolo-
gies, we verified that the resulting topology is connected.
Finally, we ensure that there are no disjoint coalitions; this
is analogous to the fact that microgrids are all connected to
each other via the main power grid.

In these experiments, we imposed a 10 seconds timeout
for the agents’ CP solver. We first evaluate the effects of
the weights αc and αe (see Equation (15)) on the quality
of solutions found by the algorithms. We evaluate three
configurations: (αc = 1.0, αe = 0.0), (αc = 0.5, αe = 0.5),
and (αc = 0.0, αe = 1.0), using randomly generated mi-
crogrids with the density of Des Moines, IA. Figure 4(mid-
dle) shows the total energy consumption per hour (in kWh)
of the day under each configuration. Figure 4(right) illus-
trates the average daily cost paid by one household under
the different objective weights. The uncoordinated greedy
approach achieves the worst performance, with the high-
est energy peak at 2852 kWh and the most expensive daily

cost ($3.84). The configuration that disregards the local
cost reduction (αc = 0) reports the best energy peak reduc-
tion (peak at 461 kWh) but highest daily cost among the
coordinated configurations ($2.31). On the other extreme,
the configuration that disregards the global peak reduction
(αp = 0) reports the worst energy peak reduction (peak
at 1738 kWh) but the lowest daily cost among the coordi-
nated configurations ($1.44). Finally, the configuration with
αc = αe = 0.5 reports intermediate results, with the highest
peak at 539 kWh and a daily cost of $2.18.

Next, we investigate the impact of the number of coali-
tions k as well as the size of the problem on the quality of
solutions found using the configuration with αc = αe = 0.5.
Table 1 tabulates the results, where we varied k ∈ {1, 5, 10}
on microgrids with the densities of the three cities described
above. The first row of the sub-table associated with each
city reports the results for the uncoordinated approach. The
table columns describe the number of coalitions k, the solv-
ing time of the algorithm (at convergence), the average time
an agent spent solving its local subproblem (at each cycle
of the algorithm), the network load (total number of mes-
sages exchanged by the agents), the average daily cost per
household, and the maximum energy peak evaluated on the
converged solutions. We make the following observations:

• The uncoordinated algorithm is the fastest approach,
while the solving time of the other SH-MGM algorithms
increases as the number of coalitions decreases. The rea-
son is the number of neighbors increases as the num-
ber of coalitions decreases. As a result, the number of
agents that can simultaneously improve their schedules
decreases, which increases the convergence time. Addi-
tionally, the local solving time is not affected by the num-
ber of coalitions.

• Since the uncoordinated approach employs no coordina-
tion, its agents do not communicate. For the other al-
gorithms, the network load increases as the number of
coalitions decreases. The reason is the same as above,
where the number of neighbors increases with decreasing
coalition size, thereby increasing the number of messages
sent in each broadcast.

• In terms of average daily cost, the uncoordinated ap-
proach reports the highest costs, and the cost reduces with
increasing number of coalitions. This effect is due to the
fact that, within a smaller coalition, agents can optimize
more their cost reduction objective, since the aggregated
energy peaks are smaller and thus affect less the overall
objective compared to a problem with larger coalitions.
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City k
convergence avg. l.s. network avg. cost max peak
time (sec) time (sec) load ($/day) (kWh)

- 7.8 0.72 0 3.84 2852
Des 1 1044 9.62 9.8e+5 2.18 508

Moines 5 304 9.44 4.8e+4 1.89 579
10 218 9.37 1.2e+4 1.71 607

Boston

- 13.9 1.59 0 3.79 6034
1 2821 9.91 1.2e+7 2.22 985
5 866 9.91 6.7e+5 2.05 1058
10 527 9.89 1.8e+5 1.88 1111
- 26.6 4.51 0 3.81 11944

San 1 4238 10.4 1.7e+8 2.36 1870
Francisco 5 940 10.4 1.6e+6 2.06 2120

10 679 10.7 1.1e+6 2.01 2310

Table 1: Synthetic Experimental Results Varying the Number of Coalitions k

• The opposite effect is observed for the maximum peak,
which increases with increasing number of coalitions. This
is because with smaller coalitions there is less global co-
ordination and, hence, less opportunity to minimize the
global energy peaks.

6. DISCUSSIONS AND CONCLUSIONS
With the proliferation of smart devices, the automation of
smart home scheduling can be a powerful tool for demand-
side management within the smart grid vision. In this paper,
we proposed the Smart Home Device Scheduling (SHDS)
problem, which formalizes the device scheduling and coordi-
nation problem across multiple smart homes as a multi-agent
system. Furthermore, we described a mapping of this prob-
lem to a DCOP and introduced a distributed local search
algorithm to find locally optimal DCOP solutions. This al-
gorithm is implemented on an actual distributed system of
Raspberry Pis, each capable of controlling and scheduling
smart devices through hardware interfaces. Our experimen-
tal results show that this approach outperforms a simple
uncoordinated solution on realistic small-scale experiments
as well as large-scale synthetic experiments. Thus, in this
paper, we make the key first steps toward the formal mod-
eling of the SHDS problem and deployment of distributed
algorithms on physical systems.

While we study the SHDS problem in a cooperative multi-
agent context, our SHDS problem formulation is robust to
malevolent agents and can cope with several degrees of co-
operation and malevolence: On one extreme, with one parti-
tion containing all homes, the model is completely coopera-
tive. On the other extreme, with H partitions, each contain-
ing one home, agents will act selfishly optimizing exclusively
their own private objective.

In the future, we plan to tackle a number of significant
challenges on multiple fronts: (1) We will investigate the use
of Asymmetric DCOPs [5, 6] to cope with agents’ actions
enduring a personal cost for a specific operation that af-
fects other agents; (2) In addition to an egalitarian solution,
we will study an opportunistic solution through a Graphical
Game model [8, 24] for the SHDS problem; (3) We will ex-
plore the use of more sophisticated algorithms that exploit
the structure of the network to provide stronger theoretical
quality guarantees; (4) We will develop user-friendly user
interfaces that will enable human users to interact with the
system as well as provide scheduling rules; and (5) We will
use reinforcement learning to automatically learn and pre-

dict scheduling rules to improve the convenience factor of the
users. These efforts, together with a number of others, are
needed for actual deployment of such systems in the future.
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APPENDIX
A. LIST OF KEY SYMBOLS
Table 2 summarizes the most commonly used notation in
the Smart Home Device Scheduling problem description.

H Neighborhood of smart homes
hi A smart home in H
Zi Set of devices in smart home hi
Ai Set of actuators in smart home hi
Si Set of sensros actuators in smart home hi
Li Set of locations in smart home hi
PH Set of state properties of the smart homes
PZ Set of state properties of the smart appliances
H Problem’s planning horizon
T Set of time points in the problem
θ Energy pricing function
Ωp Set of all possible values for state property p
`z Home’s locations potentially affected by device’s z actions
Az Set of actions for device z
ξtz The action executed by device z at time t
ξtX Set of actions executed by all devices in X at time t
γHz (ξ) Set of home’ state properties affected by action ξ of device z
γZz (ξ) Set of device’ state properties affected by action ξ of device z

ξ
[ta→tb]
X A schedule for the devices in X during time interval [ta, tb]

R
[ta→tb]
p A scheduling rule over state property p and time interval [ta, tb]

`Rp Location associated to the scheduling rule Rp
Φp Set of actuators whose actions can affect state property p
Γp Predictive model for state property p
∆p(·) Describes the effect of the actuators’ actions on state property p
πp(·) Predicted state trajectory for property p
ρz(ξ) Energy consumption associated to action ξ of device z
Eti (·) Aggregated energy consumption of home hi at time t
ci(·) Energy cost associated to a schedule in home hi
Csum Objective function 1: aggregated monetary cost
Epeak Objective function 2: aggregated energy consumption

Table 2: List of Key Symbols
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