
Label Correction and Event Detection
for Electricity Disaggregation

Mark Valovage
Computer Science and Engineering

University of Minnesota
Minneapolis, Minnesota

valovage@cs.umn.edu

Maria Gini
Computer Science and Engineering

University of Minnesota
Minneapolis, Minnesota

gini@umn.edu

ABSTRACT
Electricity disaggregation focuses on identifying individual
appliances from one or more aggregate signals. By report-
ing detailed appliance usage to consumers, disaggregation
has the potential to significantly reduce electrical waste in
residential and commercial sectors. However, application
of existing methods is limited by two critical shortcomings.
First, supervised learning methods implicitly assume error-
free labels in training data, an unrealistic expectation for
imperfectly-labeled consumer data. Second, supervised and
unsupervised learning methods require parameters to be tuned
to individual appliances and/or datasets, limiting widespread
application. To address these limitations, this paper intro-
duces the implementation of Bayesian changepoint detection
(BCD) with necessary adaptations to electricity disaggrega-
tion. We introduce an algorithm to effectively apply BCD
to automatically correct labels. We then apply BCD to
event detection to identify transitions between appliances’
on and off states. Performance is evaluated using 3 publicly
available datasets containing over 250 appliances across 11
houses. Results show both BCD applications are competi-
tive and in some cases outperform existing state-of-the-art
methods without the need for parameter tuning, advancing
disaggregation towards widespread, real-world deployment.

CCS Concepts
•Theory of computation → Theory and algorithms
for application domains; •Social and professional top-
ics → Sustainability;

Keywords
Electricity Disaggregation, Event Detection, Change Detec-
tion, Label Correction, Supervised & Unsupervised Learning

1. INTRODUCTION
Energy waste costs $130 billion and produces 1.1 gigatons

of pollution each year in the United States alone [11]. In
the residential sector, up to 20% of electrical waste could
be eliminated through adjustments that have no impact on
users’ lifestyles [6, 13, 23]. However, sources of waste are

Appears in: Proceedings of the 16th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2017), S. Das, E. Durfee, K. Larson, M. Winikoff
(eds.), May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

difficult to identify since waste varies widely depending on
appliance installation, maintenance, and usage [5, 9, 25, 28].

Software agents are playing an increasing role in creating
more efficient use of electrical power, including smart grid
management of renewable resources, improved load balanc-
ing, tariff pricing, and demand response [19]. However, lim-
ited attention has been devoted to designing agents in sup-
port of customer-centric waste reduction. We envision an
energy management agent which performs real time energy
monitoring, detects which appliances are operating, and pro-
vides usage feedback and recommendations to the user. If
given authority, this agent can even turn off unused devices
or shift operation of specific appliances to a later time.

The first step for such an agent is to obtain appliance-
specific data. Although commercially available smart me-
ter kits have the capacity to measure individual appliance
signals, they require a meter for every appliance. This is
impractical since meters cannot fit all plug configurations,
require significant installation time, and the expense of in-
stalling a smart meter on every household appliance out-
weighs the potential waste reduced [6]. In contrast, electric-
ity disaggregation, also called non-intrusive load monitoring
(NILM) [12] or single point sensing [22], measures continu-
ous aggregate electrical signals with a single meter.

Despite recent advances, existing disaggregation methods
are hampered by unrealistic data assumptions. First, su-
pervised learning methods assume all training samples are
captured in isolation and are correctly labeled, assumptions
that break down with consumer-labeled data. Second, per-
formance of many algorithms depends on parameters opti-
mized for a single appliance or dataset, and parameters are
often tuned and evaluated on the same data [14]. Manually
cleaning samples and tuning parameters to individual appli-
ances cannot scale to wide-spread implementation, limiting
real-world deployment of existing classification methods.

Contributions: This paper makes two contributions based
on Bayesian changepoint detection (BCD). First, we present
a method to correct user labeling errors and provide cleaner
training samples for existing supervised classification meth-
ods. Second, we present an event detection method for unsu-
pervised learning to identify transitions between appliances’
on and off states. Both of these contributions are novel
since they do not require parameter tuning or pre-processing
to reduce noise. Results show performance comparable to
manually tuned, state-of-the-art label correction and event
detection methods, and we show these approaches can be
performed in real time with inexpensive hardware, enabling
real-world deployment of existing classification methods.

990

2. RELATED WORK
Numerous supervised and unsupervised learning approaches

have been applied to electricity disaggregation. Supervised
algorithms include Additive Factorial Hidden Markov Mod-
els [17], Viterbi Algorithm with Sparse Transitions [29], Sparse
Coding [16] coupled with Powerlets [8], and others [30].

In contrast, unsupervised methods disaggregate appliances
without isolated training samples, which requires at least
two distinct steps. First, the data stream must be parsed by
detecting electrical events through methods such as Genetic
K-means [10], Modified Greatest Likelihood Ratio (mGLR)
[4], or Dirichlet Process Gaussian Mixture Models (DPGMM)
[24]. After events are identified, they can be separated into
different appliances using Temporal Motif Mining [24], Addi-
tive Factorial Approximate Map (AFAMAP) [17], Factorial
or Iterative Hidden Markov Models [15, 21], and others [30].

However, all of the aforementioned supervised learning
methods are provided training data cleansed by manual pre-
processing, ignoring the impact of contaminated samples or
mislabeled data on classification results. In addition, dur-
ing unsupervised learning, proper appliance reconstruction
depends on accurate event detection, which often relies on
pre-tuned parameters [3] or domain-level heuristics [15].

This paper addresses these limitations and is organized as
follows: Section 3 describes BCD [2] and our modifications.
Section 4 details our label correction approach and results.
Section 5 applies BCD to event detection and presents event
detection results, and Section 6 concludes with future work.

3. CHANGEPOINT DETECTION

3.1 Original Algorithm
To address existing real-world disaggregation limitations,

we use online Bayesian change detection (BCD) [2] which
has been previously applied to identify changepoints in stock
market indexes, coal mining accidents, well drilling, traffic
congestion, and satellite fault data [2, 7, 26]. We adopt the
following notations from BCD’s original authors [2]: X =
x1, x2, ..., xT is the input data stream, where xt is the ob-
served data value at time t. xa:b specifies the contiguous se-
quence of observations xa, xa+1, ..., xb between times a and
b. A ‘run sequence’ rt at time t of length L denotes the
last L observations (i.e. rt = x(t−L+1):t), and P (rt|x1:t) de-
notes BCD’s calculated probability that the run sequence
rt is the ‘active’ run sequence at time t given the previous
observations x1:t.

We restate the BCD algorithm [2] in Algorithm 1 for the
reader’s convenience; its general flow is as follows. BCD be-
gins by assuming X can be segmented into non-overlapping
partitions ρ1, ρ2, ..., ρI and identifies changepoints as time
indexes that separate these partitions. After observing a
new data point, xt, BCD finds the most likely active run
sequence Rt = arg max

rt

P (rt|x1:t) out of all possible run se-

quences rt at time t, thereby identifying the current partition
ρi. A changepoint is identified at time t iff |Rt| = 0 (i.e. if
a new partition has been identified at xt).

To compute the probability distribution P (rt|x1:t) for all
rt at time t, BCD uses the following recursive formulation.
After observing data points x1:t−1, BCD has previously cal-
culated the posterior probability distribution P (rt−1|x1:t−1)
over all contiguous run sequences rt−1 containing the point
xt−1. Upon observing the new data point xt (line 4), BCD

Figure 1: Example application of BCD to real power data.
As the algorithm observes real power values (top), it com-
putes run length probabilities at each time-step (bottom),
represented as grayscale values. Darker pixels represent
higher probabilities, and the maximum probability at each
time-step is shown in red. A changepoint is identified when
the sequence with the maximum probability changes be-
tween time-steps, shown as red x’s (top).

uses Bayesian inference with the sample mean µrt−1 and

sample variance σ2
rt−1

to compute the predictive probabil-

ity, π
(r)
t , that xt was drawn from rt−1 for all rt−1 (line 5).

Next, BCD calculates each run sequence’s growth proba-
bility, P (rt = rt−1|x1:t), as a product of the predictive

probability π
(r)
t and the posterior probability P (rt−1|x1:t−1)

(line 6). The probability for a new run sequence of length
rt = 0 is also included using a predetermined hazard func-
tion, H(rt−1) (line 7). Finally, BCD normalizes the proba-
bilities for all run sequences rt to sum to 1 (line 8) and saves
the distribution as P (rt|x1:t).

3.2 Settings, Assumptions, and Modifications
Multiple electrical features have been explored for dis-

aggregation including reactive power, voltage and current
waveforms, and many others [30]. We limit this paper’s
scope to real power since it is the most common feature
measured by existing smart meters and it enables exploita-
tion of properties specific to real power consumption. An
illustration of BCD applied to a real power data stream X
is displayed in Figure 1. We leave the exploration of apply-
ing BCD to additional features to future work.

In this setting, each ρi represents a steady state power pro-
duced by a set of appliances, µi is the steady state power
value, and σ2

i models the noise in that state. Under the as-
sumption that each partition ρi is Gaussian centered around
an unknown mean µi with unknown variance σ2

i , we adopt
the authors’ recommended domain-agnostic values from their
code for default mean µ0 = 0, default variance σ2

0 = 1, and
hazard function (which specifies the unweighted probability
of a changepoint occurring) to H(τ) = 1

λ
with λ = 200 [1].

The original online BCD algorithm identifies a change-
point when the active run sequence at time t is the newly
generated run sequence of length 0 (when |Rt| = 0) [2].
However, such an implementation needs to retroactively up-
date previous changepoints identified, which is undesirable

991

Algorithm 1: Online Bayesian Changepoint Detection

Input: Data X = x1, x2, ..., xT , hazard function H(τ).
Output: CP : Time indexes of identified changepoints.

1 CP = ∅
2 t = 1
3 while t ≤ T do
4 Observe new data point xt
5 Compute predictive probabilities

π
(r)
t = P (xt|rt−1)∀rt−1

6 Compute growth probabilities

P (rt = rt−1|x1:t) = P (rt−1|x1:t−1)π
(r)
t (1−H(rt−1))

7 Insert unweighted probability of a changepoint
P (rt = 0) = H(rt−1)

8 Normalize distribution P (rt) to sum to 1
9 Find maximum probability Rt = arg max

rt

P (rt|x1:t)

10 if Rt 6= Rt − 1 then
11 If a changepoint is found, save the time index
12 Insert t into CP

13 t = t+ 1

14 Return CP

in an online implementation. To mitigate this, we modi-
fied the criterion of changepoint identification to Rt 6= Rt−1

(line 10), i.e. when the active run sequence changes between
time-steps, which we found works better in this application.

An additional drawback of online BCD is that a time de-
lay can exist between when a changepoint occurs and when
online BCD identifies it. For example, suppose X contains
two adjacent partitions, ρ1 and ρ2. If the mean difference
|µ1−µ2| is small relative to their variances σ2

1 and σ2
2 , it will

take multiple observations from ρ2 before BCD identifies a
changepoint. In other words, if a changepoint occurs at xt,
BCD may not identify the changepoint until observing the
data point xt+d for some time delay d > 0. This time delay
creates an offset of size d for low power changes, pushing the
identified changepoint to the right of the actual changepoint.

As such, we introduce an offline formulation to the orig-
inal online BCD algorithm, detailed in Algorithm 2. This
calculates all probability distributions P (rt|x1:t) for all t ∈ T
(lines 3-9) before identifying any changepoints (lines 10-14),
eliminating any time delay. Algorithm 2 can still run in
near-online fashion, as described in the next section.

3.3 Computational Complexity
The time and space complexity of online BCD is Θ(T 2)

(where T = |X| is the number of data points) since at each
time t, there are t different run sequence probabilities to
update [2], making it impractical for long time horizons T .

Speedup can be achieved in two ways. First, dropping run
sequences below a minimum probability threshold (such as
10−4) reduces complexity to Θ(L2), where L is the longest
run sequence identified in X [2]. Alternatively, the data
stream X can be segmented into smaller windows each of
size W , reducing the complexity to Θ(W 2 T

W
) = Θ(WT).

WhenW << T , Algorithm 2 produces near-online results,
and a small delay of a few seconds has a negligible effect in
this domain. The minimum W required for accurate change
detection depends on the sampling rate and underlying ap-
pliances. Tuning W for similar methods has been previously

Algorithm 2: Offline Bayesian Changepoint Detection

Input: Data X = x1, x2, ..., xT , hazard function H(τ).
Output: CP : Time indexes of identified changepoints.

1 CP = ∅
2 t = 1
3 while t ≤ T do
4 Observe new data point xt
5 Compute predictive probabilities

π
(r)
t = P (xt|rt−1)∀rt−1

6 Compute growth probabilities

P (rt = rt−1|x1:t) = P (rt−1|x1:t−1)π
(r)
t (1−H(rt−1))

7 Insert unweighted probability of a changepoint
P (rt = 0) = H(rt−1)

8 Normalize distribution P (rt) to sum to 1
9 t = t+ 1

10 (Note that now t = T)
11 while t > 0 do
12 Find maximum probability Rt = arg max

rt

P (rt|x1:t)

13 t = t− |Rt| (Mark changepoint at the origin of Rt)
14 Insert t into CP

15 Return CP

explored in [4]. Typically W > 100 data points, since setting
W too small can yield too little information.

For label correction results in Section 4.3, we did not im-
plement either speedup since the training samples had rela-
tively short durations. For event detection results, we used
the second speedup approach. The setting of W is described
in Section 5.3.

4. SUPERVISED LABEL CORRECTION

4.1 Sources of Label Errors
The first challenge for supervised classification in electric-

ity disaggregation is to automatically correct labels. A la-
bel is a timestamp with an appliance identifier identifying a
state transition for that appliance. In this paper, we only
consider two states: ON and OFF. However, this can be
extended to include intermediate state transitions charac-
teristic of Type II and Type III appliances, detailed in [30].

Imperfect labels in data is a common problem in many do-
mains. Here we focus on the task of correcting poor labels for
electricity disaggregation, since this has been completely ig-
nored by other researchers. Outside of our previous work in
[27], there has been no discussion of how to deal with incor-
rect labels or contaminated training samples. Researchers
have simply discarded poor samples or manually adjusted
erroneous labels in order to focus solely on classification.
However, the assumption that a supervised learning method
will receive perfectly labeled samples captured in isolation
breaks down when the training data is captured by an un-
trained consumer, and manual corrections do not scale to
widespread application. Our approach detailed below may
apply to other problems, but will likely require adjustment
to domain-specific properties.

Labels can contain errors for multiple reasons (see Fig-
ure 2 for examples). First, temporal offsets can occur due
to improper clock synchronization or hardware latencies in
experimental prototypes. Second, users capturing the data

992

Figure 2: Sources of label error. Real power in both power phase A (black line) and power phase B (gray line) is displayed.
Errors may stem from truncated shutdown sequences (left) or external events in the same power phase (middle) or opposite
power phase (right). Samples shown also contain offsets from user error or improper synchronization.

Mean Power Increase (W) for Back Porch Lights
Before Correction After Correction

Sample 1 229.7 331.8
Sample 2 145.0 333.15
Sample 3 144.0 330.7
Sample 4 143.1 N/A
µ (mean) 165.5 331.9
σ (standard dev.) 37.01 1.0

Simple Mean Classification (d
dt
xt ∈ [0.9µ, 1.1µ])

True Positives 0/4 4/4
False Positives 3 8

Simple Mean Classification (d
dt
xt ∈ [µ− 2σ, µ+ 2σ])

True Positives 0/4 4/4
False Positives 8 0

Table 1: Impact of label errors on classification. Simple
mean classification with raw user labels generates only false
positives for both L1 thresholds. Using corrected labels the
algorithm finds all true positives using either threshold, and
false positives are eliminated with the threshold ±2σ.

can introduce errors by mislabeling data. A consumer may
simply forget to mark a device as off after a long period of
operation. Third, transient shut down sequences are often
truncated when users mark an appliance as off when they
turned it off instead of when it stops drawing power. Finally,
samples intended to be captured in isolation can be contam-
inated by other appliances. This typically occurs when a
freezer, HVAC system, or other automated appliance turns
on when a user is capturing a sample of another appliance.

To show the potential impact of erroneous labels, we use
cross-validated simple mean classification on Kaggle’s Belkin
dataset1, shown in Table 1. The Belkin dataset contains
nearly 150 appliances from 4 houses with up to 4 samples
per appliance, but here we use just the 4 samples for the
back porch lights of house H3.

Simple mean classification is a supervised learning method
that stores the average power consumption µ of each appli-
ance during training. It then classifies an appliance as ON
during testing if a power change d

dt
xt is within a specified

L1 distance from µ, where d
dt
xt is the discrete derivative of

X evaluated at time t. Table 1 shows results for two L1

thresholds (10% of the mean and two standard deviations).
Classification accuracy should be high since this is a sim-

ple appliance. The lights have only two states (ON and
OFF) and significant power consumption of over 300 watts

1https://www.kaggle.com/c/belkin-energy-disaggregation-
competition

(W), yielding a distinct step function signature. However,
training on the four samples without label correction, sim-
ple mean classification produces multiple false positives and
false negatives for both L1 intervals. This is due to a sig-
nificant label offset and contamination of the fourth sample
(shown in the middle image in Figure 2). In contrast, using
corrected labels for the first 3 samples and discarding the
contaminated fourth sample, simple mean classification cor-
rectly captures the 330 W operating power, discovers all four
true positives, and eliminates false positives with the suffi-
ciently tight interval ±2σ. This illustrates the importance
of correctly labeled training samples.

4.2 Label Correction Algorithms
We now introduce the application of BCD to automati-

cally correct labels. Although other change detection meth-
ods have previously been applied to electricity disaggrega-
tion, our application is unique in at least three ways. First,
this is the first application of change detection to correct er-
rors in user ON and OFF labels. Second, BCD does not re-
quire manual tuning of parameters. Third, this application
has the capability to compute changepoints online, enabling
label correction on streaming data as they are observed in-
stead of being restricted to processing in batch.

Given a real power data stream X and user-labeled ON
and OFF timestamps (tuon, t

u
off), BCD can extract change-

points fromX, but using these changepoints to correct labels
(tuon, t

u
off) is not straightforward. A simple approach is to

use the changepoint candidate pair (t̂candon , t̂candoff) that mini-
mizes the Euclidean distance with the user labels (tuon, t

u
off),

which we refer to as naive proximal correction, or NaiveProx.
NaiveProx has limited ability to correct labels. Although

changepoints can correspond to transitions between ON and
OFF states, they can also be produced by fluctuations in
background noise or by transitions between different states
during appliance operation. These can be steady state tran-
sitions of Type II appliances, such as a fan changing between
high, medium and low settings, or continuous power changes
from Type III appliances, such as changes in a TV’s bright-
ness. Furthermore, NaiveProx does not account for domain-
level properties, such as a power increase for t̂candon , a power
decrease for t̂candoff , or similar beginning and ending real pow-

ers at the new labels X(t̂candon) and X(t̂candoff).
Algorithm 3 introduces online power-constrained proximal

correction, or OnlinePCProx, to account for these domain-
level properties. The algorithm begins by using online BCD
to calculate all changepoints, CP , for the training sample
(line 1), builds all unique changepoint pairs (line 2), and sets
a flag for when labels have been corrected (line 3). Then, as

993

Algorithm 3: Power-constrained Proximal Correction

Input: Real Power measurements for one training
sample in one power phase (X), User-marked
on and off timestamps (tuon, tuoff), Power
Threshold (ν).

Output: Corrected Timestamps (tcorron , tcorroff).
1 CP = BCD(X) (Note: Can be online or offline BCD)

2 CPpairs = {(tcandon , tcandoff)|tcandon ,candoff ∈ CP, tcandon < tcandoff }
3 Labels Corrected = false
4 while Not(Labels Corrected) and CPpairs 6= ∅ do
5 (t̂candon , t̂candoff) =

arg min
(tcand

on ,tcand
off

)∈CPpairs

||(tcandon , tcandoff), (tuon, t
u
off)||2

6 if d
dt
X(t̂candon) > 0 and d

dt
X(t̂candoff) < 0 then

7 if |X(t̂candon)−X(t̂candoff)| < ν then
8 Labels Corrected = true

9 tcorron = t̂candon

10 tcorroff = t̂candoff

11 else
12 Remove (t̂candon , t̂candoff) from CPpairs

13 if Labels Corrected = true then
14 return (tcorron , tcorroff)

15 else
16 No valid labels found, mark sample as contaminated.

in NaiveProx, it finds the pair of changepoints (t̂candon , t̂candoff)
closest to the user on and off labels (tuon, t

u
off)(line 5). How-

ever, in contrast to NaiveProx, it then incorporates the real
power draw characteristic of appliances by requiring the can-
didate ON and OFF labels satisfy two axiomatic constraints.

First, the direction of the power change must be appro-
priate: a power increase for the ON timestamp t̂candon and a
power decrease for an OFF timestamp t̂candoff . This is per-

formed by evaluating d
dt
X, the first order discrete derivative

of X with respect to time, at each changepoint time (line 6).
Second, the total change in power must sum to nearly zero
(line 7). This is checked using the threshold ν = 30W in-
stead of a direct comparison with zero to mask background
noise. If the labels were successfully corrected, the algorithm
then returns the new ON and OFF label pair (tcorron , tcorroff)
(lines 13-14). If it cannot find a valid pair, it marks the
sample as contaminated (lines 15-16).

Note the threshold ν is a parameter that could be tuned to
optimize performance. However, setting ν = 30W has been
a common practice in previous research [4, 24, 27] since the
vast majority of appliances operate above this power level,
and any waste from appliances below 30 W is negligible.

Algorithm 3 can use offline BCD instead of online BCD in
(line 1) to avoid changepoint time delay discussed in Section
3.2. We refer to this as offline power-constrained proximal
correction, or OfflinePCProx. Also, note that NaiveProx is
a special case of Algorithm 3 which can be represented by
replacing lines 4-16 with just line 5 and returning the result.

4.3 Experimental Setup
Most datasets are unsuitable for label correction evalua-

tion since they are manually post-processed to remove la-
beling errors prior to being made public, and the original,

uncorrected labels are not available. Instead, we chose to
use the Kaggle Belkin dataset, since it contains user label-
ing errors [27] including label offsets, contaminated samples,
truncated shutdown sequences, and other mislabeled events.

The Belkin dataset contains disjoint training and testing
data. Training data contains 463 training samples from 147
appliances across 4 different houses. Aggregate power mea-
surements are recorded at a 5 Hz rate, and each sample has
user ON and OFF timestamped labels. Testing data is simi-
lar, but labels remain hidden to the public since the dataset
was designed for online competition. As such, we limit the
experiments for this paper to the fully labeled training data.

We compare NaiveProx, OnlinePCProx, and OfflinePCProx
to our previously introduced power-constrained fixed incre-
ment adjustment, abbreviated PCFI [27]. Unlike the three
BCD-based methods introduced here, PCFI performs noise
reduction prior to label correction and requires a preset pa-
rameter to specify the adjustment increment.

4.4 Performance Metrics
A correctly relabeled training sample should capture the

entire window of an appliance’s operation. As such, we de-
fine a sample as correctly relabeled using the equations be-
low. These ensure the corrected ON label (tcorron) occurs
before the actual ON label (tactualon), the corrected OFF la-
bel (tcorroff) occurs after the actual OFF label (tactualoff), and
both are within a specified distance δ of the actual labels.

Corr(tcorron) =

{
Correct, if tcorron ∈ [tactualon − δ, tactualon]

Incorrect, otherwise

Corr(tcorroff) =

{
Correct, if tcorroff ∈ [tactualoff , tactualoff + δ]

Incorrect, otherwise

Relabeling =

{
Correct, if (Corr(tcorron) and Corr(tcorroff))

Incorrect, otherwise

Since the Belkin dataset only contains uncorrected ON
and OFF labels, we visually established the actual ON and
OFF labels for each training sample prior to label correction.
Although this process is time-consuming, it is inherently ob-
vious where the actual ON and OFF labels are for the over-
whelming majority of training samples. In the handful of
cases where the actual ON and OFF labels was in doubt,
newly generated labels were recorded as incorrect.

We experimented with δ ∈ [0.5, 5] seconds and observed
similar results. Results detailed below are for δ = 2 sec-
onds which equates to 10 sampling points at Belkin’s 5 Hz
sampling rate. We then use the percent of samples correctly
relabeled to compare label correction methods.

4.5 Label Correction Results
Figure 3 displays results for label correction, comparing

the three Bayesian change detection based methods intro-
duced in this paper to PCFI [27] using the Kaggle Belkin
dataset. Note that variation of performance between houses
is expected, since each house has appliances with different
characteristics, further amplified by differing user behavior.

Unsurprisingly, NaiveProx performs poorly since it pro-
duces new labels from changepoints based solely on their
distance from user labels. Any small changes in power near
a user label are returned as the new ON or OFF label, and
there are no guarantees these labels possess the right change
in direction, constitute real power draw, or sum to 0 watts.

994

OnlinePCProx and OfflinePCProx perform significantly
better. OnlinePCProx results in slightly lower accuracy due
to the potential time delay d detailed in Section 3.2, which
can push a new label outside accepted threshold δ for low
power appliances. In contrast, OfflinePCProx retroactively
identifies the origin of each run sequence after it has been
identified, and its results are comparable to PCFI [27].

These results are significant since they are achieved in an
automated fashion without requiring prior noise reduction or
parameter tuning. OnlinePCProx and OfflinePCProx leave
some samples uncorrected, but they successfully correct the
overwhelming majority, and correction of 100% of samples
is not necessary. While the number of training samples re-
quired for accurate classification varies depending on the su-
pervised learning method, providing fewer correctly labeled
samples produces better classification accuracy than more
incorrectly labeled samples, as illustrated earlier in Table 1.

Furthermore, it is unrealistic to expect any algorithm to
correct all training samples. Table 2 lists some of the causes
of uncorrected labels using OfflinePCProx. Label correction
is infeasible for eighty of these samples since they have sig-
nificant obstacles for any label correction method. Obstacles
include very low power draw (15 W or less) making appli-
ance signatures indistinct from baseline background noise,
contamination by external events, or gross mislabeling where
either the timestamps for both ON and OFF labels are iden-
tical or labels occur inside a different appliance sample.

Lastly, BCD-based methods can be used in real time with
inexpensive hardware. Belkin’s training samples range from
40 seconds to 1.5 hours, and Algorithm 3 on a conventional
laptop completed in under 5 seconds for the smallest samples
and in a few minutes for the longest samples.

5. UNSUPERVISED EVENT DETECTION
Although supervised learning methods yield high classifi-

cation accuracy, they can be cumbersome to implement. To
obtain isolated training samples, consumers must turn off all
appliances and switch each appliance on one at a time. Some
appliance cycles last an hour or longer (such as dishwashers,
washing machines, or dryers), and most homes contain 30-40
different appliances, meaning consumers must dedicate 8-12
hours or longer to obtain even a few isolated training sam-
ples for each appliance. Many appliances cannot be turned
off since they perform essential functions (such as refrigera-
tors, freezers, or HVAC systems), and automated appliances
in commercial buildings are so numerous that capturing iso-
lated training samples may not be feasible. These are the
motivations behind unsupervised disaggregation [30].

As mentioned in Section 2, unsupervised learning in elec-
tricity disaggregation consists of, at a minimum, two steps:
The real power data stream must first be segmented to iden-
tify significant events. This process is referred to as event
detection [4, 20]. After events have been identified, they
are reconstructed into individual, previously unknown ap-
pliances. The remainder of this section focuses on the first
step of event detection.

5.1 Event Detection Algorithms
We evaluate BCD’s ability to detect electrical events in

real power data and compare its performance against modi-
fied greatest likelihood ratio (mGLR) and Dirichlet process
Gaussian mixture models (DPGMM).

Figure 3: Supervised label correction algorithms applied to
all four houses H1-H4 in the Kaggle Belkin dataset.

Incorrect Labels H1 H2 H3 H4 Total
Total incorrect labels 25 51 45 23 144
Can be corrected 8 22 26 8 64
Cannot be corrected 17 29 19 15 80

Low power (<15W) 12 10 13 13 48
Sample contaminated 4 3 4 2 13
Gross mislabeling 1 16 0 0 17
Sporadic power draw 0 0 2 0 2

Table 2: Causes of uncorrected labels using OfflinePCProx.

mGLR is a change detection method that uses log likeli-
hood ratios in conjunction with a voting scheme to identify
events. It has five tunable parameters which were optimized
for performance on the BLUED dataset in [4].

DPGMM is an iterative clustering method that treats real
power values in X as an infinite-mixture GMM. For each
discovered Gaussian, it determines steady-state power lev-
els by computing its mean. It then recasts observed power
values X to the nearest steady-state power level and identi-
fies changepoints as transitions between these states [24].

Following BCD’s event detection, we filtered out small
changepoints caused by background noise using the well-
established power threshold ν = 30W , the same threshold
used by mGLR and DPGMM [4, 24]. Finally, since mGLR
and DPGMM are offline methods, we restrict the BCD re-
sults in this section to offline computation (Algorithm 2) and
use the windowed speedup introduced in Section 3.3 while
noting this produces near-online results.

5.2 Performance Metrics
A sample xt is defined as a positive if an event is detected

and as a negative if no event is detected. Given a predefined
δ, a positive xt is a true positive iff ∃xgte s.t. |xt − xgte| <
δ, where xgte is a ground truth event. Otherwise, it is a
false positive. Conversely, a negative xt is a true negative
iff ∀xgte |xt − xgte| > δ, and is a false negative otherwise.
Similar to label correction, results below use δ = 2 seconds.

Due to the overwhelming number of true negatives inher-
ent in event detection, some accuracy metrics yield poor re-
sults [4]. As such, we chose four metrics that do not rely on
true negatives. The first, F Measure, is defined in (1) using

995

Figure 4: Weighted and unweighted F Measures for event detection on the BLUED (left) and REDD (right) datasets. In
general, BCD performs as well as or better than DPGMM and mGLR without requiring parameter tuning or noise reduction.
The impact of different sampling rates can be seen in BLUED. As the sampling rate increases, DPGMM’s accuracy decreases
due to numerous false positives caused by higher noise. In contrast, BCD’s performance increases or stays the same.

precision and recall. TP , FP , and FN are the sets of true
positives, false positives, and false negatives, respectively.

Precision =
|TP |

|TP |+ |FP | , Recall =
|TP |

|TP |+ |FN |

F Measure =
2

1
Precision

+ 1
Recall

(1)

Second, we introduce a power-weighted F Measure∆P in
(2). ∆Ptp, ∆Pfp, and ∆Pfn are the power changes for each
true positive, false positive, and false negative, respectively.

∆PTP =
∑
tp∈TP

|∆Ptp|, ∆PFP =
∑

fp∈FP

|∆Pfp|, ∆PFN=
∑

fn∈FN

|∆Pfn|

Precision∆P =
∆PTP

∆PTP + ∆PFP
, Recall∆P =

∆PTP
∆PTP + ∆PFN

F Measure∆P =
2

1
Precision∆P

+ 1
Recall∆P

(2)

We also include two error metrics from [4] that have su-
perior performance in evaluating event detection: True Pos-
itive Percent (ψPercent) and Total Power Change (ψ∆P).
ψPercent measures the ratios of true positives and false

positives to total ground truth events, GTE, as in (3). An
optimal detector finds all true positives and produces no
false positives, so the error rate ψPercent is computed as the
Euclidean distance between the detector and the point (1,0).

ψPercent = ||(1, 0)− (
|TP |
|GTE| ,

|FP |
|GTE|)||2 (3)

Finally, ψ∆P measures the sum of the power changes of
all false positives and false negatives, defined in (4). Since
an optimal detector would produce no false positives or false
negatives, the evaluation for ψ∆P again uses the Euclidean
norm, but this time from the point (0,0).

ψ∆P = ||(∆PFP ,∆PFN)||2 (4)

Note that by the definition of a true positive above, there
can be multiple true positives for a single ground truth event,
making it possible that |TP | > |GTE|. This is reasonable
since the exact time when an appliance changes states is not
always clear, making the actual xgte somewhat subjective.
Many false positives can also make ψPercent > 100% [4].

5.3 Experimental Setup
The Belkin dataset is poorly suited to evaluate event de-

tection since its training data only contains isolated appli-
ances and its testing data labels are hidden. Instead, we use

the publicly available BLUED (Building-Level fUlly-labeled
dataset for Electricity Disaggregation) and REDD (Refer-
ence Energy Disaggregation Dataset) datasets [3, 18].

BLUED provides event labels corrected through manual
post-processing. Power is captured at 60 Hz and spans one
week on a house with 43 appliances [3]. To measure the effect
of sampling rate on event detection, we used the original 60
Hz and also downsampled power to 1 Hz and 10 Hz.

REDD [18] contains power measurements from 6 houses
at a sampling rate of roughly 0.25 Hz, but contains individ-
ual data streams for each appliance instead of ground truth
event labels. As such, we first performed event detection
using BCD and DPGMM on the individual appliance data
streams and labeled an event as a ground truth event if it
was discovered by both. We then compared these ground
truth labels with events detected from the aggregate real
power measurements to determine event detection accuracy.

For fairest evaluation, we did not recreate mGLR and in-
stead used results reported in [4]. This limits comparisons of
BCD and mGLR in Figures 4 and 5 to the BLUED dataset
using two of the previously defined metrics (F Measure and
ψPercent) at a 60 Hz sampling rate. However, these com-
parisons are significant since mGLR’s results were obtained
using parameters optimized for the BLUED dataset.

In contrast, we re-implemented DPGMM since its inter-
mediate event detection results were not reported in [24]. We
omitted the pre-processing noise reduction step which uses a
heuristic-based window filter since its parameters were tuned
for individual appliances and were not published in [24].

The authors of mGLR experimented with window sizes of
W ∈ [120, 330] on the BLUED dataset [4] and optimized W
= 120 for their results reported in [3] and shown in Figure
4 and Figure 5. For BCD and DPGMM, we experimented
with window sizes W ∈ [100, 3, 000] in increments of 100
data points. W > 3, 000 significantly increased runtime for
both methods while providing no noticeable improvement.

BCD’s results showed little variation for varying W , since
the run sequence probabilities from the previous time win-
dow carried over to the current window. In contrast, DPGMM’s
performance varied widely over differing values of W since
it discovered different clusters depending on where the data
stream was segmented. Event detection results use W =
1,000 data points since it provided the best results for DPGMM.

5.4 Event Detection Results
Figure 4 displays event detection results using F Measure

and F Measure∆P on both power phases A and B of BLUED
using sampling rates of 1 Hz, 10 Hz, and 60 Hz (left) and

996

Figure 5: Error rates in event detection on BLUED using
unweighted error, ψPercent (left) and power-weighted error,
ψ∆P (right). BCD’s error is near zero in some cases and its
ψPercent error is similar to mGLR at 60 Hz, while DPGMM’s
error is larger on phase B and at higher sampling rates due
to numerous low power false positives.

REDD’s six houses (right). mGLR is only compared using
60 Hz in the leftmost figure for reasons described above.

On BLUED, all methods perform better in general on
power phase A than on phase B. This is expected, since
phase A contains simpler appliances that are more isolated,
while phase B contains noisier appliances with concurrent
operation [3]. On REDD, variation between houses is likely
due to different appliance characteristics and user behavior.
These results are statistically significant and support the hy-
pothesis that BCD performs as well as or better than mGLR
and DPGMM on both datasets using a p-value of 0.05.
ψPercent and ψ∆P are displayed for BLUED in Figure 5

and for REDD in Figure 6. These results are included since
both error rates were developed specifically for this domain
[4]. Both show BCD’s error rate is the same or lower than
competing methods and are also statistically significant.

Note that BCD’s performance generally improves with
higher sampling rates on BLUED in Figures 4 and 5. In
contrast, DPGMM’s performance actually decreases with
higher sampling rates, and DPGMM performs better with
the power-weighted metrics F Measure∆P and ψ∆P than
with unweighted metrics F Measure and ψPercent. This
behavior is caused by large numbers of low power false pos-
itives generated by DPGMM, illustrated in Figure 7.

Recall that DPGMM treats the power spectrum as a Gaus-
sian mixture model. Under noisy conditions, it can falsely
cluster small power variations into different power states and
identify changes between these false states as events. While
this is likely amplified by omitting the heuristic noise re-
duction step described in Section 5.1, it is not realistic to
tune parameters for such an approach to individual appli-
ances. BCD avoids this noise handicap since every possible
run sequence is modeled with its own mean and variance.

We observed efficient runtimes for BCD on both datasets.
While BCD and DPGMM are both Θ(T 2) algorithms, BCD
consistently completed 20-40 times faster than DPGMM.
Although coding implementations influence runtimes, this
performance fits with computational analysis. BCD requires
a single computation to update each existing run sequence
rt, while DPGMM iteratively clusters points until its GMM
converges or it reaches a maximum number of iterations.

Finally, BCD does not require parameter tuning. The

Figure 6: Error rates in unsupervised event detection on the
six houses of the REDD dataset using unweighted ψPercent
and ψ∆P . Similar to results on BLUED, DPGMM generates
large numbers of low power false positives on all houses.

Figure 7: Example of event detection under very noisy con-
ditions. Ground truth events (orange tick marks) occur at
34, 50, 388, 570, and 571 seconds. BCD (red tick marks) gen-
erates 1 false positive and 1 false negative, while DPGMM
(blue tick marks) produces over 500 false positives.

domain-agnostic values for its algorithmic parameters are
sufficient (detailed in Section 3.2). BCD is robust to various
window sizes W since run sequence probabilities carry over
to new windows, and the event detection threshold ν = 30W
is commonly established [3, 24, 27]. In addition, BCD com-
pleted in less than 6 hours for BLUED’s 1 week of data on
a conventional laptop using highest sampling rate of 60 Hz,
enabling real-time computation with inexpensive hardware.

6. CONCLUSIONS AND FUTURE WORK
We have introduced the application of Bayesian change de-

tection to label correction and event detection in electricity
disaggregation. BCD’s performance is on par with or better
than state-of-the-art methods using multiple metrics on a va-
riety of houses and appliances, and it can be run near-online
and in real time. BCD also does not require parameter tun-
ing to specific appliances or datasets, is robust to varying
noise, and its performance improves with higher sampling
rates. Our BCD implementation and other resources are
available at www.cs.umn.edu/~valovage/AAMAS-2017.

Future label correction work includes recovering data from
contaminated samples and developing datasets to model user
label errors. Additional electrical features can also be incor-
porated, and the complexity to reconstruct appliances from
detected events during unsupervised learning remains a chal-
lenging problem. Finally, as poor labeling is not unique to
electricity disaggregation, the application of BCD to addi-
tional domains should be explored further to produce robust,
scalable solutions that do not require parameter tuning.

997

REFERENCES
[1] Bayesian online changepoint detection.

http://hips.seas.harvard.edu/content/

bayesian-online-changepoint-detection. Harvard
Intelligent Probabilistic Systems website.

[2] R. P. Adams and D. J. MacKay. Bayesian online
changepoint detection. arXiv preprint
arXiv:0710.3742, 2007.

[3] K. Anderson, A. Ocneanu, D. Benitez, D. Carlson,
A. Rowe, and M. Berges. BLUED: A fully labeled
public dataset for event-based non-intrusive load
monitoring research. In Proceedings of the 2nd KDD
Workshop on Data Mining Applications in
Sustainability (SustKDD), pages 1–5, 2012.

[4] K. D. Anderson, M. E. Bergés, A. Ocneanu,
D. Benitez, and J. M. Moura. Event detection for
non-intrusive load monitoring. In IECON 2012-38th
Annual Conference on IEEE Industrial Electronics
Society, pages 3312–3317. IEEE, 2012.

[5] M. Berges, E. Goldman, H. S. Matthews, and
L. Soibelman. Training load monitoring algorithms on
highly sub-metered home electricity consumption data.
Tsinghua Science & Technology, 13:406–411, 2008.

[6] K. Carrie Armel, A. Gupta, G. Shrimali, and
A. Albert. Is disaggregation the holy grail of energy
efficiency? The case of electricity. Energy Policy, 2012.

[7] G. Comert and A. Bezuglov. An online
change-point-based model for traffic parameter
prediction. IEEE Transactions on Intelligent
Transportation Systems, 14(3):1360–1369, 2013.

[8] E. Elhamifar and S. Sastry. Energy disaggregation via
learning ‘powerlets’ and sparse coding. In Proc. AAAI
Conf. on Artificial Intelligence, 2015.

[9] J. Froehlich, E. Larson, S. Gupta, G. Cohn,
M. Reynolds, and S. Patel. Disaggregated end-use
energy sensing for the smart grid. Pervasive
Computing, IEEE, 10(1):28–39, 2011.

[10] H. Gonçalves, A. Ocneanu, M. Bergés, and R. Fan.
Unsupervised disaggregation of appliances using
aggregated consumption data. In The 1st KDD
Workshop on Data Mining Applications in
Sustainability (SustKDD), 2011.

[11] H. C. Granade, J. Creyts, A. Derkach, P. Farese,
S. Nyquist, and K. Ostrowski. Unlocking energy
efficiency in the US economy. McKinsey & Company,
2009.

[12] G. W. Hart. Nonintrusive appliance load monitoring.
Proceedings of the IEEE, 80(12):1870–1891, 1992.

[13] S. Heck and H. Tai. Sizing the potential of behavioral
energy-efficiency initiatives in the US residential
market. McKinsey & Company, 2013.

[14] E. Keogh, S. Lonardi, and C. A. Ratanamahatana.
Towards parameter-free data mining. In Proceedings of
the 10th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages
206–215. ACM, 2004.

[15] H. Kim, M. Marwah, M. F. Arlitt, G. Lyon, and
J. Han. Unsupervised disaggregation of low frequency
power measurements. In SIAM International
Conference on Data Mining, volume 11, pages
747–758. SIAM, 2011.

[16] J. Z. Kolter, S. Batra, and A. Y. Ng. Energy
disaggregation via discriminative sparse coding. In
Advances in Neural Information Processing Systems,
pages 1153–1161, 2010.

[17] J. Z. Kolter and T. Jaakkola. Approximate inference
in additive factorial HMMs with application to energy
disaggregation. In International Conf. on Artificial
Intelligence and Statistics, pages 1472–1482, 2012.

[18] J. Z. Kolter and M. J. Johnson. REDD: A public data
set for energy disaggregation research. In Workshop on
Data Mining Applications in Sustainability
(SIGKDD), San Diego, CA, volume 25, pages 59–62,
2011.

[19] F. H. Malik and M. Lehtonen. A review: Agents in
smart grids. Electric Power Systems Research,
131:71–79, 2016.

[20] A. N. Milioudis, G. T. Andreou, V. Katsanou, K. I.
Sgouras, and D. P. Labridis. Event detection for load
disaggregation in smart metering. In Innovative Smart
Grid Technologies Europe (ISGT EUROPE), pages
1–5. IEEE, 2013.

[21] O. Parson, S. Ghosh, M. Weal, and A. Rogers.
Non-intrusive load monitoring using prior models of
general appliance types. In Proc. AAAI Conf. on
Artificial Intelligence, 2012.

[22] S. N. Patel, T. Robertson, J. A. Kientz, M. S.
Reynolds, and G. D. Abowd. At the flick of a switch:
Detecting and classifying unique electrical events on
the residential power line. In International Conf. on
Ubiquitous Computing, pages 271–288. Springer, 2007.

[23] J. Seryak and K. Kissock. Occupancy and behavioral
affects on residential energy use. In Proc. of the Solar
Conference, pages 717–722. American Solar Energy
Society; American Institute of Architects, 2003.

[24] H. Shao, M. Marwah, and N. Ramakrishnan. A
temporal motif mining approach to unsupervised
energy disaggregation: Applications to residential and
commercial buildings. In Proc. AAAI Conf. on
Artificial Intelligence, 2013.

[25] R. H. Socolow. The twin rivers program on energy
conservation in housing: Highlights and conclusions.
Energy and Buildings, 1(3):207–242, 1978.

[26] R. Turner. Bayesian change point detection for
satellite fault prediction. Diverse Engagement:
Drawing in the Margins, page 213, 2010.

[27] M. Valovage and M. Gini. Automatic label correction
and device prioritization in single household electricity
disaggregation. International Workshop on Artificial
Intelligence for Smart Grids and Smart Buildings, at
AAAI, 2016.

[28] M. Zeifman and K. Roth. Nonintrusive appliance load
monitoring: Review and outlook. IEEE Transactions
on Consumer Electronics, 57(1):76–84, 2011.

[29] M. Zeifman and K. Roth. Viterbi algorithm with
sparse transitions (VAST) for nonintrusive load
monitoring. In IEEE Symposium on Computational
Intelligence Applications In Smart Grid (CIASG),
pages 1–8. IEEE, 2011.

[30] A. Zoha, A. Gluhak, M. A. Imran, and S. Rajasegarar.
Non-intrusive load monitoring approaches for
disaggregated energy sensing: A survey. Sensors,
12(12):16838–16866, 2012.

998

